PEKING UNIVERSITY

Three－body B meson decays

汇报人：李亚

01 Motivation

Outline
02 Framework
03 Puzzle
04 Outlook

01 Motivation

Large amounts of data from LHCb, Belle, $B A B A R, \mathrm{CDF}$, D0 etc. Collaborations. (Most with BFs $\sim 10^{-5}$)

```
charmless
```

$$
\begin{aligned}
& B^{-} \rightarrow \pi^{+} \pi^{-} \pi^{-}, K^{-} \pi^{+} \pi^{-}, K^{+} K^{-} \pi^{-}, K^{+} K^{-} K^{-}, K^{-} K_{S} K_{S} \\
& \bar{B}^{0} \rightarrow \bar{K}^{0} \pi^{+} \pi^{-}, K^{-} \pi^{+} \pi^{0}, K^{0} K^{-} \pi^{+}, K^{+} K^{-} \pi^{0}, K^{+} K^{-} \bar{K}^{0}, K_{S} K_{S} K_{S}
\end{aligned}
$$

charm

$$
B_{(s)}^{0} \rightarrow D, \mathrm{X}_{c \bar{c}}(\pi \pi, K K, K \pi \ldots)
$$

They can help us to test the factorization approach, which have been used in two-body decays successfully.

02
They also help us to test SM by measuring the CKM phases.

03 They offer us opportunities to study the line-shape of intermediate states.

04 Combing with the two-body decays, we can try to understand the sources of strong phases.

The study of three-body decays help us to test the $\mathrm{SU}(3)$ asymmetry.

Using U spin to extract $\boldsymbol{\gamma}$ from charmless B \rightarrow PPP decays

Bhubanjyoti Bhattacharya and David London

JHEP04(2015)154

$$
\mathbf{B}_{\mathbf{s}}^{\mathbf{0}} \rightarrow \mathbf{K}_{\mathbf{S}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}(\overline{\mathbf{b}} \rightarrow \overline{\mathbf{d}}) ; \mathbf{B}_{\mathbf{d}}^{\mathbf{0}} \rightarrow \mathbf{K}_{\mathbf{S}} \mathbf{K}^{+} \mathbf{K}^{-}(\overline{\mathbf{b}} \rightarrow \overline{\mathbf{s}})
$$

$$
\mathbf{B}_{\mathbf{s}}^{\mathbf{0}} \rightarrow \mathbf{K}_{\mathbf{S}} \mathbf{K}^{+} \mathbf{K}^{-}(\overline{\mathbf{b}} \rightarrow \overline{\mathbf{d}}) ; \mathbf{B}_{\mathbf{d}}^{\mathbf{0}} \rightarrow \mathbf{K}_{\mathbf{S}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}(\overline{\mathbf{b}} \rightarrow \overline{\mathbf{s}})
$$

$$
\begin{array}{ll}
\mathbf{B}_{\mathbf{s}}^{\mathbf{0}} \rightarrow \mathbf{K}_{\mathbf{S}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}(\overline{\mathbf{b}} \rightarrow \overline{\mathbf{d}}) ; \mathbf{B}_{\mathbf{d}}^{\mathbf{0}} \rightarrow \mathbf{K}_{\mathbf{S}} \mathbf{K}^{+} \mathbf{K}^{-}(\overline{\mathbf{b}} \rightarrow \overline{\mathbf{s}}) \\
f_{d} \equiv K_{S}\left(p_{1}\right) \pi^{+}\left(p_{2}\right) \pi^{-}\left(p_{3}\right) & \bar{f}_{d} \equiv K_{S}\left(p_{1}\right) \pi^{+}\left(p_{3}\right) \pi^{-}\left(p_{2}\right) \\
\mathcal{A}_{d}=\mathcal{A}\left(B_{s}^{0} \rightarrow f_{d}\right) & \mathcal{A}_{s}=\mathcal{A}\left(B_{d}^{0} \rightarrow f_{s}\right)
\end{array}
$$

As these are three-body decays, $T_{d, s}$ and $P_{d, s}$ are all momentum-dependent. This means that $T_{d, s}\left(P_{d, s}\right)$ takes different values at different points of the Dalitz plot.

$$
\mathcal{A}_{d}=V_{u b}^{*} V_{u d} T_{d}+V_{c b}^{*} V_{c d} P_{d}, \quad \mathcal{A}_{s}=V_{u b}^{*} V_{u s} T_{s}+V_{c b}^{*} V_{c s} P_{s}
$$

For the CP-conjugate amplitudes:

$$
\overline{\mathcal{A}}_{d}=V_{u b} V_{u d}^{*} \bar{T}_{d}+V_{c b} V_{c d}^{*} \bar{P}_{d}, \quad \overline{\mathcal{A}}_{s}=V_{u b} V_{u s}^{*} \bar{T}_{s}+V_{c b} V_{c s}^{*} \bar{P}_{s}
$$

