Photon Helicity in $b \rightarrow s\gamma$ Decays towards New Physics Search

Wei Wang SJTU

1st LHCb Physics Frontier 14-15 Dec 2019

OUTLINE

> Photon polarization in $b \rightarrow s\gamma$

Recent Progresses on photon polarization

Novel Approach to determine the photon helicity Wang, Yu, Zhao, 1909.13083

BEYOND SM: THREE FRONTIERS

High Energy Frontier: Tevatron, LHC··· Direct search

> High Precision Frontier: B factories Tau/charm factory ... indirect search

If the LHC/xxx did not discover any new particle beyond SM, precision study becomes an ideal platform to detect NP effects.

If the LHC/xxx discovers new elementary particles beyond SM, then precision physics will be necessary to constrain the underlying framework.

- Looks great, but can be deceived (tension)
- O(10%-15%) NP is still allowed

R_K/R_K * ANOMALY:

$$R_{K^*}[q_{\min}^2, q_{\max}^2] \equiv \frac{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 d\Gamma(B \to K^* \mu^+ \mu^-)/dq^2}{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 d\Gamma(B \to K^* e^+ e^-)/dq^2},$$

q²:invariant mass of lepton pair

6

Observable	SM results	Experimental data	
$R_K: q^2 = [1, 6] \mathrm{GeV}^2$	1.00 ± 0.01	$0.745^{+0.090}_{-0.074} \pm 0.036$	2.6 Sigma
$R_{K^*}^{\text{low}}: q^2 = [0.045, 1.1] \text{GeV}^2$	$0.920\substack{+0.007\\-0.006}$	$0.66^{+0.11}_{-0.07} \pm 0.03$	2.3 Sigma
$R_{K^*}^{\text{central}}: q^2 = [1.1, 6] \text{GeV}^2$	0.996 ± 0.002	$0.69^{+0.11}_{-0.07} \pm 0.05$	2.5 Sigma

SM: Geng, et.al, 1704.05446

LHCb: PRL, 113, 151601(2014) LHCb: 1705.05802

Anomalies in heavy flavor: New Physics or QCD contaminations ?

Photon polarization in $b \rightarrow s\gamma$

PHOTON POLARIZATION OF $b \rightarrow s\gamma$

- The photon polarization of the $b \rightarrow s\gamma$ process has an unique sensitivity to BSM with right-handed couplings.
- However, the photon polarization has never been measured at a high precision so far: an important challenge for LHCb and Belle II.

8

✓ $b \rightarrow s\gamma$: left-handed polarization ✓ $\bar{b} \rightarrow \bar{s}\gamma$: right-handed polarization

HOW DO WE MEASURE THE POLARIZATION?

Time-dependent measurements:

LHCb(2013): P_{Ab} is "small" : (0.06±0.07±0.02)

9

➢ Angular distribution :
✓ Baryonic decays: $\Lambda_b \rightarrow \Lambda\gamma$, request the polarization of Λ_b or Λ ✓ $B \rightarrow K_{res}$ ($\rightarrow K\pi\pi$) γ

NEW PHYSICS CONTRIBUTIONS IN $b \rightarrow s\gamma$

$$\mathcal{M}(b \to s\gamma) \simeq -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \left[\underbrace{(C_{7\gamma}^{\mathrm{SM}} + C_{7\gamma}^{\mathrm{NP}}) \langle \mathcal{O}_{7\gamma} \rangle}_{\propto \mathcal{M}_L} + \underbrace{C_{7\gamma}^{\prime \mathrm{NP}} \langle \mathcal{O}_{7\gamma}^{\prime} \rangle}_{\propto \mathcal{M}_R} \right]$$

Note:

In NP, $C_{7\gamma}^{NP}$ and/or $C'_{7\gamma}^{NP}$ can be complex numbers! We only consider $C'_{7\gamma}^{NP}$ in the following.

