

LFUV in charged-current $b ightarrow c \ell u_\ell$ decays: overview

Xin-Qiang Li

Central China Normal University

李新强

Talk given at the 1st symposium on LHCb frontier physics, Beijing 2019/12/15

Outline

Introduction

Theoretical tools for B physics

LFUV in $b \to c \ell \nu_\ell$ decays

NNLO correction to 2-body hadronic decays

Conclusion

Why interested in B physics:

► Why study B physics: three main motivations;

operator product expansion; various effective field theories;

factorization theorems;

Deepen our understanding of strong interactions both the pert. and non-pert. aspects QCD.

Test and probe the internal hadronic structure in B-hadron and its decay products.

theoretical and phenomenological

input for other hadron processes;

B physics experiments:

► Dedicated heavy flavour experiments: BaBar, Belle, LHCb, Belle-II

美国斯坦福直线加速器上的BaBar

日本高能加速器上的Belle

大型强子对撞机上的LHCb

日本超级高能加速器的Belle-II

 Currently: LHCb @ LHC, Belle-II @ SuperKEKB, designed to find NP beyond the SM of particle physics; [R. Aaij et al., 1208.3355; E. Kou et al., 1808.10567]

Evolution in quark flavour physics:

• CKM unitarity triangle: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* \equiv 0$

► Thanks to both exp. and theo. progress, we are now entering a promising precision flavour era!

Current status of B physics:

The CKM mechanism of flavor & CP violation well established!; [UTfit, http://utfit.org/UTfit; CKMfitter, http://ckmfitter.in2p3.fr]

 Information on the UT sides and angles from both tree- and loopinduced processes well consistent;

► The SM source of CP violation should be the dominant one!

Current status of B physics:

- ► Remember: O(15% ~ 20%) NP contributions to most processes still allowed by data;
- Several intriguing tensions do observed, might be BSM signals?

 $R(D^{(*)})$ anomalies, NNLO correction to 2-body hadronic B decays

- † all of them not yet conclusive: theo. uncertainties or exp. fluctuations?
- † except for theo. cleanest modes, more cross-checks needed;
- † exp. measurements of related observables needed;
- † indep. theory and lattice calculations needed;

How to describe B-hadron weak decays:

► At the quark level: B-hadron weak decays mediated by weak charged-current J^µ_{CC} coupled to W[±];

$$\mathcal{L}_{\rm CC} = -\frac{g}{\sqrt{2}} J^{\mu}_{\rm CC} W^{\dagger}_{\mu} + \text{h.c.}, \quad J^{\mu}_{\rm CC} = (\bar{u}_{\rm L}, \bar{c}_{\rm L}, \bar{t}_{\rm L}) \gamma^{\mu} \frac{V_{\rm CKM}}{V_{\rm CKM}} \begin{pmatrix} d_{\rm L} \\ s_{\rm L} \\ b_{\rm L} \end{pmatrix}$$

 \hookrightarrow $V_{
m CKM}$: describes flavor violation, and very predictive, especially for CPV!

In the real world: no free quarks due to confinement; quarks always confined inside hadrons through soft-gluon exchanges;

 \hookrightarrow In B physics, simple weak decays overshadowed by complex strong interactions!

Typical features for B-hadron weak decays:

Hadronic matrix elements for B-hadron weak decays:

• How to evaluate $\langle f | \mathcal{O}_i | B \rangle$: $\langle 0 | \mathcal{O}_i | B \rangle$, $\langle \pi | \mathcal{O}_i | B \rangle$, $\langle \pi \pi | \mathcal{O}_i | B \rangle$, $\langle \bar{B} | \mathcal{O}_i | B \rangle$;

Quark-hadron duality, Heavy-quark mass expansion, HQE, OPE, Effective theories, Factorization, Approximate symmetries Lattice QCD, LCSR, ...

Inclusive decays $B \to X_s \gamma, B \to X_s \ell^+ \ell^ B \to X_{\ell} \nu, B \to X_{\ell} \nu$
 Exclusive decays
 Increasingly

 $B_s \rightarrow \mu^+ \mu^- \rightarrow \langle 0 | \mathcal{O} | B_s \rangle$ $B_s \rightarrow \pi^+ \mu^- \rightarrow \langle 0 | \mathcal{O} | B_s \rangle$
 $B \rightarrow \overline{B} \operatorname{mixing} \rightarrow \langle B | \mathcal{O} | \overline{B} \rangle$ $B \rightarrow \pi l \nu \rightarrow \langle \pi | \mathcal{O} | B \rangle$
 $B \rightarrow \pi \pi \rightarrow \langle \pi \pi | \mathcal{O} | B \rangle$

• $\langle M_1 M_2 | \mathcal{O}_i | B \rangle$: not yet possible in lattice QCD;

 dynamical approaches based on factorization theorems: PQCD, QCDF, SCET, ...; [Keum, Li, Sanda, Lü, Yang '00;

Beneke, Buchalla, Neubert, Sachrajda, '00;

Bauer, Flemming, Pirjol, Stewart, '01]

 (approximate) symmetries of QCD: Isospin, U-Spin, V-Spin, and flavor SU(3) symmetries, ...;
 [Zeppenfeld, '81;

London, Gronau, Rosner, Chiang, Cheng et al.]