Because the final states in the CP-conjugate decays are not the same as in the decays (p_{2} and p_{3} are exchanged), $T_{d, s} \neq \bar{T}_{d, s}, P_{d, s} \neq \bar{P}_{d, s}$

$$
\begin{aligned}
&\left|\mathcal{A}_{d}\right|^{2}-\left|\overline{\mathcal{A}}_{d}\right|^{2}=2 \operatorname{Im}\left(V_{u b}^{*} V_{u d} V_{c b} V_{c d}^{*}\right) \operatorname{Im}\left(T_{d} P_{d}^{*}+\bar{T}_{d}^{*} \bar{P}_{d}\right), \\
&\left|\mathcal{A}_{s}\right|^{2}-\left|\overline{\mathcal{A}}_{s}\right|^{2}=2 \operatorname{Im}\left(V_{u b}^{*} V_{u s} V_{c b} V_{c s}^{*}\right) \operatorname{Im}\left(T_{s} P_{s}^{*}+\bar{T}_{s}^{*} \bar{P}_{s}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \left|\mathcal{A}_{d}\right|^{2}-\left|\overline{\mathcal{A}}_{d}\right|^{2}=2 \operatorname{Im}\left(V_{u b}^{*} V_{u d} V_{c b} V_{c d}^{*}\right) \operatorname{Im}\left(T_{d} P_{d}^{*}+\bar{T}_{d}^{*} \bar{P}_{d}\right), \\
& \left|\mathcal{A}_{s}\right|^{2}-\left|\overline{\mathcal{A}}_{s}\right|^{2}=2 \operatorname{Im}\left(V_{u b}^{*} V_{u s} V_{c b} V_{c s}^{*}\right) \operatorname{Im}\left(T_{s} P_{s}^{*}+\bar{T}_{s}^{*} \bar{P}_{s}\right) .
\end{aligned}
$$

In the U-spin limit we have $T_{d}=T_{s}, P_{d}=P_{s}, \bar{T}_{d}=\bar{T}_{s}, \bar{P}_{d}=\bar{P}_{s}$:

$$
-\frac{a_{s}^{C P}}{a_{d}^{C P}} \frac{\tau\left(B_{d}^{0}\right) b_{s}}{\tau\left(B_{s}^{0}\right) b_{d}}=1
$$

Here, $a_{q}^{C P}$ and b_{q} are, respectively, the direct CP asymmetry and branching ratio defined locally, i.e., at a particular Dalitz-plot point. They are both momentum-dependent quantities.

$$
\begin{array}{lrl}
\mathcal{A}_{d}=\mathcal{A}\left(B_{s}^{0} \rightarrow \bar{f}_{d}\right) \quad \mathcal{A}_{s}=\mathcal{A}\left(B_{d}^{0} \rightarrow \bar{f}_{s}\right) \\
\mathcal{A}_{d}=V_{u b}^{*} V_{u d} \bar{T}_{d}+V_{c b}^{*} V_{c d} \bar{P}_{d}, & \mathcal{A}_{s}=V_{u b}^{*} V_{u s} \bar{T}_{s}+V_{c b}^{*} V_{c s} \bar{P}_{s} . \\
\overline{\mathcal{A}}_{d}=V_{u b} V_{u d}^{*} T_{d}+V_{c b} V_{c d}^{*} P_{d}, & \overline{\mathcal{A}}_{s}=V_{u b} V_{u s}^{*} T_{s}+V_{c b} V_{c s}^{*} P_{s}
\end{array}
$$

For three-body decays, there are two U-spin relations among the observables.
four decays $B^{0}, \bar{B}^{0} \rightarrow f, \bar{f}$

$$
\left\langle f \mid B_{\mathrm{phys}}^{0}(t)\right\rangle=\left\langle f \mid B^{0}\right\rangle\left(f_{+}(t)+\lambda f_{-}(t)\right)
$$

The number of observables is greater than the number of unknowns, γ can be extracted.