COMPLEMENTARITY

Discovering NP: Competitive Constraining NP: Complementary

Angular distribution of $B \rightarrow K_1 \gamma \rightarrow (K \pi \pi) \gamma$

$$\lambda_{\gamma} \equiv \frac{|\mathcal{A}(\bar{B} \to \bar{K}_{1R}\gamma_R)|^2 - |\mathcal{A}(\bar{B} \to \bar{K}_{1L}\gamma_L)|^2}{|\mathcal{A}(\bar{B} \to \bar{K}_{1R}\gamma_R)|^2 + |\mathcal{A}(\bar{B} \to \bar{K}_{1L}\gamma_L)|^2} \\ = \frac{|C_{7\gamma}^{\prime NP}|^2 - |C_{7\gamma}^{SM}|^2}{|C_{7\gamma}^{\prime NP}|^2 + |C_{7\gamma}^{SM}|^2}$$

In SM,
$$\lambda_{\gamma}\simeq -1$$

N

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m = 1272 \pm 7$ MeV ^[/] Full width $\Gamma = 90 \pm 20$ MeV ^[/]

K ₁ (1270) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
Κρ	(42 ±6)%	46	
$K_0^*(1430)\pi$	(28 ±4)%	ť	
$K^{*}(892)\pi$	$(16 \pm 5)\%$	302	
Κŵ	(11.0 ± 2.0) %	ť	
$K f_0(1370)$	(3.0±2.0) %	†	
γK^0 seen		539	

ANGULAR DISTRIBUTION FOR $b \rightarrow s\gamma$

B meson is a spin-0 hadron: Photon polarization is equivalent to the polarization of Kaon resonance!

Up-down asymmetry for K1

Angular distribution:

Gronau, Grossman, Pirjol, Ryd PRL88('01)

✓ Cos(θ_K): Parity Odd
 ✓ Positive and negative helicities contribute with different signs.

$$\frac{d\Gamma_{K_1\gamma}}{d\cos\theta_K} = \frac{|A|^2|\vec{J}|^2}{4} \times \left[1 + \cos^2\theta_K + 2\lambda_\gamma\cos\theta_K \frac{\operatorname{Im}[\vec{n}\cdot(\vec{J}\times\vec{J^*})]}{|\vec{J}|^2}\right]$$

Up-down asymmetry for K1

Angular distribution:

Gronau, Grossman, Pirjol, Ryd PRL88('01)

$$\frac{d\Gamma_{K_1\gamma}}{d\cos\theta_K} = \frac{|A|^2|\vec{J}|^2}{4} \times \left[1 + \cos^2\theta_K + 2\lambda_\gamma\cos\theta_K \frac{\mathrm{Im}[\vec{n}\cdot(\vec{J}\times\vec{J^*})]}{|\vec{J}|^2}\right].$$

- ✓ To measure λγ, we need to know the decay factor Im[*n*.(*J*×*J*^{*})]/|*J*|²
 ✓ Non-zero decay factor requires imaginary part
- ✓ Source of imaginary part: Breit-Wigner

Up-down asymmetry for K1

Angular distribution:

Gronau, Grossman, Pirjol, Ryd PRL88('01)

$$\frac{d\Gamma_{K_{1}\gamma}}{d\cos\theta_{K}} = \frac{|A|^{2}|\vec{J}|^{2}}{4} \times \left[1 + \cos^{2}\theta_{K} + 2\lambda_{\gamma}\cos\theta_{K}\frac{\mathrm{Im}[\vec{n}\cdot(\vec{J}\times\vec{J^{*}})]}{|\vec{J}|^{2}}\right].$$
Up-down asymmetry for K1
$$\mathcal{A}_{\mathrm{UD}} \equiv \frac{\left[\int_{0}^{1} - \int_{-1}^{0}\right]d\cos\theta_{K}\frac{d\Gamma(B\to K_{1}\gamma)}{d\cos\theta_{K}}}{\left[\int_{0}^{1} + \int_{-1}^{0}\right]d\cos\theta_{K}\frac{d\Gamma(B\to K_{1}\gamma)}{d\cos\theta_{K}}}$$

$$= \lambda_{\gamma}\frac{3}{4}\frac{\mathrm{Im}[\vec{n}\cdot(\vec{J}\times\vec{J^{*}})]}{|\vec{J}|^{2}}$$

- ✓ To measure λγ, we need to know the decay factor $Im[\vec{n}.(\vec{J} \times \vec{J^*})]/|\vec{J}|^2$
- Non-zero decay factor requires imaginary part
- ✓ Source of imaginary part: Breit-Wigner

-30

To extract photon helicity, we have to reliably understand decay mechanism, but...

