

Strong phase at BESIII and possible new charm physics at LHCb

Xiao-Rui Lyu (吕晓睿)

(E-mail: xiaorui@ucas.ac.cn)

University of Chinese Academy of Sciences (UCAS), Beijing

(On Behalf of BESIII and LHCb groups)

Outline

- >Introduction
- Strong phase measurement at BESIII
 Future prospects on Strong phase measurement
- Some new charm physics at LHCb
- > Summary and Outlook

Introduction

γ/φ₃ is the only CKM angle that can be measured in tree-level processes, in which the contribution of non-SM effects is expected to be small [JHEP 01(2014)051].
 Measurement of γ provides a benchmark of the SM with negligible theoretical uncertainty.

 $\hfill The current world-average of <math display="inline">\gamma$ deviates the indirect determination from CKM fitter by ~1.5 $\sigma.$

Clearly, an improved knowledge of the measurement of γ is important to further test the SM and probe for new physics.

Xiao-Rui LYU

Strong phase as inputs

□ γ/ϕ_3 <u>c</u>an be measured by studying the interference between B⁻→D⁰K⁻ and B⁻→D⁰K⁻

where r_B is ratio of suppressed to favored amplitudes, δ_B is the strong-phase difference between the favoured and suppressed amplitudes.

 \Box Generally, three methods were proposed to measure γ/ϕ_3 :

- ✓ GLW ^[1]: via D⁰→CP eigenstate, K⁺K⁻, $\pi^+\pi^-$, K_S⁰ π^0 etc.
- ✓ ADS ^[2]: via D⁰→CF and DCS, such as K⁺ π^- , K⁺ $\pi^-\pi^0$, K⁺ $\pi^-\pi^ \pi^+$ etc.
- ✓ GGSZ ^[3]: via with D⁰→Multi-body self-conjugate decays, $K_s^0 \pi^+ \pi^-$ etc.

Measurements from strong phases are key inputs.

For GGSZ: $d\Gamma(B^{\pm} \to DK^{\pm}) = |\mathcal{A}_D|^2 + r_B^2 |\mathcal{A}_{\bar{D}}|^2 + 2r_B |\mathcal{A}_D| |\mathcal{A}_{\bar{D}}| \times [\cos\Delta\delta_D \cos(\delta_B \pm \phi_3) + [\sin\Delta\delta_D \sin(\delta_B \pm \phi_3)]$

[1] M. Gronau, D. London, Phys. Lett. B 253, 483 (1991); M. Gronau, D. Wyler, Phys. Lett. B 265, 172 (1991). [2] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997). [3] A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003). Xiao-Rui LYU 第一届LHCb前沿物理研讨会

ESI Quantum correlated (QC) neutral *D* state near threshold

If D^0 in CP eigenstate, $\overline{D^0}$ must be in opposite CP eigenstate

Quantum Correlations (QC) and CP-tagging are unique

Taking advantage the quantum coherence of D<u>D</u> pairs, BESIII can study the charm physics in an unique way

- strong phase in D decays
- D mixing parameters
- direct CP violation

 $\begin{array}{c} \mathsf{CP} \operatorname{Tag} \\ e^{+} \\ \mathsf{e}^{(3770)} \\ \mathsf{e}^{(\mu)} \end{array} \xrightarrow{\mathsf{e}^{(\mu)}} \mathsf{Flavor} \operatorname{Tag} \end{array}$

Xiao-Rui LYU

EXAMPLE SET UP: QC inputs for Charm Physics

Xiao-Rui LYU

Beijing Electron Positron Collider (BEPC)

Xiao-Rui LYU

第一届LHCb前沿物理研讨会

EFSI Physics at tau-charm Energy Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- D mesons
- f_D and f_{Ds}
- D₀-D₀ mixing
- Charm baryons

EFSII Data for studying charmed hadron decays

$D_{(s)}$ & Λ_c decays:

- (semi-)leptonic decays
- hadronic decays

$\blacksquare \qquad \text{The Quantum Correlated } D\overline{D} \text{ meson pairs}$

 $\Box \psi(3770)$ is a spin -1 state and therefore the amplitude of $\psi(3770) \rightarrow D^0 \underline{D}^0$:

 $(|D^0\rangle|\overline{D^0}\rangle - |\overline{D^0}\rangle|D^0\rangle)/\sqrt{2}$ [anti-symmetric wave function] The amplitude for two D mesons to decay to states **F** and **G** is [D. Atwood and A. Soni, PRD68, 033003 (2003)]:

 $\Gamma(F|G) = \Gamma_0 \left[A_F^2 \bar{A}_G^2 + \bar{A}_F^2 A_G^2 - 2R_F R_G A_F \bar{A}_F A_G \bar{A}_G \cos[\delta_D^F - \delta_D^G] \right]$

The coherence factors R_F , the strong-phase difference (or the related parameters) δ_D^F , can be extracted based on the study of the quantum correlated $D\overline{D}$ meson pairs.

✓ Single tag (ST) samples:

decay products of only one D meson are reconstructed

✓ Double tag (DT) samples:

decay products of both D mesons are reconstructed

✓ Some typical reconstructed D decay modes

Tag group	
Flavor	$K^{+}\pi^{-}, K^{+}\pi^{-}\pi^{0}, K^{+}\pi^{-}\pi^{-}\pi^{+}, K^{+}e^{-}\bar{\nu}_{e}$
CP-even	$K^+K^-, \pi^+\pi^-, K^0_S\pi^0\pi^0, K^0_L\pi^0, \pi^+\pi^-\pi^0$
CP-odd	$K^0_S \pi^0, K^0_S \eta, \tilde{K^0_S} \omega, K^0_S \eta', K^0_L \pi^0 \pi^0$
Mixed-CP	$K^0_S\pi^+\pi^-$

✓ Using this method, CLEO had performed lots of important and excellent measurements related to strong phases.

Xiao-Rui LYU

R€ST **ADS input: strong phase \delta_{\kappa\pi}**

2.93 fb⁻¹ @3.773GeV Quantum correlation \rightarrow Interference \rightarrow access strong phase!

 $\langle K\pi | D_{CP+} \rangle = (\langle K\pi | D^0 \rangle \pm \langle K\pi | \overline{D^0} \rangle) / \sqrt{2} \implies \sqrt{2} A_{CP+} = A_{K\pi} \pm \overline{A_{K\pi}}$ $\sqrt{2}A_{CP+}$ $= \frac{1}{\kappa_{\pi}} 2r_{\kappa\pi} \cdot \cos \delta_{\kappa\pi} \approx A_{CP \to \kappa\pi} \equiv \frac{|A_{CP-}|^2 - |A_{CP+}|^2}{|A_{CP-}|^2 + |A_{CP+}|^2}$ $=\frac{Br(D_{CP-}\to K\pi)-Br(D_{CP+}\to K\pi)}{Br(D_{CP-}\to K\pi)+Br(D_{CP+}\to K\pi)}$ **Α**_{Κπ} $\sqrt{2} A_{CP}$

♦ Flavor tags: K-π+, K+π-◆ CP+ tags (5 modes): K⁻K⁺, π⁺π⁻, K⁰_Sπ⁰π⁰, π⁰π⁰, ρ⁰π⁰ CP- tags (3 modes): K⁰_Sπ⁰, K⁰_Sη, K⁰_Sω

BESIII results:

 $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$

- The third error is due to the input ο parameters
- World best precision
- In 10 /fb BESIII data, precision of cosδκπ will reach ~0.07

Xiao-Rui LYU

€SIII

GGSZ input: (c_i, s_i) in $\mathbf{D}^0 \rightarrow \mathbf{K}_{s,L} \pi^+ \pi^-$ Dalitz analysis

Only c_i , s_i from $K_s \pi^+ \pi^-$ is used to calculate γ .

However adding in $D^0 \rightarrow K_L \pi^+ \pi^-$ we can calculate c'_i, s'_i and use how they relate to c_i, s_i to further constrain our results in a Global fit.

Strong-phase parameters in $D \rightarrow K_S^0 \pi^+ \pi^-$

Three typical binning schemes

[J. Libby et al. (CLEO Collaboration), Phys. Rev. D 82,112006 (2010)]

- ✓ "BaBar K-matrix" D^0 → $K_s^0\pi^+\pi^-$ model as in Ref. [Phys. Rev. D 78, 034023 (2008)].
- ✓ It should be noted that although the choice of binning is model-dependent, however, a poor choice of model results only in a loss of precision, instead of bias in measuring γ/ϕ_3 .