$$
\begin{aligned}
& \left|B_{\text {phys }}^{0}(t)\right\rangle=f_{+}(t)\left|B^{0}\right\rangle+\frac{q}{p} f_{-}(t)\left|\bar{B}^{0}\right\rangle \\
& \left\langle\bar{f} \mid B_{\text {phys }}^{0}(t)\right\rangle=\frac{q}{p}\left\langle\bar{f} \mid \bar{B}^{0}\right\rangle\left(f_{+}(t) \bar{\lambda}+f_{-}(t)\right) \\
& \left|\bar{B}_{\mathrm{phys}}^{0}(t)\right\rangle=\frac{p}{q} f_{-}(t)\left|B^{0}\right\rangle+f_{+}(t)\left|\bar{B}^{0}\right\rangle \\
& \left\langle f \mid \bar{B}_{\mathrm{phys}}^{0}(t)\right\rangle=\frac{p}{q}\left\langle f \mid B^{0}\right\rangle\left(f_{-}(t)+\lambda f_{+}(t)\right), \\
& \left\langle\bar{f} \mid \bar{B}_{\mathrm{phys}}^{0}(t)\right\rangle=\left\langle\bar{f} \mid \bar{B}^{0}\right\rangle\left(f_{-}(t) \bar{\lambda}+f_{+}(t)\right), \\
& \Gamma(t)=\frac{1}{2}\left(\Gamma\left(B_{\mathrm{phys}}^{0}(t) \rightarrow f\right)+\Gamma\left(\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow f\right)\right), \\
& \left.=\frac{1}{2} \iint_{\text {bin }} d s_{12} d s_{23}|A|^{2} e^{-\Gamma t}\left[\left(1+|x|^{2}\right) \cosh (\Delta \Gamma t / 2)+2 \operatorname{Re}(\lambda) \sinh (\Delta \Gamma t / 2)\right)\right] \\
& A_{C P}(t)=\frac{\Gamma\left(B_{\mathrm{phys}}^{0}(t) \rightarrow f\right)-\Gamma\left(\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow f\right)}{\Gamma\left(B_{\mathrm{phys}}^{0}(t) \rightarrow f\right)+\Gamma\left(\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow f\right)}, \\
& =\frac{\iint_{\text {bin }} d s_{12} d s_{23}|A|^{2}\left[\left(1-|x|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}(\lambda) \sin (\Delta m t)\right]}{\iint_{\text {bin }} d s_{12} d s_{23}|A|^{2}\left[\left(1+|x|^{2}\right) \cosh (\Delta \Gamma t / 2)+2 \operatorname{Re}(\lambda) \sinh (\Delta \Gamma t / 2)\right]} .
\end{aligned}
$$

Theoretical approach

Factorization Approach

QCD Factorization

PQCD

Symmetry

Sum rules
H.Y. Cheng, C.K. Chua, Y. Li,...
A. Furman, B.El Bennich, R. Kaminski, T. Mannel, X.H. Guo, Y.D. Yang, Z.H. Zhang,...
H.N. Li, C.D. Lü, Z.J. Xiao, W. Wang, W.F. Wang, R. Zhou, ...
X.G. He, G.N. Li, D. Xu, J.L. Rosner, M. Gronau,...

Ulf-G. Meißner, Shan Cheng (Light-cone), A. Khodjamirian (QCD)

$$
p_{i j}=p_{i}+p_{j}, \quad m_{i j}^{2}=p_{i j}^{2}
$$

Thomas Mannel, Susanne Kränkl, Javier Virto

$$
\frac{B^{+}(p) \rightarrow \pi^{+}\left(k_{1}\right) \pi^{-}\left(k_{2}\right) \pi^{+}\left(k_{3}\right)}{s_{i j} \equiv \frac{\left(k_{i}+k_{j}\right)^{2}}{m_{B}^{2}}=\frac{2 k_{i} \cdot k_{j}}{m_{B}^{2}} \quad(i \neq j) .}
$$

$$
s_{12} \equiv s_{+-}^{\text {low }}, s_{13} \equiv s_{++} \text {and } s_{23} \equiv s_{+-}^{\text {high }}
$$

$$
s_{12}+s_{13}+s_{23}=1 \text { and } 0 \leq s_{i j} \leq 1
$$

Region I:

$$
s_{++} \sim s_{+-}^{\text {low }} \sim s_{+-}^{\text {high }} \sim 1 / 3
$$

Region IIa: $\quad s_{++} \sim 0, \quad s_{+-}^{\text {low }} \sim s_{+-}^{\text {high }} \sim 1 / 2$
Region IIb: $\quad s_{+-}^{\text {low }} \sim 0, \quad s_{++} \sim s_{+-}^{\text {high }} \sim 1 / 2$

Region IIIa: $\quad s_{++} \sim s_{+-}^{\text {low }} \sim 0, \quad s_{+-}^{\text {high }} \sim 1 \quad$ Region IIIb: $\quad s_{+-}^{\text {high }} \sim s_{+-}^{\text {low }} \sim 0, \quad s_{++} \sim 1$

Nonresonance

■ Heavy meson chiral pertuabation theory (HMChPT)

--HMChPT is applicable only to soft mesons
--HMChPT is recovered in soft meson limit, $p_{1}, p_{2} \rightarrow 0$
--The parameter $\alpha_{N R} \sim 1 /\left(2 m_{B} \Lambda_{\chi}\right)$ is constrained from $\mathrm{B}^{-} \rightarrow \pi^{+} \pi^{-} \pi^{-}$

Nonresonance

- U spin symmetry ($\mathrm{s} \leftrightarrow \mathrm{d}$) predictions for the relative signs between $\mathrm{K}^{-} \mathrm{K}^{+} \mathrm{K}^{-} \& \pi^{-} \pi^{+} \pi^{-}$and between $\mathrm{K}^{-} \pi^{+} \pi^{-}$\& $\pi^{-} \mathrm{K}^{+} \mathrm{K}^{-}$agree with experiment:
U-spin analysis of CP violation in B^{-}decays into three charged light pseudoscalar mesons
Dong Xu ${ }^{\text {a }}$, Guan-Nan Li ${ }^{\text {b }}$, Xiao-Gang He ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, *}$
Physics Letters B 728 (2014) 579-584

$$
\frac{A_{C P}\left(B^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}\right)}{A_{C P}\left(B^{-} \rightarrow K^{-} K^{+} K^{-}\right)}=-\frac{\Gamma\left(B^{-} \rightarrow K^{-} K^{+} K^{-}\right)}{\Gamma\left(B^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}\right)}, \quad \frac{A_{C P}\left(B^{-} \rightarrow \pi^{-} K^{+} K^{-}\right)}{A_{C P}\left(B^{-} \rightarrow K^{-} \pi^{+} \pi^{-}\right)}=-\frac{\Gamma\left(B^{-} \rightarrow K^{-} \pi^{+} \pi^{-}\right)}{\Gamma\left(B^{-} \rightarrow \pi^{-} K^{+} K^{-}\right)}
$$