GENERATOR FOR $K_{RES} \rightarrow K \sqcap DECAYS$

see also M. Gronau, D. Pirjol, Phys.Rev. D96 (2017) 1. Kl₁₂₇₀(1+) & Kl₁₄₀₀(1+) decays based on quark model A.Tayduganov, EK, Le Yaouanc PRD '13

Assume K1→Kππ comes from quasi-two-body decay, e.g. K1→K*π, K1→ρK, then, J function can be written in terms of:

▶4 form factors (S,D partial wave amplitudes)

2. K*1410, 1680(1-) and K21430 (2+) A. Kotenko, B. Knysh talk at Lausanne WS '17

Lesser parameters

- Known to decay mainly $K_{res} \rightarrow K^* \pi$, ρK
- Only 1 form factor for each resonance

On total 10 complex couplings needed (20 real number)!

From Emi Kou

Q

Semileptonic $D \rightarrow K\pi\pi e^+\nu$:

WW, F.S. Yu, Z.X.Zhao, 1909.13083

$B \to K_1(K\pi\pi)\gamma \bigvee D \to K_1(K\pi\pi)e^+\nu$

Polarization of γ : +, -

Polarization of W^* : +, -, 0, t

t: timelike, ~ p_{W^*}

 $D \rightarrow K_1 (\rightarrow K \pi \pi) e^+ \nu$

Angular Distributions:

$$\frac{d\Gamma_{K_1 e\nu_e}}{d\cos\theta_K d\cos\theta_l} = d_1 [1 + \cos^2\theta_K \cos^2\theta_l] + d_2 [1 + \cos^2\theta_K] \cos\theta_l + d_3 \cos\theta_K [1 + \cos^2\theta_l] + d_4 \cos\theta_K \cos\theta_l + d_5 [\cos^2\theta_K + \cos^2\theta_l].$$

The angular coefficients are given as:

$$d_{1} = \frac{1}{2} |\vec{J}|^{2} (4|c_{0}|^{2} + |c_{-}|^{2} + |c_{+}|^{2}),$$

$$d_{2} = -|\vec{J}|^{2} (|c_{-}|^{2} - |c_{+}|^{2}),$$

$$d_{3} = -\text{Im} [\vec{n} \cdot (\vec{J} \times \vec{J}^{*})](|c_{-}|^{2} - |c_{+}|^{2}),$$

$$d_{4} = 2\text{Im} [\vec{n} \cdot (\vec{J} \times \vec{J}^{*})](|c_{-}|^{2} + |c_{+}|^{2}),$$

$$d_{5} = -\frac{1}{2} |\vec{J}|^{2} (4|c_{0}|^{2} - |c_{-}|^{2} - |c_{+}|^{2}).$$

$D \rightarrow K_1 (\rightarrow K\pi\pi) e^+ \nu$:RATIO OF UP-DOWN ASYMMETRIES

 e^+

D

 K_1

 θ_K

 $K \blacktriangleleft$

Parity Odd: $\cos \theta_K$

Parity Violation: $\cos \theta_l$

$$\cos \theta_l (|c_+|^2 - |c_-|^2) |\vec{J}|^2$$

RATIO OF UP-DOWN ASYMMETRIES

$$\mathcal{A}'_{\rm UD} \equiv \frac{\left[\int_0^1 - \int_{-1}^0\right] d\cos\theta_K \frac{d\Gamma_{K_1e\nu_e}}{d\cos\theta_K}}{\left[\int_0^1 - \int_{-1}^0\right] d\cos\theta_l \frac{d\Gamma_{K_1e\nu_e}}{d\cos\theta_l}}$$
$$\operatorname{Im}[\vec{n} \cdot (\vec{I} \times \vec{I^*})]$$