[1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122, 231802 (2019); JHEP 04(2016) 033.

- [2] V. Vorobyev et al. (Belle Collaboration), Phys. Rev. D 94, 052004 (2016).
- [3] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 718, 43 (2012); JHEP 10 (2014) 097; JHEP 06 (2016) 131; JHEP 08 (2018) 176.
- [4] H. Aihara et al. (Belle Collaboration), Phys. Rev. D 85, 112014 (2012).

Xiao-Rui LYU

Strong-phase parameters in $D \rightarrow K_{S/L}^{0} \pi^{+} \pi^{-}$

 \checkmark Results of c_i and s_i in optimal binning from CLEO experiments.

- The systematic uncertainty in measurement of γ due to input strong-phase parameters is 3.9° for optimal binning. The overall sensitivity is limited to ~3.9° for model-independent GGSZ approach.
- ✓ Therefore, improved measurements in $c_i \& s_i$ from BESIII are essential for degree-level precision of measuring γ via model-independent GGSZ approach.

Beam-constrained mass distributions

- ✓ D→ $\pi^+\pi^-\pi^0$ is not fully CP-even and the corrections for the decay is always applied.
- ✓ The fractional *CP*-even content of D→ $\pi^+\pi^-\pi^0$: F₊^{$\pi+\pi-\pi^0$}=0.973±0.017 [PLB747, 9 (2015)].

$\mathbf{H} \mathbf{S} = \mathbf{D} \mathbf{T} \text{ samples of } \mathbf{D} \mathbf{H} \mathbf{K}_{\mathrm{S}} \pi^{+} \pi^{-} \text{ and } \mathbf{D} \mathbf{H} \mathbf{K}_{\mathrm{L}} \pi^{+} \pi^{-}$

✓ The fully reconstructed DT $K_s \pi^+\pi^-$ events are obtained by searching for the $K_s \pi^+\pi^-$ signals in the recoiling system of fully-reconstructed ST events.

Scatter plot of M_{BC}^{sig} vs. M_{BC}^{tag}

✓ DT events containing K_L⁰ particles are identified via kinematic variable missing-masssquare (M²_{miss}).

DT sample of $K_S \pi^+ \pi^-$ vs. $K_S \pi^+ \pi^-$ events

 To increase the sensitivity of measuring s_i, the partiallyreconstructed events are introduced into analysis to increase the yield of events.

Comparisons of DT events between BESIII and CLEO

- DT events detected at BESIII and comparisons with CLEO [J. Libby et al. (CLEO Collaboration), Phys. Rev. D 82,112006 (2010)]:
 - $CP eigenstate vs. K_S^0 \pi^+ \pi^-: 5.3 \times CLEO$