TABLE I. LHCb results of direct $C P$ asymmetries (in \%) for various charmless three-body B^{-}decays. The superscripts "incl" "low" and "resc"denote $C P$ asymmetries measured in full phase space, in the low invariant mass regions specified in Eq. (1.1) and in the rescattering regions with $1.0<m_{\pi^{+} \pi^{-}, K^{+} K^{-}}<1.5 \mathrm{GeV}$, respectively. Data are taken from [6,7] for $\mathcal{A}_{C P}^{\text {low }}$ and from [8] for $\mathcal{A}_{C P}^{\text {incl }}$ and $\mathcal{A}_{C P}^{\text {resc }}$.

	$\pi^{+} \pi^{-} \pi^{-}$		$K^{+} K^{-} \pi^{-}$	$K^{-} \pi^{+} \pi^{-}$	
$\mathcal{A}_{C P}^{\text {incl }}$	$5.8 \pm 0.8 \pm 0.9 \pm 0.7$		$-12.3 \pm 1.7 \pm 1.2 \pm 0.7$	$2.5 \pm 0.4 \pm 0.4 \pm 0.7$	$-3.6 \pm 0.4 \pm 0.2 \pm 0.7$
$\mathcal{A}_{C P}^{\text {low }}$	$58.4 \pm 8.2 \pm 2.7 \pm 0.7$		$-64.8 \pm 7.0 \pm 1.3 \pm 0.7$	$67.8 \pm 7.8 \pm 3.2 \pm 0.7$	$-22.6 \pm 2.0 \pm 0.4 \pm 0.7$
$\mathcal{A}_{C P}^{\text {resc }}$	$17.2 \pm 2.1 \pm 1.5 \pm 0.7$		$-32.8 \pm 2.8 \pm 2.9 \pm 0.7$	$12.1 \pm 1.2 \pm 1.7 \pm 0.7$	$-21.1 \pm 1.1 \pm 0.4 \pm 0.7$

References:

R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 111, 101801 (2013), Phys. Rev. Lett. 112, 011801 (2014) , Phys. Rev. D 90, 112004 (2014) .

Nonresonance

■ PQCD (with help of two-meson distribution amplitudes)

PHYSICAL REVIEW D 89, 074031 (2014)

Direct $C P$ asymmetries of three-body B decays in perturbative QCD
Wen-Fei Wang, ${ }^{1, *}$ Hao-Chung Hu, ${ }^{2,3, \dagger}$ Hsiang-nan Li, ${ }^{3,4,5, \ldots}$ and Cai-Dian Lü ${ }^{1,8}$

$$
\begin{aligned}
& A_{C P}^{\mathrm{reg}}\left(B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}\right) \\
& \begin{array}{l}
=0.519_{-0.219}^{+0.124}\left(\omega_{B}\right)_{-0.091}^{+0.108}\left(a_{2}^{\pi}\right)_{-0.032}^{+0.027}\left(m_{0}^{\pi}\right),
\end{array} \\
& =0.584 \pm 0.082 \pm 0.027 \pm 0.007 \\
& \\
& \text { LHCb PRL112-011801 (2014) }
\end{aligned} \quad \text { LHCb } \quad\left\{\begin{array}{l}
F_{\pi}\left(w^{2}\right)=\frac{m^{2} \exp \left[i \delta_{1}^{1}(w)\right]}{w^{2}+m^{2}}, \\
F_{t}\left(w^{2}\right)=\frac{m_{0}^{\pi} m^{2} \exp \left[i \delta_{1}^{1}(w)\right]}{w^{3}+m_{0}^{\pi} m^{2}}, \\
F_{s}\left(w^{2}\right)=\frac{m_{0}^{\pi} m^{2} \exp \left[i \delta_{0}^{0}(w)\right]}{w^{3}+m_{0}^{\pi} m^{2}},
\end{array}\right.
$$

Resonance

Factorization Approach:

PHYSICAL REVIEW D 94, 094015 (2016)

