Extraction of the CKM phase γ from charmless two-body B meson decays

Sí-Hong Zhou

Inner Mongolía Uníversíty

2019/12/14

Based on work collaborated with Cai-Dian Lü (arXiv:1910.03160)

OUTLINE

- Introduction
- Factorization-Assisted Topological-amplitude approach
- Extraction of the CKM phase γ in FAT approach
- Summary

Introduction

- Measure CKM parameters:
 - SM: VCKM is unitary
 - SM+NP: VCKM may not be unitary
 - thus to test the closure of the unitarity triangle

* α , β quite precise ; still room for γ

• α , β : mixing- induced CP violation of a single mode

 $A_{CP}(t,f) = \eta_f \sin(2\phi_D - 2\phi_M) \sin(\Delta M t) \qquad B^0 \to J/\psi K_s, B^0 \to \pi\pi, \rho\pi, \rho\rho$

• γ : might be to use B_s^0 decay $B_s^0 \to \rho K_s$

be strongly diluted by the large $B_s^0 - \bar{B_s^0}$ mixing

Standard γ extraction : two-body charmed

- $B^{\pm} \to DK^{\pm}, B^{\pm} \to D\pi^{\pm},$
- $D \rightarrow 2P, 3P, \dots$

- Interference: intermediate states D^0 and $\overline{D^0}$ mesons
- * Standard γ extraction methods:
 - GLW (Gronau-London-Wyler)
 D decays to CP-eigenstates
 - ADS (Atwood-Danietz-Soni) doubly Cabibbo suppressed decays
 - GGSZ (Giri-Grossman-Sofer-Zupan) three-body D decays to self-conjugate modes
- * The world average values $\sim 5^{\circ}$
 - HFLAV $\gamma = (71.1^{+4.6}_{-5.3})^{\circ}$ CKMfitter $\gamma = (73.5^{+4.2}_{-5.1})^{\circ}$ Utfit $\gamma = (70.0 \pm 4.2)^{\circ}$
 - Theoretically clean tree +higher order EW $\delta \gamma \lesssim \mathcal{O}(10^{-7})$
 - Experiment : statistically limited, small ratio of amplitude

* γ extraction : two-body charmless

tree +penguin

• The problem: how to calculate or extract the different strong phases...

R. Fleischer, Phys. Lett. B 459, 306 (1999).

- Large branch rations ($O(10^{-5} 10^{-6})$), CP asymmetry
- The problem: how to extract the different strong phases...

Observables ≥ Unknown parameters

Flavor SU(3) symmetry/ U-spin flavor symmetry

- U-spin pair: $B_d \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$
- 5 observables: \mathcal{B}_d , \mathcal{B}_s , A^d_{CP} , A^s_{CP} , $2A^{in}_{CP}$
 - 4 unknown: γ , $|a_1|$, $|a_2|$, δ

 γ is limited by the theoretical uncertainties from the flavor

SU(3) breaking effects or U-spin-breaking corrections.

γ extraction from two-body charmless in FAT

- Factorization-assisted topological-amplitude approach
 - I. Topological diagrams:

It is model-independent

parameterize all the contributions in charmless B decays by topological diagrams,

fitted from the experimental measurements instead of perturbative QCD calculation.

II. The amplitude of topological diagram:

► Flavor SU(3) breaking effects is introduced, assuming that the hadronic decay amplitudes

are factorizable, characterized by different decay constants (f) and form factors (F).

$$4\sim\gamma~~\chi\,e^{i\phi}\,f\,F~~$$
 universal Number of parameter is reduced

III. Global Fit for γ together with hadronic parameters χ, ϕ

→ All $B_{u,d} \rightarrow PP, PV$ decays from the current experimental data

* Two-body charmless B decay $B \rightarrow PP, PV, VP$ in FAT

I. Topological diagrams:

Distinct by weak interaction and flavor flows with all

strong interaction encoded, including non-perturbative ones.