 $CP - eigenstate vs. K_L^0 \pi^+ \pi^-: 9.2 \times CLEO$

 $K_{S}^{0}\pi^{+}\pi^{-}\nu s.K_{S}^{0}\pi^{+}\pi^{-}:3.9\times CLEO$

 $K_L^0 \pi^+ \pi^- \nu s. K_S^0 \pi^+ \pi^-$: 2.9×CLEO

	BESIII [signal yields]		CLEO [r	aw yields]	
Mode	$N_{K_{S}^{0}\pi^{+}\pi^{-}}^{\text{DT}}$	$N_{K_{L}^{0}\pi^{+}\pi^{-}}^{\mathrm{DT}}$	$N_{K_{S}^{0}\pi^{+}\pi^{-}}^{\text{DT}}$	$N_{K_{L}^{0}\pi^{+}\pi^{-}}^{\mathrm{DT}}$	
Flavor tags	her.	4	5		
$K^+\pi^-$	4740 ± 71	9511 ± 115	1444	2857	
$K^+\pi^-\pi^0$	8899 ± 95	19225 ± 176	2759	5133	
$K^+\pi^-\pi^-\pi^+$	5695 ± 78	11906 ± 132	2240	4100	
$K^+e^-\bar{\nu}_e$	4123 ± 75		1191		
CP-even tags					
K^+K^-	443 ± 22	1289 ± 41	124	357	
$\pi^+\pi^-$	184 ± 14	531 ± 28	61	184 od	25
$K^{0}_{S}\pi^{0}\pi^{0}$	198 ± 16	612 ± 35	56	new mout	50
$\pi^{+}\pi^{-}\pi^{0}$	790 ± 31	2571 ± 74			
$K_L^0 \pi^0$	913 ± 41		237		
CP-odd tags				A	
$K^0_S \pi^0$	643 ± 26	861 ± 46	189	288	
$K_S^0 \eta_{\gamma\gamma}$	89 ± 10	105 ± 15	39	43	
$K^{0}_{S}\eta_{\pi^{+}\pi^{-}\pi^{0}}$	23 ± 5	40 ± 9			
$K^0_S \omega$	245 ± 17	321 ± 25	83 0	`	
$K^0_S \eta'_{\pi^+\pi^-n}$	24 ± 6	38 ± 8	-6		
$K^0_S \eta'_{\gamma\pi^+\pi^-}$	81 ± 10	120 ± 14		(
$K^0_L \pi^0 \pi^0$	620 ± 32		~-~~	`	
Mixed <i>CP</i> tags			K <i>i</i>		
$K^0_S \pi^+ \pi^-$	899 ± 31	3438 ± 72	473	1201	
$K_S^0 \pi^+ \pi_{\rm miss}^-$	224 ± 17				
$K_{S}^{0}(\pi^{0}\pi_{\rm miss}^{0})\pi^{+}\pi^{-}$	710 ± 34				

 \checkmark "--" stands for unused mode in CLEO analysis.

EXAMPLE 5 Dalitz plots observed in data

The effect of quantum correlation is immediately seen in Dalitz plots.
 ✓ The CP-odd component K_S⁰ρ(770)⁰ is visible in CP-even tagged K_S⁰π⁺π⁻ decays, but is absent in CP-odd tagged K_S⁰π⁺π⁻ decays.

I The preliminary strong-phase parameters

 (C_i, S_i)

The c_i and s_i measured in this work (red dots with error bars), the expected results from Ref. [BaBar&Belle, PRD98, 110212 (2018)] (blue open circles) and the CLEO results (green open squares with error bars) [CLEO, PRD 82,112006 (2010)].

- ✓ The strong-phase parameters are limited by statistical errors.
- ✓ There is no single dominant systematic uncertainty in measurement of $c_i \& s_i$.
- ✓ On average a factor of ~2.5 (2.0) more precise for c_i (s_i) than CLEO measurements.
- ✓ Using BESIII results, the associated uncertainty on γ/ϕ_3 is expected to be approximately a factor of three smaller than that from CLEO analysis, if using an analysis of B⁻→DK⁻, D→K_S⁰π⁺π⁻.

Xiao-Rui LYU

The c'_i and s'_i measured in this work (red dots with error bars), the expected results from Ref. [BaBar&Belle, PRD98, 110212 (2018)] (blue open circles) and the CLEO results (green open squares with error bars) [CLEO, PRD 82,112006 (2010)].

- ✓ The strong-phase parameters are limited by statistical errors.
- ✓ There is no single dominant systematic uncertainty in measurement of $c_i^{\dagger} \& s_i^{\dagger}$.
- ✓ on average a factor of ~2.8 (2.2) more precise for c'_i (s'_i) than CLEO measurements.
- ✓ The improved precision on c'_i and s'_i are important for Belle-II experiment in γ measurement, if using an analysis of B⁻→DK⁻, D→K_L⁰π⁺π⁻.