Hadronic matrix elements for B-hadron weak decays:

 $\blacktriangleright \langle M | \bar{c} \gamma^{\mu} b | B \rangle:$

[FLAG: http://flag.unibe.ch/]

 $\blacktriangleright \langle 0 | \bar{q} \gamma^{\mu} \gamma_5 u | B_q \rangle:$ [FLAG: http://flag.unibe.ch/]

R(D) and $R(D^*)$ anomalies:

► BaBar 2012 results:

Citations (749) Files Plots

BaBar, 1205.5442, 1303.0571

Evidence for an excess of $ar{B} o D^{(st)} au^- ar{ u}_ au$ decays

BaBar Collaboration (J.P. Lees et al.) 显示全部 364 名作者

May 2012 - 8 pages

$$R(D^{(*)})\equiv rac{{
m Br}(ar B o D^{(*)} au^-ar
u_ au)}{{
m Br}(ar B o D^{(*)} \ell^-ar
u_\ell)}$$

Phys.Rev.Lett. 109 (2012) 101802 DOI: 10.1103/PhysRevLett.109.101802 BABAR-PUB-12-012, SLAC-PUB-15028 e-Print: arXiv:1205.5442 [hep-ex] | PDF Experiment: SLAC-PEP2-BABAR

Abstract (arXiv)

Based on the full BaBar data sample, we report improved measurements of the ratios $R(O(^{-})) = B(B - D(^{-}) Tau (Nu) B(B - D(^{-}) Tau (Nu)) B(B -$

References (48) Citations (618) Files Plots

Measurement of an Excess of $ar{B} o D^{(*)} au^- ar{ u}_ au$ Decays and Implications for Charged Higgs Bosons

BaBar Collaboration (J.P. Lees et al.) 显示全部 341 名作者

Mar 3, 2013 - 30 pages

Phys.Rev. D88 (2013) no.7, 072012 (2013-10-31) DOI: 10.1103/PhysRevD.88.072012 BABAR-PUB-13-001, SLAC-PUB-15381 e-Print: arXiv:1303.0571 [hep-x] | PDE Experiment: SLAC-PEP2-BABAR

Abstract (APS)

R(D) and $R(D^*)$ anomalies:

Belle and LHCb results: [Belle, 1507.03233, 1607.07923, 1612.00529, 1709.00129, 1904.08794, 1910.05864; LHCb, 1506.08614, 1708.08856, 1711.02505]

► $R(D) = 0.340 \pm 0.027 \pm 0.013$; $R(D^*) = 0.295 \pm 0.011 \pm 0.008$.

R(D) and $R(D^*)$ anomalies:

► 2019 WA results:

[HFLAV: https://hflav.web.cern.ch/]

Key observations:

- ▶ R(D) and $R(D^*)$ anomalies: hint at LFUV, first signal of NP?
- Remember: LFU well tested in τ leptonic decays, EW sector, and light pseudoscalar-meson decays; [Bifani et al., 1809.06229]

$$\begin{array}{ll} g_{\mu}/g_{e} = 1.0018 \pm 0.0014 & \frac{\Gamma_{Z \to \mu^{+} \mu^{-}}}{\Gamma_{Z \to e^{+} e^{-}}} = 0.9974 \pm 0.0050 \\ g_{\tau}/g_{\mu} = 1.0011 \pm 0.0015 & \frac{2\Gamma_{W^{-} \to e^{-} \overline{\nu}_{\tau}}}{\Gamma_{W^{-} \to e^{-} \overline{\nu}_{\tau}}} = 1.066 \pm 0.025 \\ g_{\tau}/g_{e} = 1.0030 \pm 0.0015 & \frac{2\Gamma_{W^{-} \to e^{-} \overline{\nu}_{\tau}}}{\Gamma_{W^{-} \to e^{-} \overline{\nu}_{e}} + \Gamma_{W^{-} \to \mu^{-} \overline{\nu}_{\mu}}} = 1.066 \pm 0.025 \\ \left(\frac{\Gamma_{K^{-} \to e^{-} \overline{\nu}_{e}}}{\Gamma_{K^{-} \to \mu^{-} \overline{\nu}_{\mu}}}\right)^{\text{SM}} = (2.477 \pm 0.001) \times 10^{-5} & \left(\frac{\Gamma_{\pi^{-} \to e^{-} \overline{\nu}_{e}}}{\Gamma_{\pi^{-} \to \mu^{-} \overline{\nu}_{\mu}}}\right)^{\text{exp}} = (1.2352 \pm 0.0001) \times 10^{-4} \\ \left(\frac{\Gamma_{K^{-} \to e^{-} \overline{\nu}_{e}}}{\Gamma_{K^{-} \to \mu^{-} \overline{\nu}_{\mu}}}\right)^{exp} = (2.488 \pm 0.009) \times 10^{-5} & \left(\frac{\Gamma_{\pi^{-} \to e^{-} \overline{\nu}_{e}}}{\Gamma_{\pi^{-} \to \mu^{-} \overline{\nu}_{\mu}}}\right)^{exp} = (1.230 \pm 0.004) \times 10^{-4} \end{array}$$