Direct $C P$ violation in charmless three-body decays of \boldsymbol{B} mesons
Hai-Yang Cheng, ${ }^{1}$ Chun-Khiang Chua, ${ }^{2}$ and Zhi-Qing Zhang ${ }^{3}$

$$
\begin{aligned}
\left\langle P_{1}\left(p_{1}\right) P_{2}\left(p_{2}\right)\right|(\bar{q} b)_{V-A}|B\rangle^{R} & =\sum_{i}\left\langle P_{1} P_{2} \mid V_{i}\right\rangle \frac{1}{s_{12}-m_{V_{i}}^{2}+i m_{V_{i}} \Gamma_{V_{i}}}\left\langle V_{i}\right|(\bar{q} b)_{V-A}|B\rangle \\
& +\sum_{i}\left\langle P_{1} P_{2} \mid S_{i}\right\rangle \frac{-1}{s_{12}-m_{S_{i}}^{2}+i m_{S_{i}} \Gamma_{S_{i}}}\left\langle S_{i}\right|(\bar{q} b)_{V-A}|B\rangle, \\
\left\langle P_{1} P_{2}\right| \bar{q}_{1} \gamma_{\mu} q_{2}|0\rangle^{R} & =\sum_{i}\left\langle P_{1} P_{2} \mid V_{i}\right\rangle \frac{1}{s_{12}-m_{V_{i}}^{2}+i m_{V_{i}} \Gamma_{V_{i}}}\left\langle V_{i}\right| \bar{q}_{1} \gamma_{\mu} q_{2}|0\rangle, \\
& +\sum_{i}\left\langle P_{1} P_{2} \mid S_{i}\right\rangle \frac{-1}{s_{12}-m_{S_{i}}^{2}+i m_{S_{i}} \Gamma_{S_{i}}}\left\langle S_{i}\right| \bar{q}_{1} \gamma_{\mu} q_{2}|0\rangle, \\
\left\langle P_{1} P_{2}\right| \bar{q}_{1} q_{2}|0\rangle^{R} & =\sum_{i}\left\langle P_{1} P_{2} \mid S_{i}\right\rangle \frac{-1}{s_{12}-m_{S_{i}}^{2}+i m_{S_{i}} \Gamma_{S_{i}}}\left\langle S_{i}\right| \bar{q}_{1} q_{2}|0\rangle,
\end{aligned}
$$

$$
\begin{aligned}
& V_{i}=\phi, \rho, \omega, \ldots, \\
& S_{i}=f_{0}(980), f_{0}(1370), f_{0}(1500), \ldots \\
& \text { for } P_{1} P_{2}=\pi^{+} \pi^{*} ; \\
& V_{i}=K^{*}(892), K^{*}(1410), \ldots, \\
& S_{i}=K_{0}^{*}(1430), \ldots \text { for } P_{1} P_{2}=K^{ \pm} \pi^{\mp}
\end{aligned}
$$

Resonance

PQCD:

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 561 (2003) 258-265
www.elsevier.com/locate/npe

Three-body nonleptonic B decays in perturbative QCD

Chuan-Hung Chen, Hsiang-Nan Li

[^0]Three-body nonleptonic B decays in perturbative QCD
Chuan-Hung Chen, Hsiang-Nan Li

two-meson distribution amplitudes

> TMDA

$$
\begin{aligned}
B \rightarrow & h_{1} h_{2} h_{3} \\
& \Rightarrow \mathcal{M}=\Phi_{B} \otimes H \otimes \Phi_{h_{1} h_{2}} \otimes \Phi_{h_{3}} \\
\Phi_{\pi \pi}^{\mathrm{P}}= & \frac{1}{\sqrt{2 N_{c}}}\left[\not p \Phi_{v \nu=-}^{I=1}\left(z, \zeta, \omega^{2}\right)+\omega \Phi_{s}^{I=1}\left(z, \zeta, \omega^{2}\right)+\frac{\not p_{1} \not \gamma_{2}-\not{ }_{2} \not h_{1}}{w(2 \zeta-1)} \Phi_{t \nu=+}^{I=1}\left(z, \zeta, \omega^{2}\right)\right],
\end{aligned}
$$

03 Puzzle

CP violation in $\mathrm{B}^{+} \rightarrow \pi^{+} \rho^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+}$

Quasi-two-body decays $B_{(s)} \rightarrow P \rho \rightarrow P \pi \pi$ in the perturbative

> QCD approach

Ya Li, ${ }^{1, \dagger}$ Ai-Jun Ma, ${ }^{1, \stackrel{\star}{*}}$ Wen-Fei Wang, ${ }^{2, *}$ and Zhen-Jun Xiao ${ }^{1,3,8}$

Modes	Quasi-two-body results	Experiment	
$B^{+} \rightarrow \pi^{+}\left(\rho^{0} \rightarrow\right) \pi^{+} \pi^{-}$	$\mathcal{B}\left(10^{-6}\right)$	$8.84_{-1.24}^{+1.48}\left(\omega_{B}\right)_{-0.13}^{+0.12}\left(a_{2 \rho}^{t}\right)_{-1.11}^{+1.17}\left(a_{2 \rho}^{s}\right){ }_{-0.26}^{+0.25}\left(a_{2 \rho}^{0}\right)$	8.30 ± 1.20
	$\mathcal{A}_{C P}(\%)$	$-27.5_{-3.1}^{+2.3}\left(\omega_{B}\right)_{-1.0}^{+0.9}\left(a_{2 \rho}^{t}\right) \pm 1.4\left(a_{2 \rho}^{s}\right) \pm 0.9\left(a_{2 \rho}^{0}\right)$	$18.0_{-12.0}^{+9.0}$

LHCb and BABAR measurements for this quantity, however, prefer a positive CP asymmetry in the $m\left(\pi^{+} \pi^{-}\right)$region peaked at m_{ρ}. The theoretical predictions based on the QCDF, PQCD and SCET all give a negative CP asymmetry of order $\mathbf{- 0 . 2 0}$ for $\mathrm{B}^{+} \rightarrow \rho^{0} \boldsymbol{\pi}^{+}$.