II. The amplitude of topological diagram: $\int_{\overline{q}} \frac{1}{\overline{q}} \frac{1}{\overline{q}}$

- Color-favored tree emission diagram \mathcal{T}'
 - It is proved factorization to all order of α_s expansion in QCDF, PQCD and SCET. $T^{P_1P_2} = i \frac{G_F}{\sqrt{2}} V_{ub} V_{uq'} a_1(\mu) f_{p_2} (m_B^2 - m_{p_1}^2) F_0^{BP_1}(m_{p_2}^2),$ $T^{VP} = \sqrt{2} G_F V_{ub} V_{uq'} a_1(\mu) f_P m_V A_0^{B-V}(m_P^2) (\varepsilon_V^* \cdot p_B),$ $T^{PV} = \sqrt{2} G_F V_{ub} V_{uq'} a_1(\mu) f_V m_V F_1^{B-P}(m_V^2) (\varepsilon_V^* \cdot p_B),$ Effective Wilson decay constants and form factors coefficient characterize the SU(3)breaking effects.

• Color-suppressed tree emission diagram C

Inspired by Glauber phase for the pseudo-scalar meson emission diagram.

$$C^{P_{1}P_{2}} = i \frac{G_{F}}{\sqrt{2}} V_{ub} V_{uq'} \chi^{C} e^{i\phi^{C}} f_{p_{2}}(m_{B}^{2} - m_{p_{1}}^{2}) F_{0}^{BP_{1}}(m_{p_{2}}^{2}), \qquad \text{emitted}$$

$$C^{VP} = \sqrt{2}G_{F} V_{ub} V_{uq'}^{*} \chi^{C} e^{i\phi^{C}} f_{P} m_{V} A_{0}^{B-V}(m_{P}^{2})(\varepsilon_{V}^{*} \cdot p_{B}), \qquad \text{emitted}$$

$$C^{PV} = \sqrt{2}G_{F} V_{ub} V_{uq'}^{*} \chi^{C'} e^{i\phi^{C'}} f_{V} m_{V} F_{1}^{B-P}(m_{V}^{2})(\varepsilon_{V}^{*} \cdot p_{B}), \qquad \text{emitted}$$

$$Vector$$

$$Unknown \text{ gamma}$$

$$Unknown \text{ Parameters for}$$

$$magnitude \text{ and strong phase}$$

$$Input \text{ Parameters}$$

• The annihilation type diagrams \mathcal{E} and \mathcal{A}

non-factorization and is expected smaller than emission diagram due to helicity suppression.

$$E^{P_{1}P_{2}} = i \frac{G_{F}}{\sqrt{2}} V_{ub} V_{uq'}^{*} \chi^{E} e^{i\phi^{E}} f_{B} m_{B}^{2} (\frac{f_{p_{1}} f_{p_{2}}}{f_{\pi}^{2}}),$$
$$E^{PV,VP} = \sqrt{2} G_{F} V_{ub} V_{uq'}^{*} \chi^{E} e^{i\phi^{E}} f_{B} m_{V} (\frac{f_{P} f_{V}}{f_{\pi}^{2}}) (\varepsilon_{V}^{*} \cdot p_{B})$$

• As discussed in conventional topological diagram approach, A contribution is negligible.

1-loop penguin diagram

- color-favored penguin emission diagram \mathcal{P}
 - The *leading contribution* from topology P diagram is similar to diagram T, which is proved factorization in various QCD-inspired approaches.
 - "chiral enhanced" penguin contributions need to be fitted.

$$P^{PP} = -i\frac{G_F}{\sqrt{2}}V_{tb}V_{tq'}^* \left[a_4(\mu) + \chi^P e^{i\phi^P} r_{\chi}\right] f_{p_2}(m_B^2 - m_{p_1}^2)F_0^{BP_1}(m_{p_2}^2),$$

$$P^{VP} = -\sqrt{2}G_F V_{tb}V_{tq'}^* \left[a_4(\mu) - \chi^P e^{i\phi^P} r_{\chi}\right] f_P m_V A_0^{B-V}(m_P^2)(\varepsilon_V^* \cdot p_B),$$

$$P^{PV} = -\sqrt{2}G_F V_{tb}V_{tq'}^* a_4(\mu) f_V m_V F_1^{B-P} m_V^2(\varepsilon_V^* \cdot p_B),$$

