

Lepton universality violations (LUV) in B decays

JHEP12(2019)065 and PRD96(2017)093006

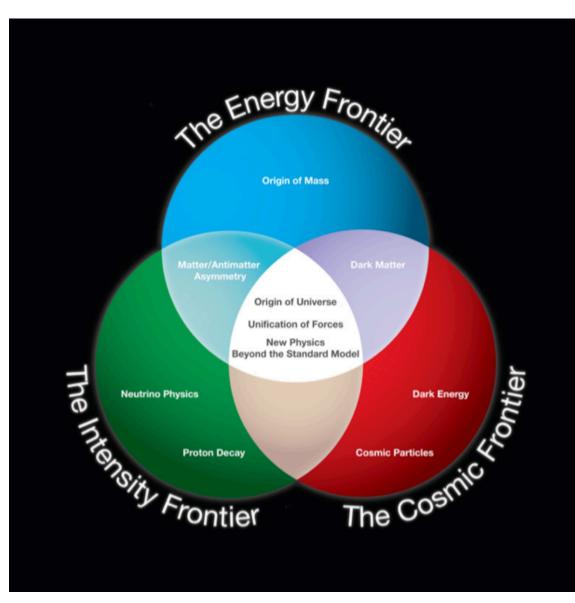
Li-Sheng Geng (耿立升) @ Beihang U.

Rui-Xiang Shi & Jorge Martin Camalich & Sebastian Jäger & Benjamín Grinstein & Xiu-Lei Ren

Contents

1. Background & purpose

- **a. b** \rightarrow c ℓ v decay
- **b.** $\mathbf{b} \rightarrow s \ell \ell \text{ decay}$
- 2. Theoretical framework
- **3. Results and Discussions**
 - **a. b** \rightarrow c ℓ v decay
 - **b.** $\mathbf{b} \rightarrow s \ell \ell \text{ decay}$


4. Summary and outlook

Contents

1. Background & purpose

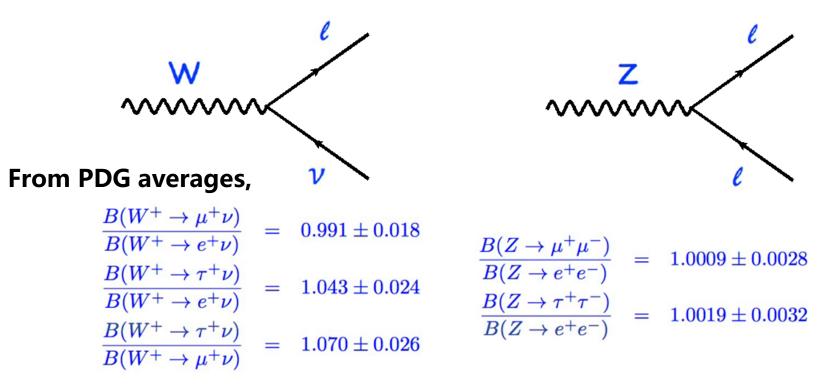
- **a. b** \rightarrow c ℓ v decay
- **b.** $\mathbf{b} \rightarrow s \ell \ell \text{ decay}$
- **2. Theoretical framework**
- **3. Results and Discussions**
 - **a.** $\mathbf{b} \rightarrow \mathbf{c} \mathbf{l} \mathbf{v} \operatorname{decay}$
 - **b.** $b \rightarrow s \ell \ell$ decay
- 4. Summary and outlook

Frontiers in high energy physics

CMS&ATLAS:

. . .

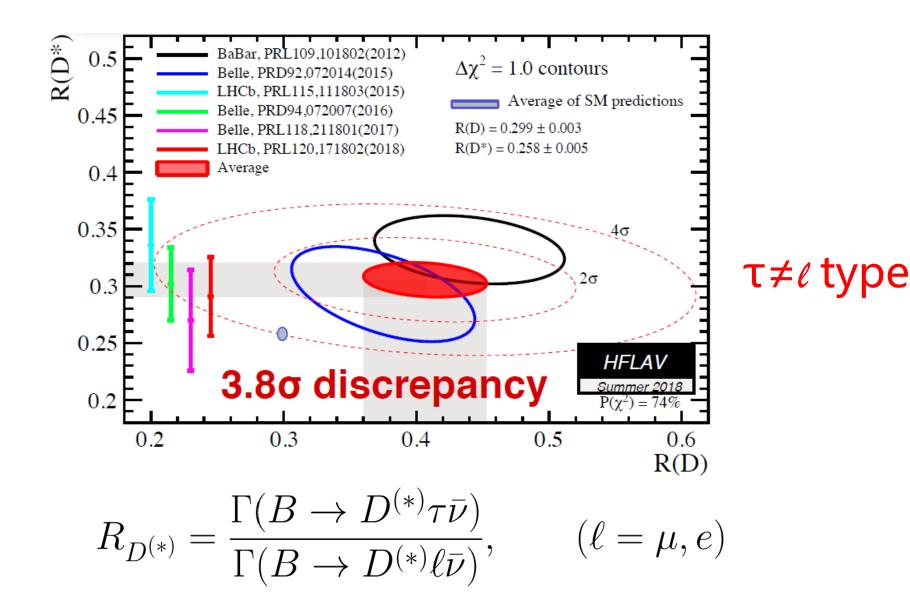
Higgs; Supersymmetric Particles; New interactions;

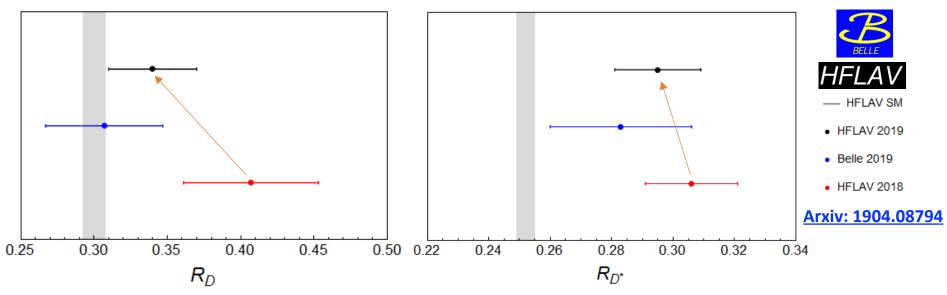

LCHb&BelleII&BESIII: New hadronic States; Heavy flavor physics (B physics);

Indirect detection of NP via the test of the lepton universality (LU) is one of the hot topics.

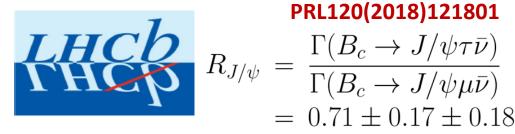
US Particle Physics Scientific Opportunities: A Strategic Plan for the Next 10 Years

Lepton universality in the SM/EW

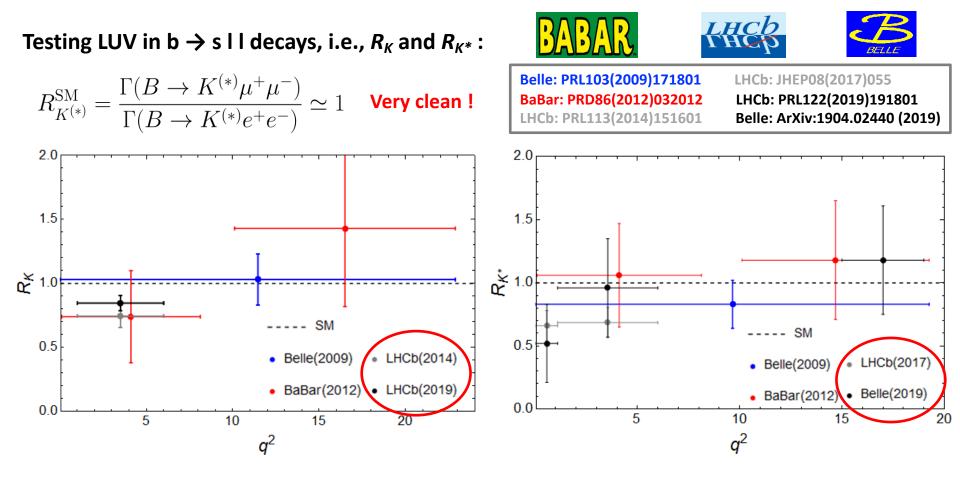

The interactions between leptons and gauge bosons are the same for all leptons.