Measurements of $\boldsymbol{C P}$ violation in the three-body phase space of charmless $B^{ \pm}$decays
R. Aaij et al. ${ }^{*}$
(LHCb Collaboration)
(Received 25 August 2014; published 11 December 2014)
LHCb has measured CP asymmetries in regions dominated by vector resonances

Summing over regions IIV yields CP asymmetry consistent with zero with slightly positive central value

I: $0.47<\mathbf{m}\left(\pi^{+} \pi^{-}\right)_{\text {low }}<0.77 \mathrm{GeV}, \cos \theta>0$, II: $0.77<\mathbf{m}\left(\pi^{+} \pi^{-}\right)_{\text {low }}<0.92 \mathrm{GeV}, \cos \theta>0$,
III: $0.47<\mathbf{m}\left(\pi^{+} \pi^{-}\right)_{\text {low }}<0.77 \mathrm{GeV}, \cos \theta<0$,
IV: $0.77<\mathrm{m}\left(\pi^{+} \pi^{-}\right)_{\text {low }}<0.92 \mathrm{GeV}, \cos \theta<0$.
$\mathbf{A}_{\mathbf{C P}}$ changes sign at $\mathbf{m}\left(\pi^{+} \pi^{-}\right) \sim \mathbf{m}_{\rho}$

Observation of several sources of $C P$
 violation in $B^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$decays

LHCb collaboration arXiv:1909.05211

Contribution	Fit fraction $\left(10^{-2}\right)$	$A_{C P}\left(10^{-2}\right)$	B^{+}phase $\left(^{\circ}\right)$	B^{-}phase $\left(^{\circ}\right)$
Isobar model				
$\rho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$	-	-
K-matrix				
$\rho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$	-	-
QMI				
$\rho(770)^{0}$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$	-	-

A quasi-two-body CP asymmetry is consistent with zero.

Possible reasons:

- Interference between ρ and $\boldsymbol{f}_{\mathbf{0}}(\mathbf{5 0 0})$

PHYSICAL REVIEW D 87, 076007 (2013)
$C P$ violation in $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$in the region with low invariant mass of one $\pi^{+} \pi^{-}$pair

$$
\text { Zhen-Hua Zhang, }{ }^{1, *} \text { Xin-Heng Guo, }{ }^{2, \dagger} \text { and Ya-Dong Yang }{ }^{1, \ddagger}
$$

- The fraction of tree and penguin contributions varys across the phase space

PHYSICAL REVIEW D 88, 114014 (2013)
Branching fractions and direct $\boldsymbol{C P}$ violation in charmless three-body decays of \boldsymbol{B} mesons

[^1]04 Outlook

Goals

Develop a systematic theoretical approach to 3-body hadronic B decays in the whole phase space (both resonance and nonresonance)

Three-body B decays receive sizable NR contributions. In general, NR contributions alone yield large CP-violating effects. How to resolve the NR contributions reliably?

It is important to pin down the mechanism responsible for regional CP asymmetries.

Extraction of the SM parameters

Determination of $\phi 1(\beta)$:
$\phi_{1} \equiv \arg \left[-V_{c b}^{*} V_{c d} /\left(V_{t b}^{*} V_{t d}\right)\right]$
$\sin 2 \boldsymbol{\phi} 1$ from $\boldsymbol{b} \rightarrow \boldsymbol{c} \overline{\boldsymbol{c}} \boldsymbol{S}$

$$
\begin{aligned}
& B \rightarrow J / \Psi \phi, \phi \rightarrow \mathbf{K K} \\
& B \rightarrow J / \Psi K^{*}, K^{*} \rightarrow K_{\mathbf{S}}^{0} \pi^{0} \\
& B \rightarrow J / \Psi f_{\mathbf{0}}(\mathbf{9 8 0}), \mathbf{f}_{\mathbf{0}}(\mathbf{9 8 0}) \rightarrow \pi^{+} \pi^{-}
\end{aligned}
$$

Determination of $\phi 2(\alpha)$:

$$
\begin{aligned}
& \phi_{2} \equiv \arg \left[-V_{t b}^{*} V_{t d} / V_{u b}^{*} V_{u d}\right] \\
& \mathbf{B} \rightarrow \boldsymbol{\rho} \boldsymbol{\pi} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}} \\
& \mathbf{B} \rightarrow \boldsymbol{\rho} \boldsymbol{\rho}, \boldsymbol{\rho} \rightarrow \boldsymbol{\pi} \boldsymbol{\pi}
\end{aligned}
$$

Isospin symmetry

Determination of $\boldsymbol{\phi} \mathbf{3}(\gamma): \phi_{3} \equiv-\arg \left(V_{u b}^{*} V_{u d} / V_{c b}^{*} V_{c d}\right)$

$\mathrm{B} \rightarrow \mathrm{PPP}, \mathrm{P}=\pi, \mathrm{K}$

U-spin

Diagrammatic analysis

B \rightarrow DP

Table 100: Methods and D decay modes used in $B^{-} \rightarrow D K^{-}$and $B^{-} \rightarrow D^{*} K^{-}$measurements. Those in parentheses have not been published by Belle.