• Power correction to \mathcal{P} -penguin annihilation diagram \mathcal{P}_A

 $\mathcal{P}_{\mathcal{A}}$ is similar with P and the difference is only at QCD not EW.

$$P^{PP} = -i\frac{G_F}{\sqrt{2}}V_{tb}V_{tq'}^* \left[a_4(\mu) + \chi^P e^{i\phi^P} r_{\chi}\right] f_{p_2}(m_B^2 - m_{p_1}^2) F_0^{BP_1}(m_{p_2}^2),$$

$$P^{VP} = -\sqrt{2}G_F V_{tb}V_{tq'}^* \left[a_4(\mu) - \chi^P e^{i\phi^P} r_{\chi}\right] f_P m_V A_0^{B-V}(m_P^2) (\varepsilon_V^* \cdot p_B),$$

$$P^{PV} = -\sqrt{2}G_F V_{tb}V_{tq'}^* a_4(\mu) f_V m_V F_1^{B-P} m_V^2 (\varepsilon_V^* \cdot p_B),$$

The contribution of \mathcal{P}_A can be included in $\chi^P e^{i\phi^P}$ except for $B \to PV$ where we need two more parameters

$$P_A^{PV} = -\sqrt{2}G_F V_{tb} V_{tq'}^* \chi^{P_A} \mathrm{e}^{i\phi^{P_A}} f_B m_V (\frac{J_P J_V}{f_\pi^2}) (\varepsilon_V^* \cdot p_B).$$

P_E diagram is argued smaller than P_A diagram, which can be

ignored reliably in decay modes not dominated by it, except

$$Br(B_s \to \pi^+\pi^-) = (0.76 \pm 0.19) \times 10^{-6}$$

The flavor-singlet QCD penguin diagram P_C only contribute to the isospin singlet mesons η , η' , ω , ϕ

$$P_{C}^{PP} = -i \frac{G_{F}}{\sqrt{2}} V_{tb} V_{tq'}^{*} \chi^{P_{C}} e^{i\phi^{P_{C}}} f_{p_{2}} (m_{B}^{2} - m_{p_{1}}^{2}) F_{0}^{BP_{1}} (m_{p_{2}}^{2}),$$

$$P_{C}^{VP} = -\sqrt{2} G_{F} V_{tb} V_{tq'}^{*} \chi^{P_{C}} e^{i\phi^{P_{C}}} f_{P} m_{V} A_{0}^{B-V} (m_{P}^{2}) (\varepsilon_{V}^{*} \cdot p_{B}),$$

$$P_{C}^{PV} = -\sqrt{2} G_{F} V_{tb} V_{tq'}^{*} \chi^{P_{C}'} e^{i\phi^{P_{C}'}} f_{V} m_{V} F_{1}^{B-P} (m_{V}^{2}) (\varepsilon_{V}^{*} \cdot p_{B}),$$

EW-penguin unnegligiblely contribute to the neutral isospin 1 meson emission decays.

P_EW is very similar to the T diagram Factorization

$$P_{EW}^{PP} = -i\frac{G_F}{\sqrt{2}}V_{tb}V_{tq'}^* e_q \frac{3}{2}a_9(\mu)f_{p_2}(m_B^2 - m_{p_1}^2)F_0^{BP_1}(m_{p_2}^2),$$

 $P_{EW}^{VP} = -\sqrt{2}G_F V_{tb} V_{tq'}^* e_q \frac{3}{2} a_9(\mu) f_P m_V A_0^{B-V}(m_P^2)(\varepsilon_V^* \cdot p_B),$

$$P_{EW}^{PV} = -\sqrt{2}G_F V_{tb} V_{tq'}^* e_q \frac{3}{2} a_9(\mu) f_V m_V F_1^{B-P}(m_V^2) (\varepsilon_V^* \cdot p_B),$$

where $a_9(\mu)$ is the effective Wilson coefficient

Input parameters

CKM from PDG-2019

 $\begin{aligned} |V_{ud}| &= 0.97420 \pm 0.00021 \,, \quad |V_{us}| = 0.2243 \pm 0.0005 \,, \quad |V_{ub}| = 0.00394 \pm 0.00036 \,, \\ |V_{cd}| &= 0.218 \pm 0.004 \,, \qquad |V_{cs}| = 0.997 \pm 0.017 \,, \qquad |V_{cb}| = 0.0422 \pm 0.0008 \,. \end{aligned}$