SM predictions : ~1

LU in SM is thoroughly tested. However, some LUV signals (R_D , R_{D^*} , R_{K^*} , R_K , etc.) in B semi-leptonic decays have attracted lots of attentions.


LUV signal in the b \rightarrow c l v decay

LUV signal in the b \rightarrow c l v decay


Belle 2019 measurements compatible with SM within 1.2σ.
HFLAV 2019 results closer to SM predictions.

• Tension with SM (0.248) ~2 σ , but the significance of $R_{J/\psi}$ is less than 4σ .

These new data call for a reassessment of the significance of the tension of the signal with the SM and of the possible NP scenarios aiming at explaining it.

LUV signal in the b \rightarrow s l l decay

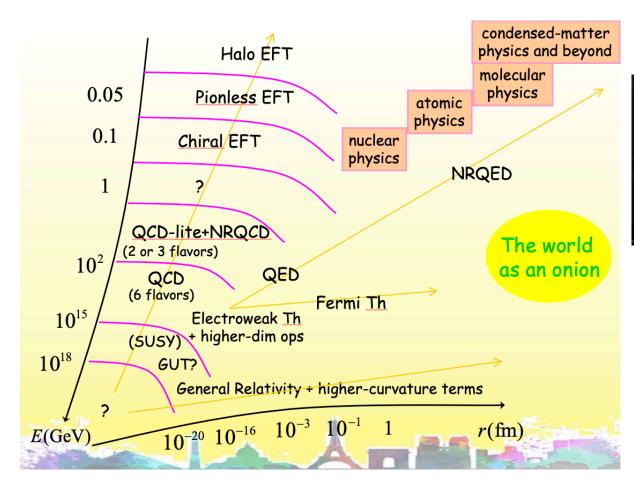
- Due to large experimental uncertainties from Belle 2009 and BaBar 2012 measurements , there is no significant deviation from the SM prediction.
- \Box Adding 2015 and 2016 data, the 2019 LHCb R_K becomes ~2.5 σ from SM.
- **D** For R_{K^*} , the Belle 2019 result becomes closer to SM.

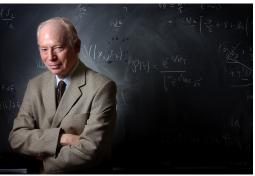
Our purpose

- Using low energy effective field theories to calculate relevant observables
- ② Performing χ² fits and constraining the NP couplings. Then, using frequentist statistics to assess the significance
- ③ Testing NP models, identifying or constructing observables which are sensitive to new physics

Contents

1. Background

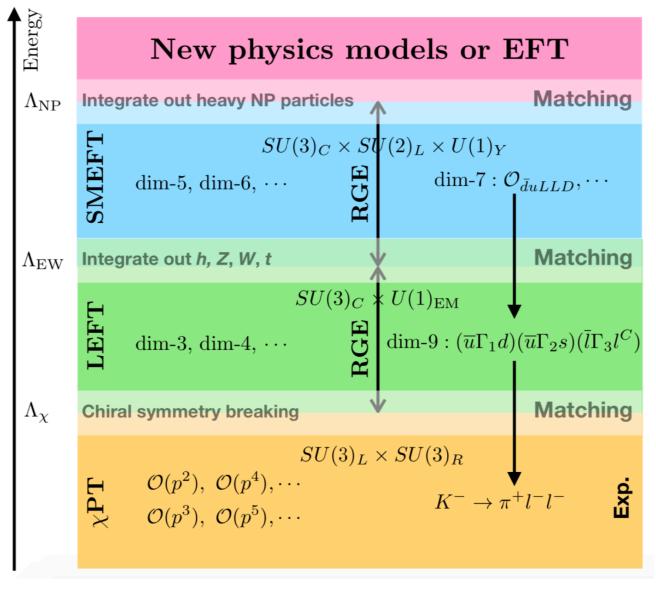

- **a.** $b \rightarrow c l v decay$
- **b.** $b \rightarrow s \ell \ell decay$


2. Theoretical framework

- **3. Results and Discussions**
 - **a.** $\mathbf{b} \rightarrow \mathbf{c} \mathbf{l} \mathbf{v} \operatorname{decay}$
 - **b.** $b \rightarrow s \ell \ell$ decay

4. Summary and outlook

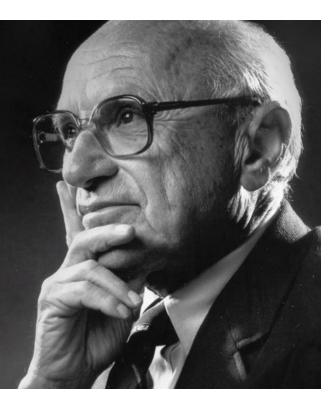
We are entering the era of EFTs



Phenomenological Lagrangians Steven Weinberg Physica A96 (1979) 327-340

U. van Kolck @ Beihang, 2019.03.28-04.04

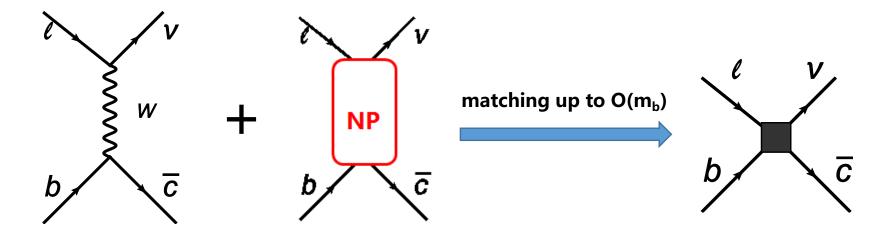
LEFTs: bottom-up approach to new physics



Courtesy of H. L. Wang, Chiral2019

EFTs sacrifices predictability for the sake of systematicity

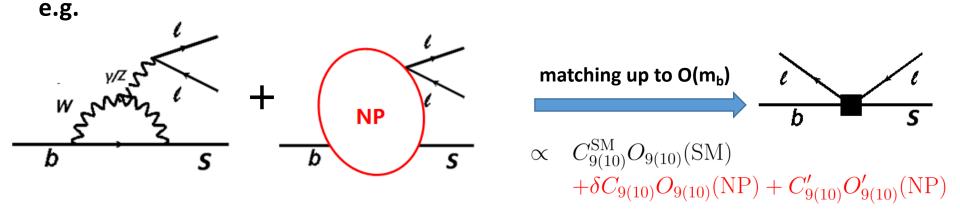
A Milton Friedman favorite political aphorism:


"There's no such thing as a free lunch."