$$\mathcal{A}'_{\rm UD} = \frac{\operatorname{Im}[\vec{n} \cdot (J \times J^*)]}{|\vec{J}|^2}$$

$$\mathcal{A}_{UD} \equiv \frac{\left[\int_{0}^{1} - \int_{-1}^{0}\right] d\cos\theta_{K} \frac{d\hat{\Gamma}_{K_{1}\gamma}}{d\cos\theta_{K}}}{\left[\int_{0}^{1} + \int_{-1}^{0}\right] d\cos\theta_{K} \frac{d\hat{\Gamma}_{K_{1}\gamma}}{d\cos\theta_{K}}}$$
$$= \lambda_{\gamma} \frac{3}{4} \frac{\operatorname{Im}[\vec{n} \cdot (\vec{J} \times \vec{J}^{*})]}{|\vec{J}|^{2}}$$

$$B \to K_1 (\to K \pi \pi) \gamma$$

 $D \to K_1 (\to K\pi\pi) e^+ \nu$

 $\lambda_{\gamma} = \frac{4}{3} \frac{\mathcal{A}_{UD}}{\mathcal{A}_{UD}'}$

LHCb result on up-down asymmetry

LHCb PRL ('14)

TABLE I. Legendre coefficients obtained from fits to the normalized background-subtracted $\cos \hat{\theta}$ distribution in the four $K^+\pi^-\pi^+$ mass intervals of interest. The up-down asymmetries are obtained from Eq. (4). The quoted uncertainties contain statistical and systematic contributions. The $K^+\pi^-\pi^+$ mass ranges are indicated in GeV/ c^2 and all the parameters are expressed in units of 10^{-2} . The covariance matrices are given in Ref. [22].

	[1.1,1.3]	[1.3,1.4]	[1.4,1.6]	[1.6,1.9]
c_1	6.3 ± 1.7	5.4 ± 2.0	4.3 ± 1.9	-4.6 ± 1.8
c_2	31.6 ± 2.2	27.0 ± 2.6	43.1 ± 2.3	28.0 ± 2.3
c_3	-2.1 ± 2.6	2.0 ± 3.1	-5.2 ± 2.8	-0.6 ± 2.7
<i>c</i> ₄	3.0 ± 3.0	6.8 ± 3.6	8.1 ± 3.1	-6.2 ± 3.2
$\mathcal{A}_{\mathrm{ud}}$	6.9 ± 1.7	4.9 ± 2.0	5.6 ± 1.8	-4.5 ± 1.9

$$\begin{aligned} \mathcal{A}_{\rm UD} &\equiv \frac{\left[\int_0^1 - \int_{-1}^0\right] d\cos\theta_K \frac{d\Gamma(B \to K_1 \gamma)}{d\cos\theta_K}}{\left[\int_0^1 + \int_{-1}^0\right] d\cos\theta_K \frac{d\Gamma(B \to K_1 \gamma)}{d\cos\theta_K}} \\ &= \lambda_\gamma \frac{3}{4} \frac{\mathrm{Im}[\vec{n} \cdot (\vec{J} \times \vec{J^*})]}{|\vec{J}|^2}. \end{aligned}$$

PROSPECT

[1.1-1.3]GeV:

LHCb: PRL112.161801(2014) 27

$$\mathcal{A}_{UD} = (6.9 \pm 1.7) \times 10^{-2}$$

If SM ($A'_{UD} = (9.2 \pm 2.3) \times 10^{-2}$

A significant deviation from the above value would be a clear signal for new physics beyond SM.