Decay constants and Form factor

TABLE I: The decay constants of light pseudo-scalar mesons and vector mesons (in unit of MeV).

f_{π}	f_K	f_B	$f_{ ho}$	f_{K^*}	f_{ω}	f_{ϕ}
130.2 ± 1.7	155.6 ± 0.4	190.9 ± 4.1	213 ± 11	220 ± 11	192 ± 10	225 ± 11

TABLE II: The transition form factors of B meson decays at $q^2=0$ and dipole model parameters.

	$F_0^{B o \pi}$	$F_0^{B \to K}$	$F_0^{B \to \eta_q}$	$F_1^{B \to \pi}$	$F_1^{B \to K}$	$F_1^{B o \eta_q}$	$A_0^{B \to \rho}$	$A_0^{B ightarrow \omega}$	$A_0^{B \to K^*}$
$F_i(0)$	0.28 ± 0.03	0.31 ± 0.03	0.21 ± 0.02	0.28 ± 0.03	0.31 ± 0.03	0.21 ± 0.02	0.36 ± 0.04	0.32 ± 0.03	0.39 ± 0.04
α_1	0.50	0.53	0.52	0.52	0.54	1. 43	1.56	1.60	1.51
α_2	-0.13	-0.13	0	0.45	0.50	0.41	0.17	0.22	0.14

• The above various topological amplitudes appear in all processes of charmless B decay in the form of some linear combinations,

e.g.
$$A_{\pi^-\pi^0} = \frac{1}{\sqrt{2}}(C + P + P_{EW})$$

Observables:

37
$$\mathcal{B}(B \to M_1 M_2) = \frac{\Gamma(B \to M_1 M_2) + \Gamma(\overline{B} \to \overline{M_1 M_2})}{2} \times \tau_B,$$

$$\mathcal{A}_{cp}(t) = \mathcal{S}_f \sin(\Delta m_B t) - \mathcal{C}_f \cos(\Delta m_B t),$$

11 $C_{f} = \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}},$ $S_{f} = \frac{2\text{Im}(\lambda_{f})}{1 + |\lambda_{f}|^{2}},$ Observables as the function of parameters γ extracted with a fit

III. Global Fit for γ together with 14 hadronic parameters

• the best-fitted parameters as:

• The major source of theoretical uncertainties: V_{ub} , V_{cb} , f, F

$$\gamma = (69.8 \pm 2.1 \pm 0.9)^{\circ}$$

Summary

- We use FAT to extract gamma from charmless B decays
- We try to parametrize the decay amplitudes into different topological diagrams
- To improve the precision of the global fit, we factorize the corresponding decay constant and form factors to characterize the flavor SU(3) breaking effect.
- We extract the CKM weak angle γ using all the measured two body charmless B \rightarrow PP, PV decays
- The determined value is $(69.8 \pm 2.1 \pm 0.9)^\circ$

As the LHCb upgrade, additional and the increasing precision of the collected data sets, especially the CP asymmetries introduced by mixing and decay of B^0 meson, are expected to improve constraints on the CKM CP-violating phase gamma.