LEFTs: bottom-up approach to new physics

CC : $b \rightarrow c \mid v$ J. Martin Camalich et al, PRD 94 (2016) 094021

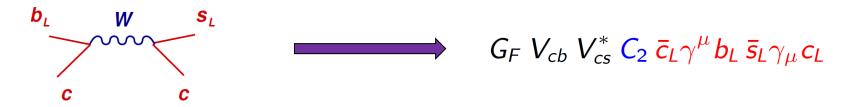
$$\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} [(1 + \epsilon_L) \bar{\ell} \gamma_\mu P_L \nu_\tau \bar{c} \gamma^\mu P_L b + \epsilon_R \bar{\ell} \gamma_\mu P_L \nu_\tau \bar{c} \gamma^\mu P_R b + \epsilon_T \bar{\ell} \sigma_{\mu\nu} P_L \nu_\tau \bar{c} \sigma^{\mu\nu} P_L b + \epsilon_{S_L} \bar{\ell} P_L \nu_\tau \bar{c} P_L b + \epsilon_{S_R} \bar{\ell} P_L \nu_\tau \bar{c} P_R b + \text{H.C.}].$$

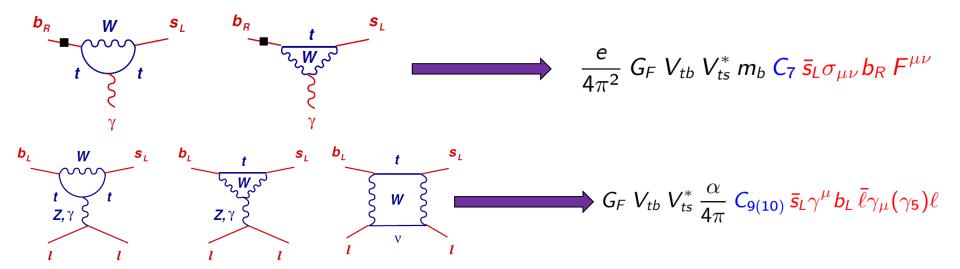


□ Wilson coefficients in red stand for NP contributions.

LEFTs: bottom-up approach to new physics

FCNC: $b \rightarrow s | I$ J. Martin Camalich et al, JHEP05(2013)043


$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{had}} + \mathcal{H}_{\text{eff}}^{\text{sl}} \qquad \qquad \mathcal{H}_{\text{eff}}^{\text{had}} = \frac{4G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p [C_1 Q_1^p + C_2 Q_2^p + \sum_{i=3,\cdots,6} C_i P_i + C_{8g} Q_{8g}] \\ \mathcal{H}_{\text{eff}}^{\text{sl}} = - \frac{4G_F}{\sqrt{2}} \lambda_t [C_7 Q_{7\gamma} + C_7' Q_{7\gamma}' + C_9 Q_{9V} + C_9' Q_{9V}' + C_{10} Q_{10A} + C_{10}' Q_{10A}' + C_{S} Q_S + C_S' Q_S' + C_p Q_P + C_P' Q_P' + C_T Q_T + C_T' Q_T']$$


- **D** Different values of Wilson coefficients $C_i^{\text{expt.}} = C_i^{\text{SM}} + \delta C_i$
- **Wilson coefficients can be complex and introduce new sources of CP violation.**

SM operators and Feynman diagrams for $b \rightarrow s \mid l \mid decays$

Charm contributions:

Flavor Changing Neutral Currents(FCNC):

U Wilson coefficient C_i(μ) are calculated in perturbative theory at $\mu=m_W$ and rescaled to $\mu=m_b$. O_s, O_p and O_T cannot explain R_K and R_{K*} J. Martin Camalich et al, PRL.113.241802.

Nonperturbative inputs

- \Box For the b \rightarrow c l v decay:
 - Form factors :
 - $B \to D^{(*)} \, \tau \, \nu : \,$ HQET & fitting to B factories data & LQCD
 - $B \rightarrow J/\psi \tau \nu$: covariant LFQM

 \Box For the b \rightarrow s I I decay (*only low bins are considered*):

● In the low bin (q²≤6 GeV²):

Form factors $F(q^2)$: HQEFT $F(q^2) = F^{\infty}(q^2) + a_F + b_F q^2 / m_B^2 + O([q^2 / m_B^2]^2)$. Soft form factors (LCSR & Dyson-Schwinger) Charm loops ~ $\frac{m_B^2}{q^2} h_{\lambda}(q^2)$: HQEFT $h_{\lambda}(q^2) = h_{\lambda}^{\infty}(q^2) + r_{\lambda}(q^2)$ $r_{\lambda}(q^2) = A_{\lambda} + B_{\lambda} \frac{q^2}{4m_c^2}$ QCDF LCSR

In the high bin (q²≥ 15 GeV²):

Form factors $F(q^2)$: Lattice QCD PRL112(2014)212003 Charm loops contributions can be neglected !!!

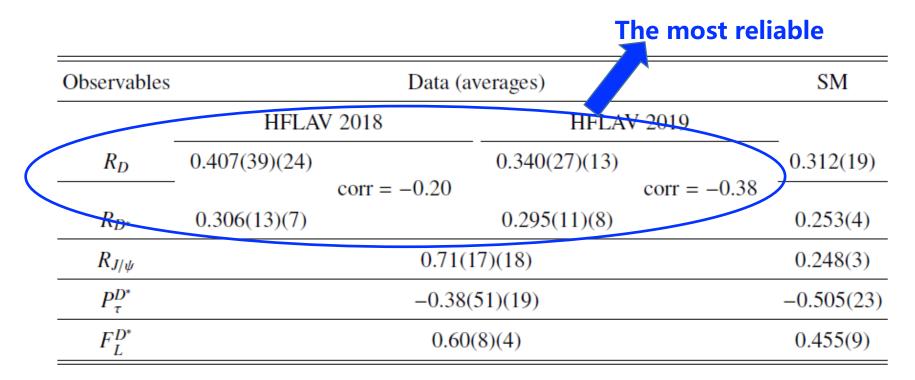
Statistics : χ² fit & Frequentist analysis

- □ Frequentist analysis
 - P-value: it is a statement how well the SM or BSM describes the data

 $\begin{aligned} \text{P-value}_{\text{SM}} &= 1 - \text{CDF}[\chi^2 \text{-distribution}[n_{\text{exp}}], \chi^2_{\text{min,SM}}] \\ \text{P-value}_{\text{NP}} &= 1 - \text{CDF}[\chi^2 \text{-distribution}[n_{\text{exp}} - n_{\epsilon}], \chi^2_{\text{min,NP}}] \end{aligned}$

• Pull_{SM}: the significance of deviation from SM

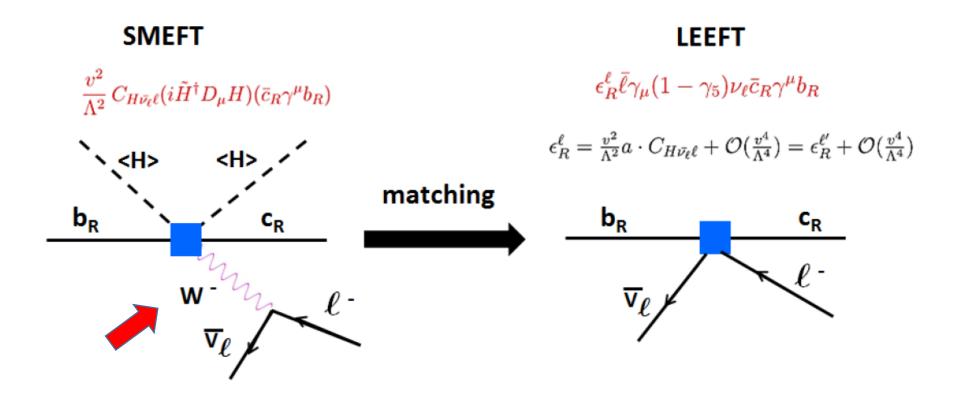
$$\begin{split} &\Delta\chi^2_{\rm SM} = {\rm Quantile}[\chi^2 \text{-} {\rm distribution}[1], {\rm CDF}[\chi^2 \text{-} {\rm distribution}[n_\epsilon], \chi^2_{\rm min,SM} - \chi^2_{\rm min,NP}]] \\ &{\rm Pull}_{\rm SM} = \sqrt{\Delta\chi^2_{\rm SM}} \end{split}$$


The larger the p-value_{NP}, the higher the significance of deviation from SM (the larger the Pull_{SM}) but the smaller p-value_{SM} tells us that the SM hypothesis under consideration may not be adequate to explain the data.