PROSPECT

Dependence of $C_{7\gamma}^{\prime NP}$ on ratio of up-down asymmetries

$D \rightarrow K_1(\rightarrow K\pi\pi)e^+\nu$ FROM BESIII

BESIII: 1907.11370

 $\mathcal{B}(D^+ \to \overline{K}_1^0 e^+ \nu) = (2.3 \pm 0.26 \pm 0.18 \pm 0.25) \times 10^{-3}.$

BESIII, BelleII, LHCb, Super Tau-Charm in future?

Heavy Flavor Physics: indirect search for NP

Photon polarization in $b \rightarrow s\gamma$: unique to probe righthanded couplings

Model-independent extraction using $D \rightarrow K_1 e^+ v$

- Photon polarization in a model-independent way: NP?
- ✓ BESIII, BelleII, LHCb, Super tau-charm, CEPC?

INCLUDING MORE K_J RESONANCES

31

The angular distribution for $D \to K_{res}(\to K\pi\pi)e^+\nu$ $\frac{d\hat{\Gamma}}{d\cos\theta_K d\cos\theta_l} = \sum_{K_J=K_1, K_1^*, K_2, K_{12}^I} \frac{d\hat{\Gamma}_{K_J l\nu}}{d\cos\theta_K d\cos\theta_l}$

K^{*}(1410)

 $\frac{d\hat{\Gamma}_{K_1^*l\nu}}{d\cos\theta_K d\cos\theta_l} = (|c_+''|^2 + |c_-''|^2)\sin^2\theta_K(1 + \cos^2\theta_l) + 2(|c_+''|^2 - |c_-''|^2)\sin^2\theta_K\cos\theta_l + 4|c_0''|^2\cos^2\theta_K\sin^2\theta_l$

INCLUDING MORE K_J RESONANCES

 $K_{2}^{*}(1430)$

$$\frac{d\hat{\Gamma}_{K_2l\nu}}{d\cos\theta_K d\cos\theta_l} = |c_0'|^2 \frac{3}{2} \sin^2(2\theta_K) \sin^2\theta_l |\vec{K}|^2$$
$$+2|c_1'|^2 \cos^4\frac{\theta_l}{2} \left\{ |\vec{K}|^2 (\cos^2\theta_K + \cos^22\theta_K) +2\cos\theta_K \cos 2\theta_K \operatorname{Im}[\vec{n} \cdot (\vec{K} \times \vec{K}^*)] \right\}$$
$$+2|c_{-1}'|^2 \sin^4\frac{\theta_l}{2} \left\{ |\vec{K}|^2 (\cos^2\theta_K + \cos^22\theta_K) -2\cos\theta_K \cos 2\theta_K \operatorname{Im}[\vec{n} \cdot (\vec{K} \times \vec{K}^*)] \right\}$$

The $K_1 - K_2$ interference

$$\begin{aligned} \frac{d\hat{\Gamma}_{K_{12}^{I}l\nu}}{d\cos\theta_{K}d\cos\theta_{l}} \\ &= -4\sqrt{3}\sin^{2}(\theta_{K})\cos\theta_{K}\sin^{2}\theta_{l}\mathrm{Re}[c_{0}(c_{0}')^{*}\vec{J}\cdot\vec{K}^{*}] \\ &-8\cos^{4}\frac{\theta_{l}}{2}\left\{\frac{1}{2}(3\cos^{2}\theta_{K}-1)\mathrm{Im}[c_{+}(c_{+}')^{*}\vec{n}\cdot(\vec{J}\times\vec{K}^{*})]\right. \\ &+\cos^{3}\theta_{K}\mathrm{Re}[c_{1}(c_{1}')^{*}*(\vec{J}\cdot\vec{K}^{*})]\right\} \\ &-8\sin^{4}\frac{\theta_{l}}{2}\left\{\frac{1}{2}(1-3\cos^{2}\theta_{K})\mathrm{Im}[c_{-}(c_{-}')^{*}\vec{n}\cdot(\vec{J}\times\vec{K}^{*})]\right. \\ &+\cos^{3}\theta_{K}\mathrm{Re}[c_{-1}(c_{-1}')^{*}(\vec{J}\cdot\vec{K}^{*})]\right\}. \end{aligned}$$