BACKUP

Mode	Amplitudes	\mathbf{Exp}	This work	Flavor diagram
$\pi^{-}\pi^{0}$	T,C,P_{EW}	$\star 5.5 \pm 0.4$	$5.08 \pm 0.39 \pm 1.02 \pm 0.02$	5.40 ± 0.79
$\pi^-\eta$	T,C,P,P_C,P_{EW}	$\star 4.02 \pm 0.27$	$4.13 \pm 0.25 \pm 0.64 \pm 0.01$	3.88 ± 0.39
$\pi^-\eta^\prime$	T, C, P, P_C, P_{EW}	$\star 2.7 \pm 0.9$	$3.37 \pm 0.21 \pm 0.49 \pm 0.01$	5.59 ± 0.54
$\pi^+\pi^-$	$T, E, (P_E), P$	$\star 5.12 \pm 0.19$	$5.15 \pm 0.36 \pm 1.31 \pm 0.14$	5.17 ± 1.03
$\pi^0\pi^0$	$C, E, P, (P_E), P_{EW}$	$*1.91\pm0.22$	$1.94 \pm 0.30 \pm 0.28 \pm 0.05$	1.88 ± 0.42
0				

TABLE IV: Branching fractions (×10⁻⁶) of various $\bar{B} \to PP$ decay modes. We also show the exper on.

$\pi^+\pi^-$ T, E, (P _E), P $\star 5.12 \pm 0.19$ 5.15 $\pm 0.36 \pm 1.31 \pm 0.7$	$14 5.17 \pm 1.03$
$\pi^0 \pi^0 = C, E, P, (P_E), P_{EW} = \star 1.91 \pm 0.22 = 1.94 \pm 0.30 \pm 0.28 \pm 0.000 \pm 0.0000 \pm 0.00000000000000000$	$05 1.88 \pm 0.42$
$\pi^0\eta$ C, E, P _C , (P _E), P _{EW} 4.3 + 1.8 - 1.7 0.86 ± 0.08 ± 0.08 ± 0.08	0.56 ± 0.03
$\pi^{0}\eta^{'} = C, E, P_{C}, (P_{E}), P_{EW} = 1.2 \pm 0.6 = 0.87 \pm 0.08 \pm 0.10 \pm 0.000$	$03 1.21 \pm 0.16$
$\eta\eta = C, E, P_C, (P_E), P_{EW} = < 1.0$ $0.44 \pm 0.09 \pm 0.08 \pm 0.09$	$005 0.77 \pm 0.12$
$\eta \eta^{'} = C, E, P_C, (P_E), P_{EW} = < 1.2 = 0.77 \pm 0.13 \pm 0.14 \pm 0.02$	1.99 ± 0.26
$\eta^{'}\eta^{'} = C, E, P_{C}, (P_{E}), P_{EW} = < 1.7 \qquad 0.38 \pm 0.05 \pm 0.07 \pm 0.07$	1.60 ± 0.20
$K^- K^0$ P $*1.31 \pm 0.17$ $1.32 \pm 0.04 \pm 0.26 \pm 0.04$	01 1.03 ± 0.02
$K^0 \bar{K^0}$ P *1.21 ± 0.16 1.23 ± 0.03 ± 0.25 ± 0.0	01 0.89 ± 0.11
$\pi^- \bar{K^0}$ P $\star 23.7 \pm 0.8$ $23.2 \pm 0.6 \pm 4.6 \pm 0.2$	23.53 ± 0.42
$\pi^{0}K^{-}$ T, C, P, P _{EW} *12.9 ± 0.5 12.8 ± 0.32 ± 2.35 ± 0.32 ± 0.32 ± 2.35 ± 0.32 \pm 0.3	$10 12.71 \pm 1.05$
ηK^- T, C, P, P _C , P _{EW} $\star 2.4 \pm 0.4$ 2.0 $\pm 0.13 \pm 1.19 \pm 0.0$	1.93 ± 0.31
$\eta^{'}K^{-} = T, C, P, P_{C}, P_{EW} = \star 70.6 \pm 2.5 = 70.1 \pm 4.7 \pm 11.3 \pm 0.2$	70.92 ± 8.54
$\pi^+ K^-$ T, P $\star 19.6 \pm 0.5$ $19.8 \pm 0.54 \pm 4.0 \pm 0.3$	$2 20.2 \pm 0.39$
$\pi^0 \bar{K^0} \qquad C, P, P_{EW} \qquad \star 9.9 \pm 0.5 \qquad 8.96 \pm 0.26 \pm 1.96 \pm 0.000 \pm 0.0000 \pm 0.00000000000000000$	9.73 ± 0.82
$\eta \bar{K^0}$ C, P, P_C, P_{EW} $*1.23 \pm 0.27$ $1.35 \pm 0.10 \pm 1.02 \pm 0.000$	1.49 ± 0.27
$\eta' \bar{K^0} = C, P, P_C, P_{EW} = \star 66 \pm 4 = 66.4 \pm 4.5 \pm 10.6 \pm 0.2$	66.51 ± 7.97