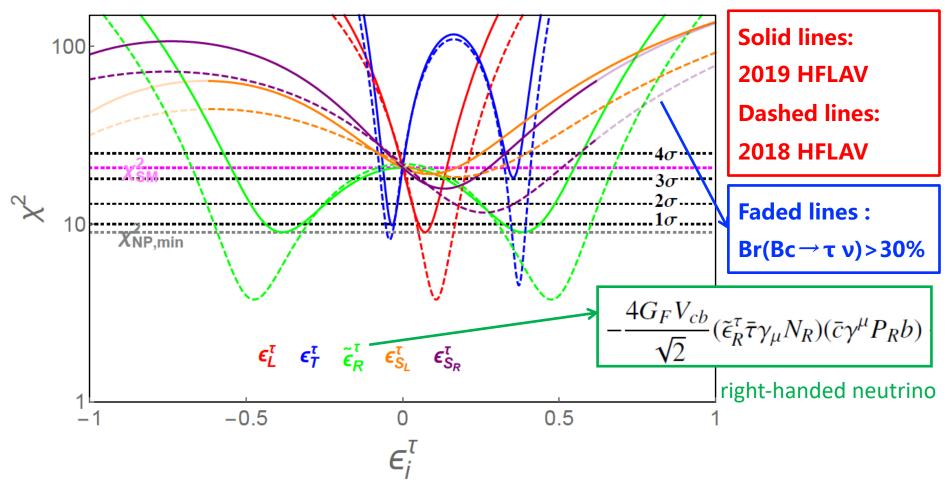
Contents

1. Background

- **a.** $\mathbf{b} \rightarrow \mathbf{c} \mathbf{l} \mathbf{v} \operatorname{decay}$
- **b.** $b \rightarrow s \ell \ell decay$
- **2. Theoretical framework**
- 3. Results and Discussions
 - **a. b** \rightarrow c ℓ v decay
 - **b.** $\mathbf{b} \rightarrow s \ell \ell \text{ decay}$
- 4. Summary and outlook


Interesting observables for $b \rightarrow c \mid v \mid decays$

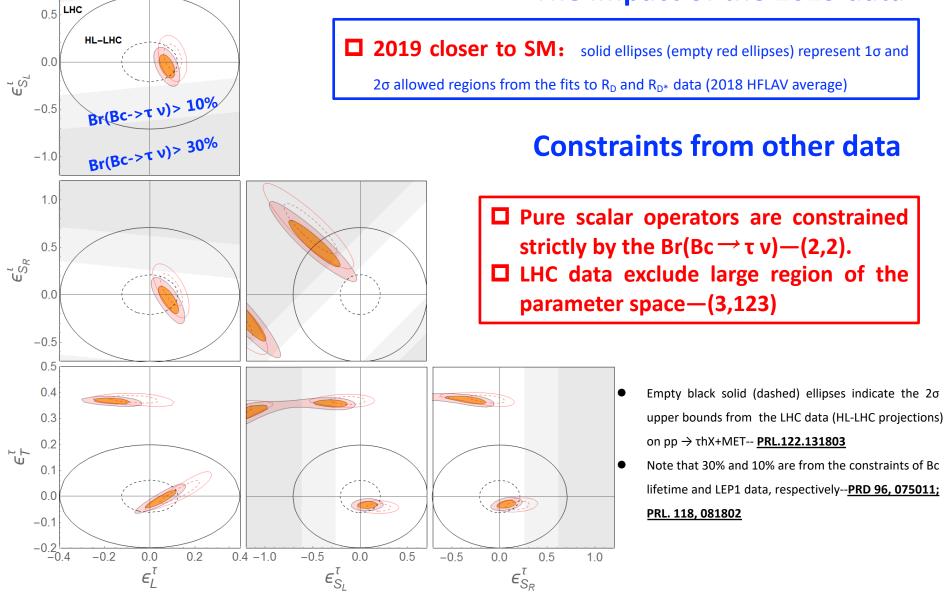
τ polarization asymmetry $P_{\tau}^{D^*}$ and the longitudinal polarization of D ($F_L^{D^*}$) in the B->D* **τ** ν decay:


$$\begin{split} P^{D^*}_{\tau} &= \frac{\Gamma(\lambda_{\tau} = \frac{1}{2}) - \Gamma(\lambda_{\tau} = -\frac{1}{2})}{\Gamma(\lambda_{\tau} = \frac{1}{2}) + \Gamma(\lambda_{\tau} = -\frac{1}{2})}, \\ F^{D^*}_L &= \frac{\Gamma(\lambda_{D^*} = 0)}{\Gamma(\lambda_{D^*} = 1) + \Gamma(\lambda_{D^*} = 0) + \Gamma(\lambda_{D^*} = -1)}, \end{split}$$

Right-handed vector operator cannot explain LUV

NP particles do not directly couple to two leptons in the two-Higgs model. Therefore, the right-handed vector operator cannot contribute to and explain lepton universality violation.

Fits to R_D and R_{D*} only

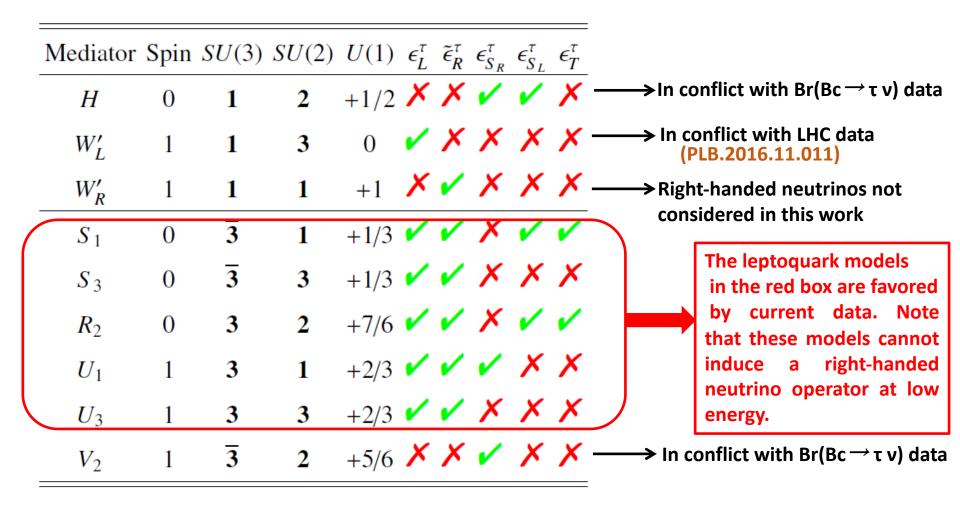


D Dotted lines show that the significance of deviating from SM is more than 3σ.

- □ The (left)vector and tensor operators give a better fit to the data (than the other two).
- **D** The χ^2 difference shows that the 2018 HFLAV data are in conflict with the 2019 HFLAV data.