Xiao-Rui LYU

Her related strong-phase measurements at CLEO

These analyses are ongoing at **BESIIII**

EESI Strong phases in *D* hadronic decays

	Decay mode	Quantity of interest	Comments	
≻	$D \rightarrow K_{\rm s}^0 \pi^+ \pi^-$ prel. release	c_i and s_i	Binning schemes as those used in the CLEO-c analysis. With future, very large $\psi(3770)$ data sets, it might be worthwhile to explore alternative binning.	
≻	$D \to K^0_{\rm s} K^+ K^-$	c_i and s_i	Binning schemes as those used in the CLEO-c analysis. With future, very large $\psi(3770)$ data sets, it might be worthwhile to explore alternative binning.	ICh-PIJB-2016-025
≻	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	<i>R</i> , δ	In bins guided by amplitude models, currently under development by LHCb.	
¢	$D \rightarrow K^+ K^- \pi^+ \pi^-$	c_i and s_i	Binning scheme can be guided by the CLEO model [18] or potentially an improved model from LHCb in the future.	Status at BESIII ➡ published
ц>	$D \rightarrow \pi^+ \pi^- \pi^+ \pi^-$	F_+ or c_i and s_i	Unbinned measurement of F_+ . Measurements of F_+ in bins or c_i and s_i in bins could be explored.	➤ under study In plan
≻	$D\!\to K^\pm\pi^\mp\pi^0$	<i>R</i> , δ	Simple 2-3 bin scheme could be considered.	
Ľ	$D \rightarrow K^0_{ m S} K^{\pm} \pi^{\mp}$	<i>R</i> , δ	Simple 2 bin scheme where one bin encloses the K^* resonance.	
≻	$D\! ightarrow\pi^+\pi^-\pi^0$	F_+	No binning required as $F_+ \sim 1$.	
ц>	$D \rightarrow K_{ m s}^0 \pi^+ \pi^- \pi^0$	F_+ and c_i and s_i	Unbinned measurement of F_+ required. Additional measurements of F_+ or c_i and s_i in bins could be explored.	
≻	$D \rightarrow K^+ K^- \pi^0$	F_+	Unbinned measurement required. Extensions to binned measurements of either F_+ or c_i and s_i possible.	
	$D \! \to K^{\pm} \pi^{\mp}$	δ	Of low priority due to good precision available through charm-mixing analyses.	

Xiao-Rui LYU

€SШ

Status and prospects of y measurements

scaling Run-I statistical error.

From BESIII physics (yellow) book to BESIII white paper

2008

arXiv:1912.05983

White Paper on the Future Physics Programme of BESIII

IHEP-Physics-Report-BESIII-2019-12-13 Submitted to Chin. Phys. C

Future BESIII precision

The second secon					
Energy	Physics motivations	Current data	Expected final data		
1.8 - 2.0 GeV	R values	N/A	$0.1 { m ~fb^{-1}}$		
	Nucleon cross-sections		$(fine \ scan)$		
2.0 - 3.1 GeV	R values	Fine scan	Complete scan		
	Cross-sections	(20 energy points)	(additional points)		
J/ψ peak	Light hadron & Glueball	$3.2 { m ~fb^{-1}}$	$3.2 { m ~fb^{-1}}$		
	$J/\psi~{ m decays}$	(10 billion)	(10 billion)		
$\psi(3686)$ peak	Light hadron & Glueball	$0.67 { m ~fb^{-1}}$	$4.5 { m ~fb^{-1}}$		
	Charmonium decays	(0.45 billion)	(3.0 billion)		
$\psi(3770)$ peak	D^0/D^{\pm} decays	$2.9 { m ~fb^{-1}}$	$20.0 { m ~fb^{-1}}$		
3.8 - 4.6 GeV	R values	Fine scan	No requirement		
	XYZ/Open charm	(105 energy points)			
4.180 GeV	D_s decay	$3.2 { m ~fb^{-1}}$	$6 {\rm fb}^{-1}$		
_	VV7/Oran alasma				

- 2.9/fb $\psi(3770)$ data: strong phase uncertainty to γ is ~1°
- 20/fb ψ(3770) data: strong phase uncertainty to γ is ~0.4°
 → sufficient for LHCb upgrade I
- While not enough for LHCb upgrade II

Runs	Collected / Expected	Year	γ/ϕ_3	
	integrated luminosity	attained	sensitivity	
LHCb Run-1 [7, 8 TeV]	$3~{ m fb}^{-1}$	2012	8°	
LHCb Run-2 $[13 \text{ TeV}]$	5 fb^{-1}	2018	4° [BESIII 20/ID.
Belle II Run	$50 { m ~ab^{-1}}$	2025	1.5°	σ(γ) ~0.4°
LHCb upgrade I [14 TeV]	$50 { m ~fb^{-1}}$	2030	< 1°	
LHCb upgrade II [14 TeV]	$300 {\rm ~fb^{-1}}$	(>)2035	< 0.4°	 STCF is needed!