Mode	Amplitudes	Exp	This work	Flavor diagram
$\pi^+ \rho^0$	T, C', P, P_A, P_{EW}	$\mathbf{*8.3} \pm 1.2$	$8.6 \pm 1.81 \pm 1.38 \pm 0.03$	7.59 ± 1.41
$\pi^-\omega$	$T,C^{\prime},P,P_{C}^{\prime},P_{A},P_{EW}$	$\star 6.9 \pm 0.5$	$6.78 \pm 1.46 \pm 1.09 \pm 0.02$	7.03 ± 1.42
$\pi^-\phi$	P_C^\prime, P_{EW}	< 0.15	$0.28\pm0.004\pm0.055\pm0.003$	0.04 ± 0.02
$\pi^0 \rho^-$	T, C, P, P_A, P_{KW}	$\star 10.9 \pm 1.4$	$12.9 \pm 0.73 \pm 2.30 \pm 0.12$	12.15 ± 2.52
$\eta \rho$	T,C,P,P_C,P_A,P_{EW}	7.0 ± 2.9	$8.16 \pm 0.48 \pm 1.43 \pm 0.07$	5.26 ± 1.19
$\eta^{\prime} \rho^{-}$	$T, C, P, P_C, P_A, P_{EW}$	$\star 9.7 \pm 2.2$	$6.0\pm 0.34\pm 0.97\pm 0.05$	5.66 ± 1.25
$\pi^+ \rho^-$	$T, E, P, (P_K), P_A$	$\star 14.6 \pm 1.6$	$12.4 \pm 0.64 \pm 3.20 \pm 0.38$	15.20 ± 1.52
$\pi^- \rho^+$	$T, E, P, (P_{E})$	$\mathbf{\star8.4}\pm1.1$	$6.04 \pm 0.47 \pm 1.70 \pm 0.25$	8.22 ± 1.06
$\pi^0 \rho^0$	$C, C', E, P, P_A, (P_E), P_{EW}$	$\star 2 \pm 0.5$	$1.32 \pm 0.47 \pm 0.09 \pm 0.14$	2.24 ± 0.93
$\pi^0\omega$	$C,C',E,P,P_A,(P_E),P_{EW}$	< 0.5	$2.31 \pm 0.88 \pm 0.24 \pm 0.07$	1.02 ± 0.66
$\pi^0\phi$	P_G', P_{BW}	< 0.15	$0.13 \pm 0.002 \pm 0.025 \pm 0.001$	0.02 ± 0.01
$\eta \rho^0$	$C,C^\prime,E,P,P_C,P_C^\prime,P_A,(P_E),P_{EW}$	< 1.5	$4.41 \pm 1.15 \pm 0.39 \pm 0.17$	0.54 ± 0.32
$\eta\omega$	$C, C^\prime, E, P, P_C, P_C^\prime, P_A, (P_E), P_{EW}$	$0.94^{\pm 0.40}_{-0.31}$	$0.89 \pm 0.30 \pm 0.08 \pm 0.09$	1.12 ± 0.44
$\eta\phi$	P_C^\prime, P_{EW}	< 0.5	$0.077 \pm 0.001 \pm 0.015 \pm 0.0008$	0.01 ± 0.01
$\eta' \rho^0$	$C,C^{\prime},E,P,P_{C},P_{C}^{\prime},(P_{E}),P_{BW}$	< 1.3	$3.19 \pm 0.77 \pm 0.29 \pm 0.12$	0.63 ± 0.33
$\eta^{\prime}\omega$	$C, C', E, P, P_C, P'_C, (P_E), P_{EW}$	$1.0\substack{+0.5\\-0.4}$	$0.95 \pm 0.21 \pm 0.05 \pm 0.06$	1.24 ± 0.47
$\eta' \phi$	P_G^\prime, P_{EW}	< 0.5	$0.05 \pm 0.0008 \pm 0.01 \pm 0.0005$	0.01 ± 0.01