Fits to R_D and R_{D*} only: 6 2D plots

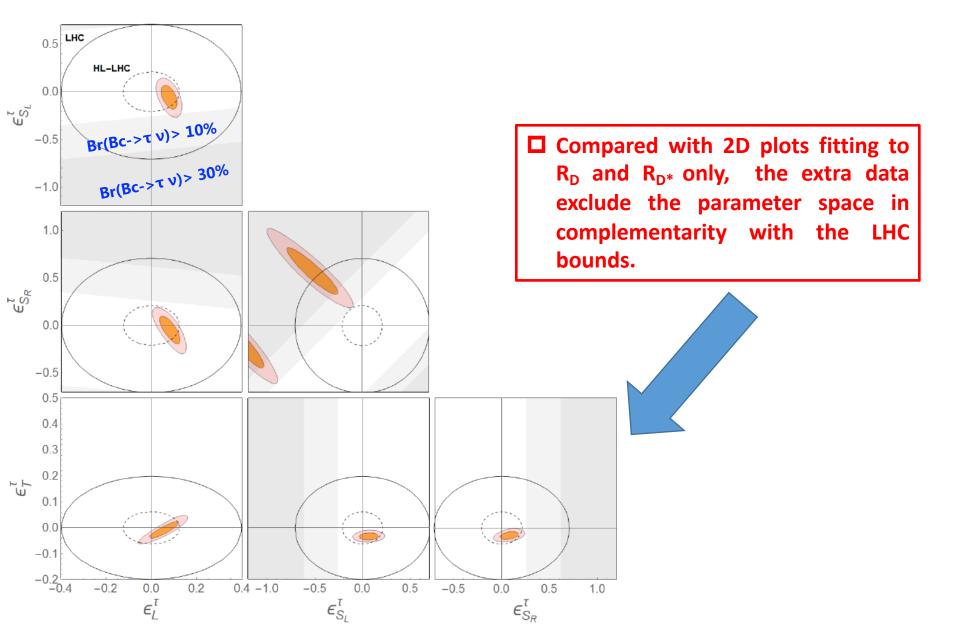
The impact of the 2019 data



Fits to R_D and R_{D^*} only

	$\chi^2_{\rm SM} = 20.75$		p-value in SM : 1.38×10 ⁻²			
	Best fit	$\chi^2_{\rm min}$	p-value	Pull _{SM}	1σ range	
$\epsilon_L^{ au}$	0.07	9.00	0.34	3.43	(0.05, 0.09)	
$\epsilon_T^{ au}$	-0.03	9.85	0.28	3.30	(-0.04, -0.02)	
$\epsilon^{ au}_{S_L}$	0.09	19.14	1.41×10^{-2}	1.27	(0.02, 0.15)	
$\epsilon^{ au}_{S_R}$	0.13	15.84	4.47×10^{-2}	2.22	(0.07, 0.20)	
$-\tilde{\epsilon}_R^{\tau}$	0.38	9.00	0.34	3.43	(0.32, 0.44)	
$\epsilon_{S_L}^{\tau} = -4\epsilon_T^{\tau}$	0.09	12.25	0.14	2.92	(0.06, 0.12)	
$(\epsilon_{S_L}^{ au},\epsilon_T^{ au})$	(0.07, -0.03)	8.7	0.27	3.03	$\epsilon^{\tau}_{S_L} \in (0.00, 0.14) \ \ \epsilon^{\tau}_T \in (-0.04, -0.02)$	
$(\epsilon_{S_L}^\tau,\epsilon_{S_R}^\tau)$	(-0.47, 0.53)	8.7	0.27	3.03	$\epsilon^{\tau}_{S_L} \in (-0.66, -0.30) \epsilon^{\tau}_{S_R} \in (0.37, 0.69)$	
$(\epsilon_{S_R}^{ au},\epsilon_T^{ au})$	(0.07, -0.03)	8.7	0.27	3.03	$\epsilon^{\tau}_{S_R} \in (0.00, 0.14) \epsilon^{\tau}_T \in (-0.04, -0.02)$	
$(\epsilon_L^{\tau},\epsilon_T^{\tau})$	(0.05, -0.01)	8.7	0.27	3.03	$\epsilon_L^\tau \in (0.00, 0.09) \epsilon_T^\tau \in (-0.03, 0.01)$	
$(\epsilon_L^\tau, \epsilon_{S_L}^\tau)$	(0.08, -0.04)	8.7	0.27	3.03	$\epsilon_L^\tau \in (0.05, 0.10) \epsilon_{S_L}^\tau \in (-0.13, 0.04)$	
$(\epsilon_L^{\tau}, \epsilon_{S_R}^{\tau})$	(0.08, -0.05)	8.7	0.27	3.03	$\epsilon_L^{\tau} \in (0.05, 0.11) \epsilon_{S_R}^{\tau} \in (-0.15, 0.04)$	

□ The significance of deviation from SM is more than 3σ.

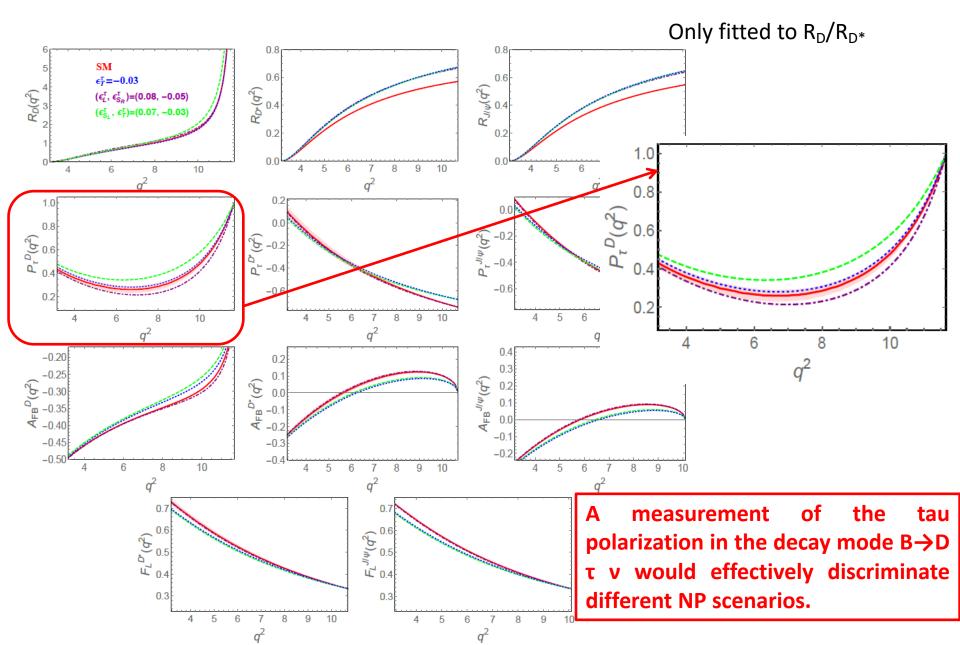

Testing 3 N P models

For example, assuming NP couplings are O(1) order:

 $m_{S_1} \simeq 2.3 \text{ TeV}, m_{U_1} \simeq 3.3 \text{ TeV}$ $m_{S_1} \simeq m_{R_2} \simeq 2.3 \text{ TeV}.$

Fits to all the 2019 HFLAV data

Fits to all the 2019 HFLAV data


 $\chi^2_{\rm min,SM} = 26.53$

p-value in SM : 9.02×10⁻³

	Best fit	$\chi^2_{\rm min}$	p-value	Pull _{SM}	1σ range
$\epsilon_L^{ au}$	0.07	14.56	0.20	3.46	(0.05, 0.09)
$\epsilon_T^{ au}$	-0.03	15.70	0.15	3.29	(-0.04, -0.02)
$\epsilon^{\tau}_{S_L}$	0.08	25.23	8.44×10^{-3}	1.14	(0.01, 0.14)
$\epsilon^{ au}_{S_R}$	0.14	21.24	3.10×10^{-2}	2.30	(0.08, 0.20)
$(\epsilon_{S_L}^{\tau}, \epsilon_T^{\tau})$	(0.07, -0.03)	14.75	0.14	3.00	$\epsilon^{\tau}_{S_L} \in (0.00, 0.13) \epsilon^{\tau}_T \in (-0.04, -0.02)$
$(\epsilon_{S_L}^{\tau},\epsilon_{S_R}^{\tau})$	(-0.51, 0.56)	12.14	0.28	3.37	$\epsilon_{S_L}^{\tau} \in (-0.69, -0.34)$ $\epsilon_{S_R}^{\tau} \in (0.41, 0.73)$
$(\epsilon_{S_R}^{\tau}, \epsilon_T^{\tau})$	(0.08, -0.03)	14.38	0.16	3.05	$\epsilon^{\tau}_{S_R} \in (0.01, 0.14) \epsilon^{\tau}_T \in (-0.04, -0.02)$
$(\epsilon_L^{\tau}, \epsilon_T^{\tau})$	(0.05, -0.01)	14.32	0.16	3.06	$\epsilon_L^\tau \in (0.01, 0.10) \ \ \epsilon_T^\tau \in (-0.03, 0.01)$
$(\epsilon_L^{\tau},\epsilon_{S_L}^{\tau})$	(0.08, -0.06)	14.09	0.17	3.09	$\epsilon_L^\tau \in (0.06, 0.10) \epsilon_{S_L}^\tau \in (-0.14, 0.03)$
$(\epsilon_L^{\tau}, \epsilon_{S_R}^{\tau})$	(0.08, -0.05)	14.33	0.16	3.06	$\epsilon_L^{\tau} \in (0.05, 0.11)$ $\epsilon_{S_R}^{\tau} \in (-0.14, 0.05)$