Type of D decay	Method name	D final states studied	
$C P$-eigenstates	GLW	$C P$-even: $K^{+} K^{-}, \pi^{+} \pi^{-} ; C P$-odd $K_{S}^{0} \pi^{0}, K_{S}^{0} \eta$	
CF and DCS	ADS	$K^{ \pm} \pi^{\mp}, K^{ \pm} \pi^{\mp} \pi^{0},\left(K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}\right)$	
Self-conjugate	GGSZ	$K_{S}^{0} \pi^{+} \pi^{-}, \quad\left(K_{S}^{0} K^{+} K^{-}\right), \quad\left(\pi^{+} \pi^{-} \pi^{0}\right), \quad\left(K^{+} K^{-} \pi^{0}\right)$, $\left(\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)$	
SCS	GLS	$\left(K_{S}^{0} K^{ \pm} \pi^{\mp}\right)$	

$\mathbf{B}_{(\mathrm{s})} \rightarrow \mathrm{VV}$

Longitudinal Polarization Fraction in Charmless B_{s} Decays

These decay modes with large transverse polarization fraction (around $\mathbf{5 0 \%}$) will provide further insight into the QCD dynamics that governs the different helicity amplitudes .

$$
\begin{aligned}
& B \rightarrow K^{*} \phi, B \rightarrow K^{*} \rho, B^{0} \rightarrow \rho^{0} \omega, B^{0} \rightarrow \omega \omega, B^{0} \rightarrow \rho^{0} \rho^{0} \\
& B^{0} \rightarrow K^{*+} K^{*-}, B^{-} \rightarrow \phi \rho^{-}, B^{0} \rightarrow \phi \rho^{0} \\
& B_{s} \rightarrow K^{*} \phi, B_{s} \rightarrow \phi \phi
\end{aligned}
$$

Large local CP asymmetries

TABLE I. LHCb results of direct $C P$ asymmetries (in \%) for various charmless three-body B^{-}decays. The superscripts "incl" "low" and "resc"denote $C P$ asymmetries measured in full phase space, in the low invariant mass regions specified in Eq. (1.1) and in the rescattering regions with $1.0<m_{\pi^{+} \pi^{-}, K^{+} K^{-}}<1.5 \mathrm{GeV}$, respectively. Data are taken from [6,7] for $\mathcal{A}_{C P}^{\text {low }}$ and from [8] for $\mathcal{A}_{C P}^{\text {incl }}$ and $\mathcal{A}_{C P}^{\text {resc }}$.

	$\pi^{+} \pi^{-} \pi^{-}$	$K^{+} K^{-} \pi^{-}$	$K^{-} \pi^{+} \pi^{-}$	$K^{-} K^{+} K^{-}$
$\mathcal{A}_{C P}^{\text {incl }}$	$5.8 \pm 0.8 \pm 0.9 \pm 0.7$	$-12.3 \pm 1.7 \pm 1.2 \pm 0.7$	$2.5 \pm 0.4 \pm 0.4 \pm 0.7$	$-3.6 \pm 0.4 \pm 0.2 \pm 0.7$
$\mathcal{A}_{C P}^{\text {low }}$	$58.4 \pm 8.2 \pm 2.7 \pm 0.7$	$-64.8 \pm 7.0 \pm 1.3 \pm 0.7$	$67.8 \pm 7.8 \pm 3.2 \pm 0.7$	$-22.6 \pm 2.0 \pm 0.4 \pm 0.7$
$\mathcal{A}_{C P}^{\text {resc }}$	$17.2 \pm 2.1 \pm 1.5 \pm 0.7$	$-32.8 \pm 2.8 \pm 2.9 \pm 0.7$	$12.1 \pm 1.2 \pm 1.7 \pm 0.7$	$-21.1 \pm 1.1 \pm 0.4 \pm 0.7$

References:

R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 111, 101801 (2013) , Phys. Rev. Lett. 112, 011801 (2014) , Phys. Rev. D 90, 112004 (2014) .