$K^{-}K^{*0}$	$P_{1}P_{A}$	< 1.1	$0.59 \pm 0.06 \pm 0.10 \pm 0.01$	0.46 ± 0.03
$K^{0}K^{*-}$	Р		$0.44 \pm 0.03 \pm 0.09 \pm 0.004$	0.31 ± 0.03
$K^0 \bar{K^{*0}}$	P		$0.41 \pm 0.02 \pm 0.08 \pm 0.004$	0.29 ± 0.03
$\bar{K^0}K^{*0}$	P, P_A		$0.55 \pm 0.05 \pm 0.09 \pm 0.01$	0.43 ± 0.02
$\pi^+ \bar{K^{*0}}$	P_1P_A	$\star 10.1 \pm 0.9$	$10.0\pm 0.95\pm 1.78\pm 0.15$	10.47 ± 0.60
$\pi^0 K^{\bullet-}$	T, C, P, P_A, P_{EW}	$\star 8.2 \pm 1.9$	$6.23 \pm 0.51 \pm 0.98 \pm 0.07$	9.79 ± 2.95
ηK^{*-}	$T, C, P, P_C, P_A, P_{EW}$	$\star 19.3 \pm 1.6$	$17.3 \pm 0.8 \pm 2.4 \pm 0.3$	16.57 ± 2.58
$\eta' K^{*-}$	$T, C, P, P_C, P_A, P_{EW}$	$4.8^{+1.8}_{-1.6}$	$3.31 \pm 0.44 \pm 0.38 \pm 0.13$	3.43 ± 1.43
$K^- \rho^0$	T, C', P, P_{KW}	$\star 3.7 \pm 0.5$	$3.97 \pm 0.25 \pm 0.80 \pm 0.04$	3.97 ± 0.90
$K^-\omega$	T, C', P, P'_C, P_{EW}	$\mathbf{\star6.5}\pm0.4$	$6.52 \pm 0.73 \pm 1.13 \pm 0.06$	6.43 ± 1.49
$K^{\perp}\phi$	P, P_C', P_A, P_{BW}	$\mathbf{\star8.8}\pm0.7$	$8.38 \pm 1.21 \pm 0.69 \pm 0.50$	8.34 ± 1.31
$\bar{K^0}\rho^-$	Р	$\star 8 \pm 1.5$	$7.74 \pm 0.47 \pm 1.55 \pm 0.07$	7.09 ± 0.77
$\pi^+ K^{\star-}$	T, P, P_A	$\star 8.4 \pm 0.8$	$8.40 \pm 0.77 \pm 1.46 \pm 0.14$	8.35 ± 0.50
$\pi^0 \bar{K^{*0}}$	C, P, P_A, P_{EW}	$\star 3.3 \pm 0.6$	$3.35 \pm 0.36 \pm 0.65 \pm 0.08$	3.89 ± 1.98
$\eta K^{\sim 0}$	C, P, P_C, P_A, P_{BW}	$\star 15.9 \pm 1$	$16.6 \pm 0.7 \pm 2.3 \pm 0.3$	16.34 ± 2.48
$\eta^{'} \bar{K^{*0}}$	$C, P, P_C, P_C', P_A, P_{EW}$	$\star 2.8 \pm 0.6$	$3.0 \pm 0.5 \pm 0.3 \pm 0.1$	3.14 ± 1.24
$K^+ \rho^+$	Т, Р	$\star7\pm0.9$	$8.27 \pm 0.44 \pm 1.65 \pm 0.07$	8.28 ± 0.80
$\bar{K^0}\rho^0$	C', P, P_{EW}	$\star4.7\pm0.4$	$4.59 \pm 0.34 \pm 0.79 \pm 0.04$	4.97 ± 1.14
$\bar{K^0}\omega$	C', P, P'_{C}, P_{BW}	$\star4.8\pm0.6$	$4.80 \pm 0.61 \pm 0.95 \pm 0.05$	4.82 ± 1.26
$\bar{K}^0\phi$	$P, P'_{\alpha}, P_{A}, P_{\pi W}$	$\star7.3\pm0.7$	$7.77 \pm 1.12 \pm 0.64 \pm 0.46$	7.72 ± 1.21