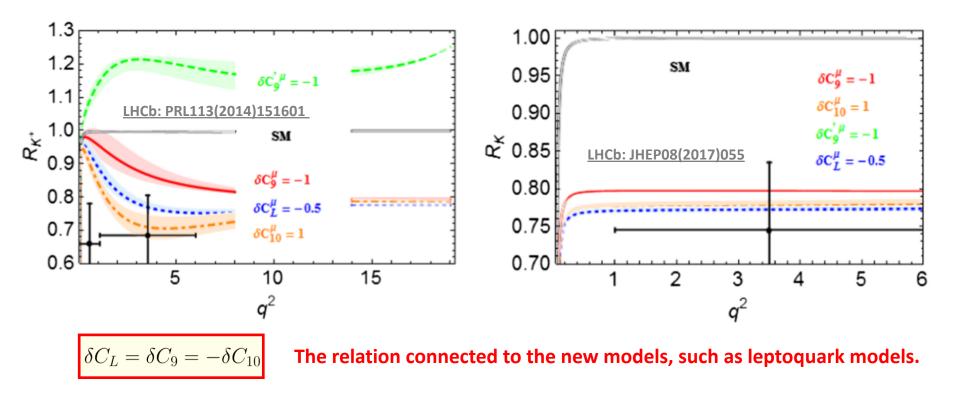
• The significance of deviation from SM is more than 3σ.

Possibility of discriminating different NP structure

Possibility of discriminating different NP structure

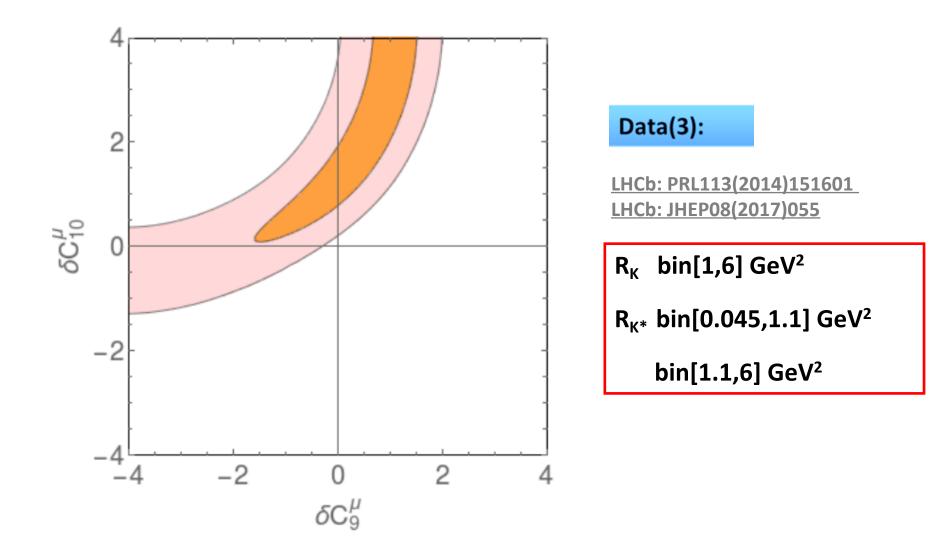
NI STATES AND

					No corresponding NP
Observables SM	SM	$\epsilon_{T}^{\tau} = -0.03$	$(\epsilon^{\tau}_{S_L}, \ \epsilon^{\tau}_T)$	$(\epsilon_L^{\tau}, \epsilon_{S_R}^{\tau})$	$(\epsilon_L^{ au},\epsilon_T^{ au},\epsilon_{S_L}^{ au},\epsilon_{S_R}^{ au})$
	5141	$e_T = -0.05$	= (0.07, -0.03)	= (0.08, -0.05)	= (0.16, 0.05, -0.33, 0.14)
R_D	$0.312\substack{+0.019\\-0.018}$	$0.303^{+0.019}_{-0.018}$	$0.340^{+0.023}_{-0.021}$	$0.339^{+0.020}_{-0.018}$	$0.343^{+0.017}_{-0.016}$
$P^D_{ au}$	$0.338^{+0.033}_{-0.034}$	$0.358^{+0.033}_{-0.034}$	$0.427^{+0.032}_{-0.032}$	$0.288^{+0.034}_{-0.034}$	$0.117^{+0.033}_{-0.033}$
A^D_{FB}	$-0.358^{+0.003}_{-0.003}$	$-0.344\substack{+0.004\\-0.003}$	$-0.334^{+0.005}_{-0.004}$	$-0.363^{+0.002}_{-0.002}$	$-0.383^{+0.002}_{-0.001}$
R_{D^*}	$0.253\substack{+0.004\\-0.004}$	$0.293\substack{+0.004\\-0.004}$	$0.291\substack{+0.004\\-0.003}$	$0.293^{+0.004}_{-0.004}$	$0.297^{+0.009}_{-0.008}$
$P_{ au}^{D^*}$	$-0.505^{+0.024}_{-0.022}$	$-0.477\substack{+0.020\\-0.019}$	$-0.487^{+0.019}_{-0.017}$	$-0.513^{+0.023}_{-0.021}$	$-0.430^{+0.042}_{-0.041}$
$A_{FB}^{D^*}$	$0.068^{+0.013}_{-0.013}$	$0.030\substack{+0.012\\-0.012}$	$0.038^{+0.012}_{-0.012}$	$0.073^{+0.013}_{-0.013}$	$0.083^{+0.017}_{-0.016}$
$F_L^{D^*}$	$0.455^{+0.009}_{-0.008}$	$0.444^{+0.008}_{-0.007}$	$0.440^{+0.007}_{-0.007}$	$0.452^{+0.008}_{-0.008}$	$0.497^{+0.015}_{-0.014}$
$R_{J/\psi}$	$0.248^{+0.003}_{-0.003}$	$0.291^{+0.004}_{-0.004}$	$0.289^{+0.004}_{-0.004}$	$0.288^{+0.004}_{-0.004}$	$0.284^{+0.003}_{-0.003}$
$P_{ au}^{J/\psi}$	$-0.512^{+0.011}_{-0.010}$	$-0.481\substack{+0.009\\-0.008}$	$-0.490^{+0.008}_{-0.008}$	$-0.519\substack{+0.010\\-0.010}$	$-0.453^{+0.020}_{-0.019}$
$A_{FB}^{J/\psi}$	$0.042\substack{+0.006\\-0.006}$	$0.007\substack{+0.006\\-0.006}$	$0.013^{+0.006}_{-0.006}$	$0.046^{+0.006}_{-0.006}$	$0.061^{+0.007}_{-0.007}$
$F_L^{J/\psi}$	$0.446^{+0.003}_{-0.003}$	$0.434^{+0.003}_{-0.003}$	$0.430^{+0.002}_{-0.002}$	$0.443^{+0.003}_{-0.003}$	$0.490^{+0.005}_{-0.005}$

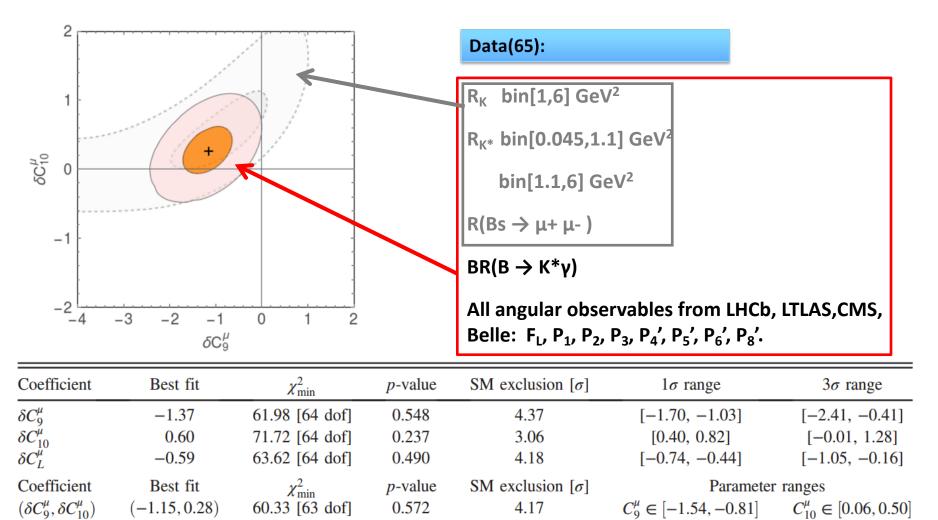

Indeed, P_{τ}^{D} is an excellent observable which can be measured in Belle II and upgraded LHCb.