Xiao-Rui LYU

Prospects at the STCF

Data samples with 1 ab⁻¹ integral luminosity

	STCF					Belle II		
Data Set	process	$\sigma/{\rm nb}$	N	ST eff./ $\%$	ST N	$\sigma/{\rm nb}$	N	Tag N
J/ψ	_	_	1.0×10^{12}	_	_	_	_	_
$\psi(2S)$	_	_	3.0×10^{11}	_	_	_	_	_
D^0	$D^0 \bar{D^0}(3.77)$	~ 3.6	$3.6 imes 10^9$	10.8	0.78×10^9	—	1.4×10^9	_
D^+	$D^+D^-(3.77)$	~ 2.8	2.8×10^9	9.4	0.53×10^9	_	7.7×10^{8}	_
D_s	$D_s D_s^*(4.18)$	~ 0.9	$0.9 imes 10^9$	6.0	0.11×10^9	—	2.5×10^8	_
_+	$\tau^{+}\tau^{-}(3.68)$	~ 2.4	2.4×10^9	_	_	0.9	$0.9 imes 10^9$	_
au :	$\tau^{+}\tau^{-}(4.25)$	~ 3.6	3.5×10^9	_	_	_	_	_
Λ_c	$\Lambda_c \Lambda_c (4.64)$	~ 0.6	5.5×10^8	5.0	0.55×10^8	_	1.6×10^8	$3.6 \times 10^{4*}$

The luminosity is 1.0 ab⁻¹. * process $e^+e^- \rightarrow D^{(*)-}\bar{p}\pi^+\Lambda_c^+$.

- Belle-II (50/ab) has 50~100 times more statistics
- STCF is expected to have higher detection efficiency
- STCF has low backgrounds for productions at threshold

CKM unitarity triangle

> ADS method: use *D* doubly Cabibbo-suppressed decays, e.g. $D^0 \rightarrow K^+\pi^-$

- − With 1 ab⁻¹ @ STCF : $\sigma(\cos \delta_{K\pi}) \sim 0.007$; $\sigma(\delta_{K\pi}) \sim 2^{\circ} \rightarrow \sigma(\gamma) < 0.5^{\circ}$
- → GGSZ method: use Dalitz plot analysis of 3-body D⁰ decays, e.g. $K_s \pi^+ \pi^-$ high statistics; need precise Dalitz model
 - STCF reduces the contribution of *D* Dalitz model to a level of $\sim 0.1^{\circ}$, since expected precision from future HL-LHCb projects would be < 0.4° .
- Cross checks among different methods and modes are crucial to test their consistency and searching for new physics

Scenario beyond 2035

STCF will provide complementary information on the strong phase and allow detailed comparisons in different models

- 300 /fb for LHCb
- 3000 /ab for CMS/ATLAS
- 50 /ab for Belle II
- 20 /fb @ 3773MeV for BESIII

	~ ~ ~
Decay mode	Quantity of interest
$D\to K^0_{\rm S}\pi^+\pi^-$	$c_i ext{ and } s_i$
$D \to K^0_{\rm S} K^+ K^-$	$c_i ext{ and } s_i$
$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi$	$ R, \delta$
$D \to K^+ K^- \pi^+ \pi$	$ au^- \qquad c_i ext{ and } s_i$
$D \to \pi^+ \pi^- \pi^+ \pi^-$	F_+ or c_i and s_i
$D \to K^{\pm} \pi^{\mp} \pi^0$	R, δ
$D o K^0_{ m S} K^\pm \pi^\mp$	R,δ
$D \to \pi^+ \pi^- \pi^0$	F_+
$D ightarrow K_{ m S}^0 \pi^+ \pi^- \pi^0$	$F_+,c_i \mathrm{and}s_i$
$D \to K^+ K^- \pi^0$	F_+
$D \to K^\pm \pi^\mp$	δ