Final-state (KK $\leftrightarrow \pi \pi$) rescattering

It has been conjectured that CPT theorem \& final-state rescattering of $\pi^{+} \pi^{-}$ $\leftrightarrow \mathrm{K}^{+} \mathrm{K}^{-}$may play important roles to explain the CP correlation observed by LHCb. Consider $\pi^{+} \pi^{-}$\& K+K- rescattering and neglect possible interactions with $3{ }^{\text {rd }}$ meson

Bediaga et al, Phys. Rev. D 89, 094013 (2014)

$$
\binom{A\left(B^{-} \rightarrow \pi^{+} \pi^{-} P^{-}\right)}{A\left(B^{-} \rightarrow K^{+} K^{-} P^{-}\right)}_{F S I}=S^{1 / 2}\binom{A\left(B^{-} \rightarrow \pi^{+} \pi^{-} P^{-}\right)}{A\left(B^{-} \rightarrow K^{+} K^{-} P^{-}\right)} \text {with } P=\pi, K \quad \begin{array}{ll}
\text { Suzuki, Wolfenstein Phys. Rev. D } & 60,074019(1999)
\end{array}
$$

$$
S=\left(\begin{array}{cc}
\eta e^{2 i \delta_{\pi \pi}} & i \sqrt{1-\eta^{2}} e^{i\left(\delta_{\pi \pi}+\delta_{K \bar{K}}\right)} \\
i \sqrt{1-\eta^{2}} e^{i\left(\delta_{\pi \pi}+\delta_{K \bar{K}}\right)} & \eta e^{2 i \delta_{K \bar{K}}}
\end{array}\right)
$$

η : inelasticity, assuming $\delta_{\text {KK }}=\delta_{\pi \pi}$

$$
S^{1 / 2}=e^{i \delta_{\pi \pi}}\left(\begin{array}{ll}
\cos \phi & i \sin \phi \\
i \sin \phi & \cos \phi
\end{array}\right) \text { with } 2 \phi=\tan ^{-1} \frac{\sqrt{1-\eta^{2}}}{\eta}
$$

PHYSICAL REVIEW D 94, 094015 (2016)
Direct $\boldsymbol{C P}$ violation in charmless three-body decays of B mesons
Hai-Yang Cheng, ${ }^{1}$ Chun-Khiang Chua, ${ }^{2}$ and Zhi-Qing Zhang ${ }^{3}$

	Expt (\%)	NR + Res	NR+RES+FSI
$\left(\pi^{+} \pi^{-} \pi^{-}\right)_{\text {incl }}$	5.8 ± 1.4	$8.3^{+1.7}{ }_{-1.9}$	-15.6
$\left(\mathrm{K}^{+} \mathrm{K}^{-} \pi^{-}\right)_{\text {incl }}$	-12.3 ± 2.2	$4.9^{+1.1}{ }_{-1.0}$	8.1
$\left(\mathrm{K}^{-} \pi^{+} \pi^{-}\right)_{\text {incl }}$	2.5 ± 0.9	$-0.8{ }^{+0.9}-0.6$	0.7
$\left(\mathrm{K}^{+} \mathrm{K}-\mathrm{K}^{-}\right)_{\text {incl }}$	-3.6 ± 0.8	$-6.0^{+2.0}-1.5$	-6.1
$\left(\pi^{+} \pi^{-} \pi^{-}\right)_{\text {low }}$	58.4 ± 8.7	$21.9{ }^{+3.0}{ }_{-3.3}$	-17.6
$\left(\mathrm{K}^{+} \mathrm{K}^{-} \pi^{-}\right)_{\text {low }}$	-64.8 ± 7.2	$4.6{ }^{+0.9}{ }_{-1.0}$	13.2
($\left.\mathrm{K}^{-} \pi^{+} \pi^{-}\right)_{\text {low }}$	67.8 ± 8.5	$40.7{ }^{+5.9}{ }_{-8.9}$	2.3
$\left(\mathrm{K}^{+} \mathrm{K}-\mathrm{K}^{-}\right)_{\text {low }}$	-22.6 ± 2.2	$-16.8^{+4.5}-3.9$	-16.7

Final-state $\pi^{+} \pi^{-} \leftrightarrow \mathrm{K}^{+} \mathrm{K}^{-}$rescattering seems to head in wrong direction

Understand data and predict direct CP asymmetries of 3-body decay modes in localized regions of phase space.

$$
\begin{aligned}
& B^{0} \rightarrow \mathrm{~K}^{+} K^{-} K_{S}^{0}, \mathrm{~K}^{+} K^{-} \pi^{0}, \mathrm{~K}^{+} \pi^{0} \pi^{0} \ldots \\
& B^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0}, K_{S}^{0} K_{S}^{0} \mathrm{~K}^{+}, K_{S}^{0} K_{S}^{0} \pi^{+} \ldots
\end{aligned}
$$

Thank you

欢迎您的执评指正．．．．．．

[^0]: Abstract
 We develop perturbative QCD formalism for three-body nonleptonic B meson decays. Leading contributions are identified by defining power counting rules for various topologies of amplitudes. The analysis is simplified into the one for two-body decays by introducing two-meson distribution amplitudes. This formalism predicts both nonresonant and resonant contributions, and can be generalized to baryonic decays.
 © 2003 Published by Elsevier Science B.V.

[^1]: Hai-Yang Cheng ${ }^{1}$ and Chun-Khiang Chua ${ }^{2}$