Contents

1. Background


- **a.** $\mathbf{b} \rightarrow \mathbf{c} \mathbf{l} \mathbf{v} \operatorname{decay}$
- **b.** $b \rightarrow s \ell \ell decay$
- **2. Theoretical framework**
- **3. Results and Discussions**
 - **a.** $\mathbf{b} \rightarrow \mathbf{c} \mathbf{l} \mathbf{v} \operatorname{decay}$
 - **b.** $\mathbf{b} \rightarrow s \ell \ell \text{ decay}$
- 4. Summary and outlook

Predictions in the SM and in selected NP scenarios

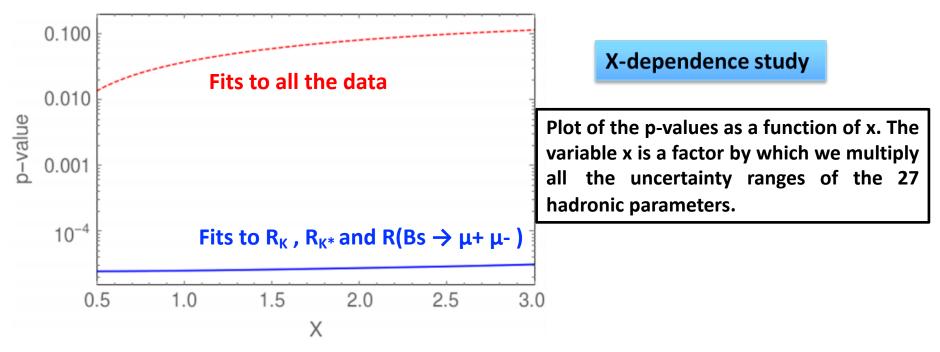

- □ Kinematics range for $B \rightarrow K^*$ | | decay is $q^2 \in [4m_l^2, (m_B m_{K^*})^2]$ GeV².
- **\Box** Only the operators O₉, O₁₀ can explain the experimental data.
- □ The blank kinematic range for $B \rightarrow K^*$ | | decay represents charmonium region which is dominated by long-distance (hadronic) effects.

Fits to R_K and R_{K^*} before the 2019 data

D Both δC_9 and δC_{10} have no boundary.

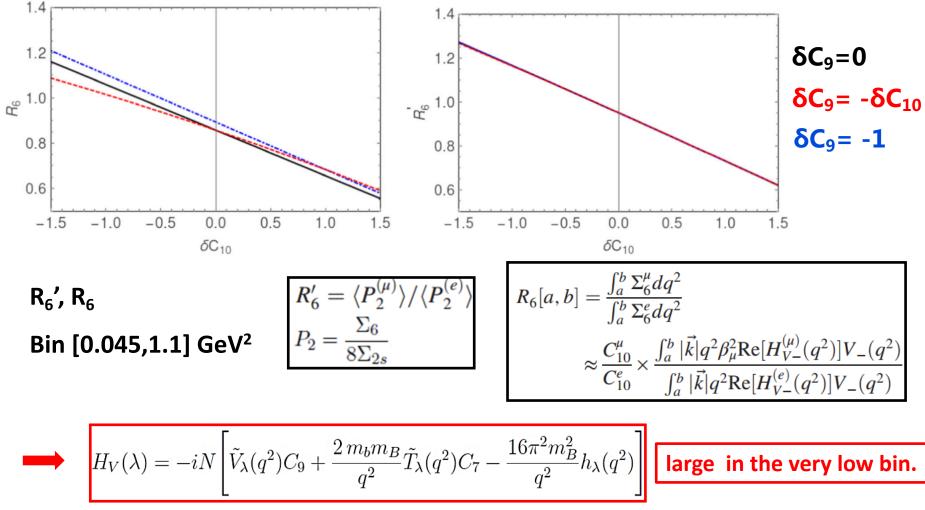
Fits to all the data before 2019

\Box The significance of the SM exclusion in the fits is about 4σ .

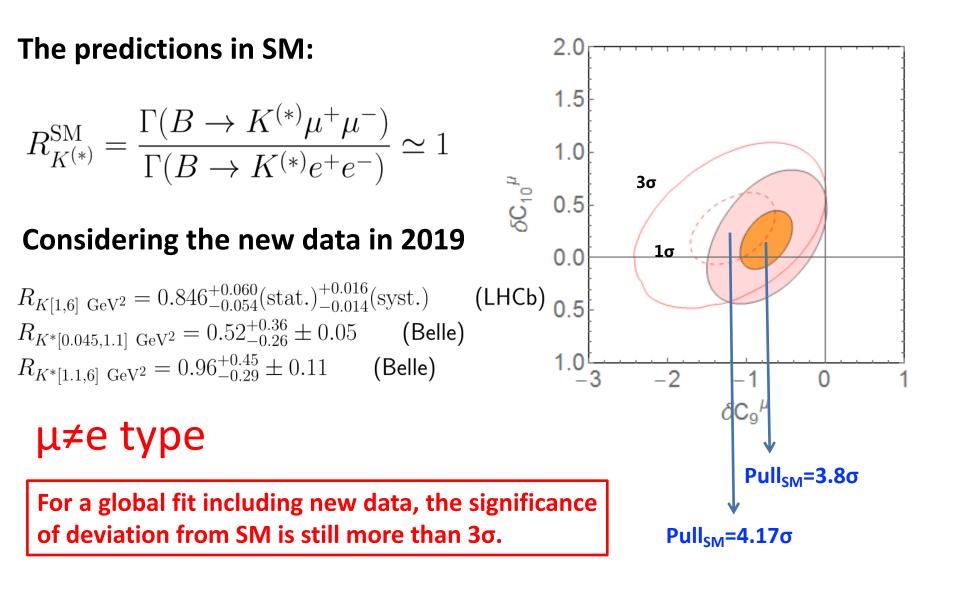

 \Box δC_9 is negative. However, the value of δC_{10} is poorly determined by the global fit.

Robustness of fits with respect to hadronic uncertainties

PRD93(1):014028,2016, JHEP, 05:043, 2013


27 hadronic parameters in low q²

QCDf(11)	$\mu, \xi_{\perp}(0), \xi_{\parallel}(0), f_{K^{\star}}, a1_{\perp}, a2_{\perp}(0), a1_{\parallel}(0), a2_{\parallel}(0), \omega_{0}, r_{\perp}, r_{\parallel}$
Power Corrections(8)	$V_{-}(a _{\max}), V_{-}(b _{\max}), V_{+}(a _{\max}), V_{+}(b _{\max}), T_{+}(b _{\max}), V_{0}(b _{\max}), T_{0}(a _{\max}), T_{0}(b _{\max$
Charm contributions(8)	$h_{-} _{c\bar{c}}(a _{\max}), h_{-} _{c\bar{c}}(b _{\max}), \phi_{-} _{c\bar{c}}, h_{+} _{c\bar{c}}(a _{\max}), h_{+} _{c\bar{c}}(b _{\max}), \phi_{+} _{c\bar{c}}, h_{0} _{c\bar{c}}, \phi_{0} _{c\bar{c}}$


The results fitting to R_K , R_{K^*} and $R(Bs \rightarrow \mu + \mu -)$ are available but only three observable cannot constrain δC_9 .