Possible New Charm physics at LHCb

Opportunities

Semi-leptonic (SL) decays of charmed hadron: with neutrino

- - measure |V_{cs}|, |V_{cd}| and/or form factors
 measure D⁰ mixing and CPV

 - test Lepton Flavour Universality on charm decays

Neutrino reconstruction using D meson flight direction

Ongoing charm SL analyses at LHCb

Many ongoing LHCb charmed-meson SL analyses are using promote production $D^{*+} \to D^0 \pi^+$

- Pros: high production rate,...
- Cons:
 - hard to well control signal shape and non-trivial background treatment in the fit
 - ✓ optimal only for the neutral D meson

• SL decays of many other charmed baryons can be studied in a similar fashion: $\Sigma_c^0 \rightarrow \Lambda_c^+ \pi^-$, $\Xi_c(2645) \rightarrow \Xi_c \pi$, Ω_c , Ξ_{cc} etc.

Xiao-Rui LYU

Through *b*-hadron decays

- RUN I+II: keep increasing statistics
- We can study charm SL decays using *b*-hadron decays, where we expect much lower background level
- More importantly, we will be able to extend to all the charmed hadrons, including the charged D+/Ds+ meson and many other charged baryons: Λ_c, Ξ_c, Ω_c

$$\begin{array}{c|c} \frac{D^{0}}{D^{0}} \\ \overline{D^{0}} \to \pi \mu \nu & (\mathcal{B} = 0.238 \pm 0.024\%) \\ D^{0} \to \mathcal{K} \mu \nu & (\mathcal{B} = 3.3 \pm 0.13\%) \\ D^{0} \to \mathcal{K}^{*}(892)^{-} \mu \nu & (\mathcal{B} = 1.92 \pm 0.25\%) \end{array} \begin{array}{c|c} \frac{D^{+}}{D^{+}} \to \mathcal{K} \pi \mu \nu & (\mathcal{B} = 3.9 \pm 0.4\%) \\ D^{+} \to \mathcal{K}^{0} \mu \nu & (\mathcal{B} = 9.3 \pm 0.7\%) \\ D^{+} \to \mathcal{K}^{*0} \mu \nu & (\mathcal{B} = 5.3 \pm 0.15\%) \\ D^{+} \to \eta \mu \nu & (\mathcal{B} = \sim 1\%) \end{array} \begin{array}{c|c} \frac{D_{s}}{D_{s}^{+}} \to \phi \mu \nu & (\mathcal{B} = \sim 2\%) \\ D_{s}^{+} \to \mathcal{K}^{0} \mu \nu & (\mathcal{B} = \sim 0.3\%) \\ D_{s}^{+} \to \eta^{(\prime)} \mu \nu & (\mathcal{B} = \sim 3\%) \end{array}$$

Semileptonic decay of $D \rightarrow K\pi\pi \ l^+\nu$

Xiao-Rui LYU

Charm CPV

➔ Updated HFLAV fit

$$\Delta a_{CP}^{dir} = (-16.4 \pm 2.8) \times 10^{-4}$$

 $\Delta a_{CP}^{ind} = (2.8 \pm 2.6) \times 10^{-4}$

- Compatible with SM
 - Most predictions on 10⁻⁴ - 10⁻³ level
- Observation in other channels could provide a confirmation of this effect

第一届LHCb前沿物理研讨会

Xiao-Rui LYU

Another Charm CPV source

- New CP-violation effect, in order up to 10⁻³, in charm decays into neutral kaons was proposed [Phys. Rev. Lett. 119, 181802 (2017)].
- This effect emerges from interference between CF and DCS amplitudes with al the mixing of final-state kaons
- Signal channels: ${
 m D}^+
 ightarrow {
 m K}^0_{
 m S} \pi^+$, ${
 m D}^+_{
 m s}
 ightarrow {
 m K}^0_{
 m S} {
 m K}^+$
- Control channels: $D^+ \to K^- \pi^+ \pi^+$, $D^+_s \to K^+ K^- \pi^+$

→ Sensitivity expectation with Run II data (prospect with the full Run II data): $D^+ \rightarrow K^0_S \pi^+: \ \delta A^{raw}_{CP} = 0.03 \ \%$ $D^+_s \rightarrow K^0_S K^+: \ \delta A^{raw}_{CP} = 0.07 \ \%$