Mode	$\mathcal{A}_{\mathrm{exp}}$	$\mathcal{A}_{this \ work}$	$\mathcal{A}_{Flavor\ diagram}$	$\mathcal{S}_{\mathrm{exp}}$	$\mathcal{S}_{this \ work}$	$\mathcal{S}_{Flavor\ diagram}$
$\pi^+\pi^-$	$\star 0.31 \pm 0.05$	0.31 ± 0.04	0.326 ± 0.081	$\star - 0.67 \pm 0.06$	-0.60 ± 0.03	-0.717 ± 0.061
$\pi^0\pi^0$	0.43 ± 0.24	0.57 ± 0.06	0.611 ± 0.113		0.58 ± 0.06	$0.454 \pm \textbf{0.112}$
$\pi^0\eta$		-0.16 ± 0.16	0.566 ± 0.114		-0.98 ± 0.04	-0.098 ± 0.338
$\pi^{0}\eta^{'}$		0.39 ± 0.14	0.385 ± 0.114		-0.90 ± 0.07	0.142 ± 0.234
ηη		-0.85 ± 0.06	-0.405 ± 0.129		0.33 ± 0.12	-0.796 ± 0.077
$\eta \eta^{'}$		-0.97 ± 0.04	-0.394 ± 0.117		-0.20 ± 0.15	-0.903 ± 0.049
$\eta' \eta'$		-0.87 ± 0.07	-0.122 ± 0.136		-0.46 ± 0.14	-0.964 ± 0.037
$\pi^0 K_s$	0.00 ± 0.13	-0.14 ± 0.03	-0.173 ± 0.019	$\star 0.58 \pm 0.17$	0.73 ± 0.01	$0.754 \pm \textbf{0.014}$
ηK_s		-0.30 ± 0.10	-0.301 ± 0.041		0.68 ± 0.04	0.592 ± 0.035
$\eta^{'}K_{s}$	0.06 ± 0.04	0.030 ± 0.004	0.022 ± 0.006	$\mathbf{\star0.63}\pm0.06$	0.69 ± 0.00	0.685 ± 0.004
$K^0 \bar{K^0}$		-0.057 ± 0.002	0.017 ± 0.041	0.8 ± 0.5	0.099 ± 0.002	0
$\pi^{-}\pi^{0}$	0.03 ± 0.04	-0.026 ± 0.003	0.069 ± 0.027			
$\pi^-\eta$	-0.14 ± 0.07	-0.14 ± 0.07	-0.081 ± 0.074			
$\pi^-\eta'$	0.06 ± 0.16	0.37 ± 0.07	0.374 ± 0.087			
$\pi^- \bar{K^0}$	-0.017 ± 0.016	0.0027 ± 0.0001	0			
$\pi^0 K^-$	0.037 ± 0.021	0.065 ± 0.024	0.047 ± 0.025			
ηK^-	$\star-0.37\pm0.08$	-0.22 ± 0.08	-0.426 ± 0.043			
$\eta^{'}K^{+}$	0.013 ± 0.017	-0.021 ± 0.007	-0.027 ± 0.008			
K^-K^0	-0.21 ± 0.14	-0.057 ± 0.002	0			
$\pi^+ K^-$	$\star - 0.082 \pm 0.006$	-0.081 ± 0.005	-0.080 ± 0.011			

TABLE VII: The direct *CP* asymmetries (\mathcal{A}) and mixing-induced *CP* asymmetries (\mathcal{S}) of $\overline{B} \to PP$ decays. We also show the results from conventional flavor diagram approach [14] for comparison.