Constructing an observable only sensitive to C₁₀

These constructed observables are almost exclusively sensitive to C₁₀.
Experimentally, these observables can be measured by LHCb and Belle.

Updating the global fit of $b \rightarrow s I I$ decay including 2019 data

Contents

1. Background

- **a.** $\mathbf{b} \rightarrow \mathbf{c} \mathbf{l} \mathbf{v} \operatorname{decay}$
- **b.** $b \rightarrow s \ell \ell decay$
- **2. Theoretical Framework**
- **3. Results and Discussions**
 - **a.** $b \rightarrow c l v decay$
 - **b.** $\mathbf{b} \rightarrow s \ell \ell \text{ decay}$

4. Summary and outlook

Summary b→clv

(1) Significance of the SM exclusion in our fits is more than 3σ .

- ② In addition to the known $Bc \rightarrow \tau v$ constraint, it is shown that the LHC monotau constraint excludes large regions of the parameter space.mFurthermore, it is shown that $F_L^{D^*}$ excludes the parameter space complementary with the LHC bounds.
- ③ We tested some new physics models using our parameter space.
- (4) We also found that the **T** polarization in the $B \rightarrow DTV$ decay is sensitive to the various new-physics scenarios which are favored by the current data.

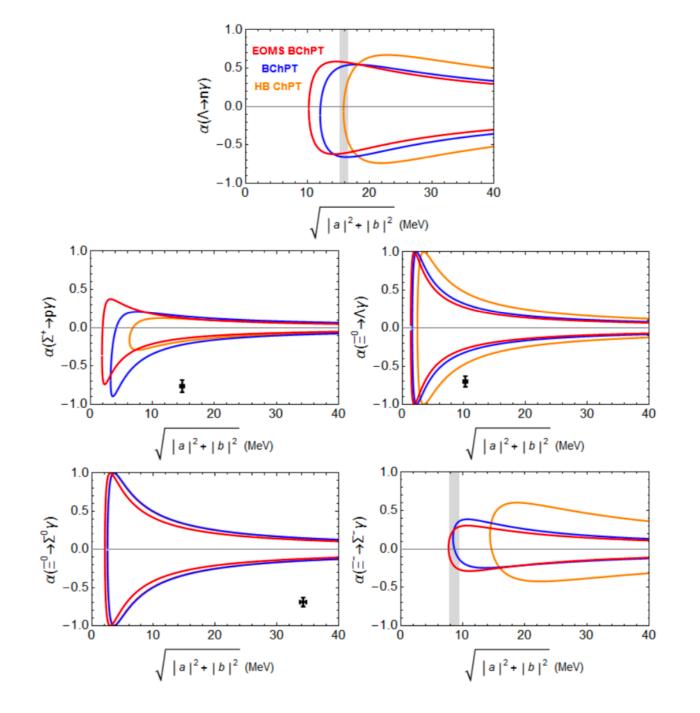
Summary b→sII

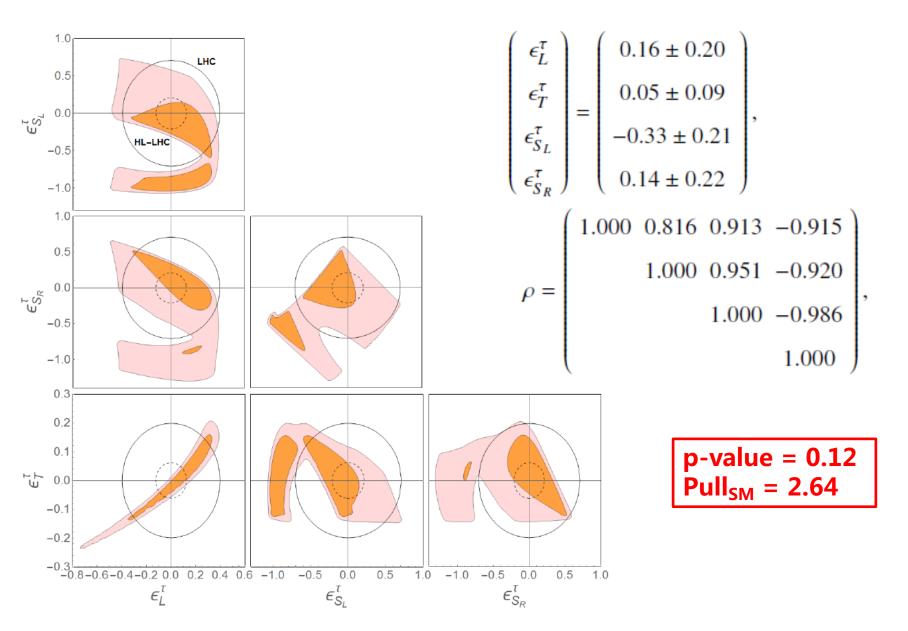
- (1) Only the operators O_9 , O_{10} can explain the experimental data.
- ② δC₁₀ is poorly determined by global fit but we also discuss some observables which are almost only sensitive to C₁₀. And it is feasible to measure these observations in future.
- ③ For a updated global fit including the 2019 data, the significance of the SM exclusion is still more than 3σ.

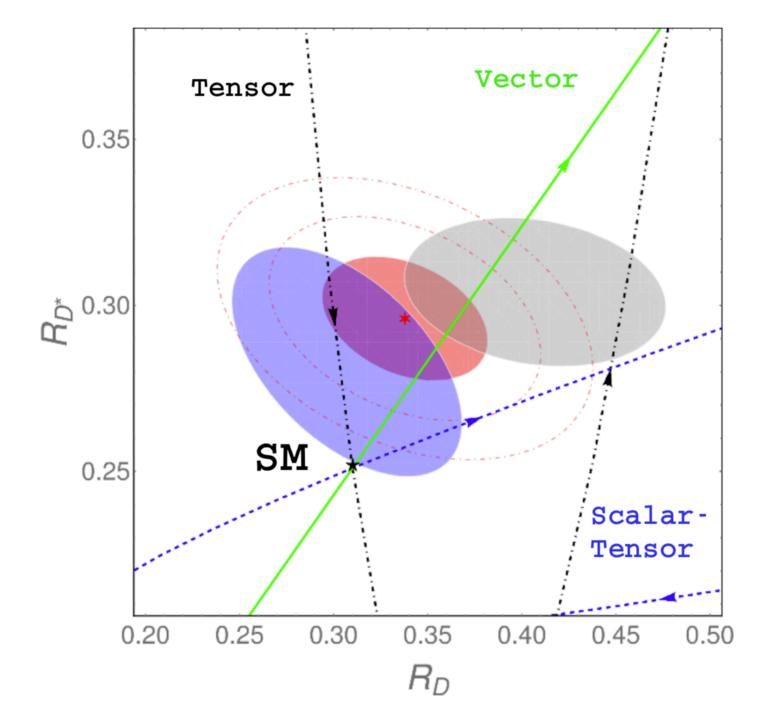
Outlook

- In the next few years, with the collection of more data at the B factories and improvement of experimental precision, we will continually update our analysis.
- In addition, new theoretical works on the theoretical side will be needed, to better access uncertainties.
- Meantime, it is also important to continue to find or construct new observables which are more sensitive to new physics.
- Moving to baryon/hyperon decays

$$\Sigma^+ \to p\ell\ell \qquad \Sigma^+ \to p\gamma$$




Thanks for your attention !


December 15, 2019

Backup slides

4D global fit for $b \rightarrow c \mid v \ decay$