Xiao-Rui LYU

Summary and Outlook

- > Quantum correlation of $D^0 \underline{D}^0$ pairs produced at threshold is a unique technique to access information of strong-phase parameters in D hadronic decays, which provide the key inputs in ranges of γ measurements, $D^0 \underline{D}^0$ mixing and CPV studies.
- > A range of quantum-correlated studies are undergoing at BESIII:
 - ✓ Studies in $D \to K_{S/L}\pi^+\pi^-$ show excellent preliminary results. These results will have important impacts over a wide range studies in flavour physics.
 - ✓ Current BESIII $\psi(3770)$ data will constrain the strong phase uncertainty of γ to be ~1°
- > The future 20 fb⁻¹ $\psi(3770)$ data and STCF will be crucial to improve the precision of γ measurement to the level of 0.1°
- Some ideas, like studying semi-leptonic decays and charm CPV searches, at LHCb are discussed

Thank you!! 谢谢!

Strong-phase parameters in $D \rightarrow K_{S/L}^{0} \pi^{+} \pi^{-}$ at $\psi(3770)$

 $\Box \psi(3770)$ is a spin -1 state and therefore the amplitude of $\psi(3770) \rightarrow D^0 D^0$:

 $(|D^0\rangle|\overline{D^0}\rangle - |\overline{D^0}\rangle|D^0\rangle)/\sqrt{2}$ [anti-symmetric wave function]

✓ For CP-tagged $K_s^0 \pi^+ \pi^-$, its amplitude is expressed by:

 $f_{CP\pm} = \frac{1}{\sqrt{2}} [f_D(m_+^2, m_-^2) \pm f_D(m_-^2, m_+^2)]$

The expected yields in Dalitz Plot (DP) bins:

✓ Similarly, for $K_s^0 \pi^+ \pi^- vs$. $K_s^0 \pi^+ \pi^-$, the expected yields in DP bins is:

$$\implies M_{ij} = h_{corr} [K_i K_{-j} + K_{-i} K_j - 2\sqrt{K_i K_{-j} K_{-i} K_j} (c_i c_j + s_i s_j)]$$

c_i&s_i are obtained by studying DT events: $K_S^0\pi^+\pi^- vs$. *CP*-tag & $K_S^0\pi^+\pi^$ *vs*. $K_S^0\pi^+\pi^- tags$

Here $h_{cp\pm}$ and h_{corr} are the normalization factors related to yields of single tags and the number of neutral D meson pairs.

From above equations, the precision on \mathbf{s}_i is constrained by the mode $K_s^0 \pi^+ \pi^-$.vs. $K_s^0 \pi^+ \pi^-$.

Measurements of strong-phase parameters (c_i, s_i) at BESIII

To improve the precision of measuring *s_i*, the K_s⁰π⁺π⁻ vs. K_L⁰π⁺π⁻ events are added, which is dependent on (c_i, s_i, c_i' and s_i'). Due to similarities between the decays, weak model assumptions^[1,2,3] can provide a constraint on the differences between c_i and c_i', s_i and s_i'.

$$\begin{split} & K_{S}^{0}\pi^{+}\pi^{-} vs.K_{L}^{0}\pi^{+}\pi^{-} \quad M_{ij}' = h_{corr}' \left[K_{i}K_{-j}' + K_{-i}K_{j}' + 2\sqrt{K_{i}K_{-j}'K_{-i}K_{j}'}(c_{i}c_{j}' + s_{i}s_{j}') \right] \\ & CP tag vs.K_{L}^{0}\pi^{+}\pi^{-} \quad M_{i}'^{\pm} = h_{CP\pm}' (K_{i}' \mp 2c_{i}'\sqrt{K_{i}'K_{-i}'} + K_{-i}') \end{split}$$

- □ The c_i' and s_i' parameters are useful for Belle-II experiment if they use the decay mode B→DK, with D→ $K_L^0\pi^+\pi^-$ to measure γ .
- The strong-phase parameters are obtained by minimizing the log-likelihood function constructed by using the observed and expected yields.
 - R. A. Briere et al. (CLEO Collaboration), Phys. Rev. D 80, 032002 (2009).
 J. Libby et al. (CLEO Collaboration), Phys. Rev. D 82, 112006 (2010).
 I.I.Bigi and H. Yamamoto, Phys. Lett. B 349, 363 (1995).