If confirmed, LFU violated between the 3rd and the first two generations, and also only in B decays!

What should we do:

► $B \rightarrow D^{(*)} \tau \nu_{\tau}$ decays: tree-level processes, mediated by W^{\pm} in SM; massive τ makes them sensitive to other mediators like $W^{\prime\pm}$, H^{\pm} , LQs, ...;

► Check the SM predictions! [BGL vs CLN parametrizations of B → D^(*) FFs, Bigi/Gambino(/Schacht) '16 '17; Gambino/Jung/Schacht '19; ...]

data+lattice/LCSR+unitarity bounds+HQE to higher orders

	R(D)	R(Di [*])
D.Bigi, P.Gambino, Phys.Rev. D94 (2016) no.9, 094008 [arXiv:1606.08030 [hep-ph]]	0.299 ±	
	0.003	
F.Bernlochner, Z.Ligeti, M.Papucci, D.Robinson, Phys.Rev. D95 (2017) no.11, 115008 [arXiv:1703.05330	0.299 ±	0.257 ±
[hep-ph]]	0.003	0.003
D.Bigi, P.Gambino, S.Schacht, JHEP 1711 (2017) 061 [arXiv:1707.09509 [hep-ph]]		0.260 ±
		0.008
S.Jaiswal, S.Nandi, S.K.Patra, JHEP 1712 (2017) 060 [arXiv:1707.09977 [hep-ph]]	0.299 ±	0.257 ±
	0.004	0.005

► EM corrections to R(D) and $R(D^*)$ by 5% and 3%, for softphoton energy cut at 20-40 MeV; [Boer/Kitahara/Nisandzic, 1803.05881]

▶ Effective low-energy Lagrangian with scalar currents:

$$\mathcal{L}_{\mathsf{eff}} = -\frac{4G_F V_{q_u q_d}}{\sqrt{2}} \left[\bar{q}_u (g_L^{q_u q_d \ell} \mathcal{P}_L + g_R^{q_u q_d \ell} \mathcal{P}_R) q_d \right] [\bar{\ell} \mathcal{P}_L \nu_\ell]$$

• $R(D^{(*)})$ can be trivially explained, but not in the NFC 2HDMs!

• Constraints from other $b \rightarrow c \tau \nu$ observables:

Differential rates:

- compatible with SM and NP
- already now constraining, especially in $B \rightarrow D\tau\nu$
- "theory-dependence" of data needs addressing [Bernlochner+'17]

• Constraints from other $b \rightarrow c \tau \nu$ observables:

 $\text{Total width of } B_{c}: \quad \Gamma(B_{c}^{-} \to \tau^{-}\bar{\nu}_{\tau}) = \frac{G_{F}^{2}}{8\pi} |V_{cb}|^{2} f_{B_{c}}^{2} m_{B_{c}}^{3} \frac{m_{\tau}^{2}}{m_{B_{c}}^{2}} \left(1 - \frac{m_{\tau}^{2}}{m_{B_{c}}^{2}}\right)^{2} \left|C_{V} - C_{S} \frac{m_{B_{c}}^{2}}{m_{\tau}[m_{b}(\mu_{b}) + m_{c}(\mu_{b})]}\right|^{2} \left|C_{V} - C_{S} \frac{m_{B_{c}}^{2}}{m_{\tau}[m_{b}(\mu_{b}) + m_{c}(\mu_{b})}\right|^{2} \left|C_{V} - C_{S} \frac{m_{B_{c}}^{2}}{m_{\tau}[m_{b}(\mu_{b}) + m_{c}(\mu_$

• $B_c \rightarrow \tau \nu$ is an obvious $b \rightarrow c \tau \nu$ transition • not measurerable in foreseeable future

• can oversaturate total width of $B_c!$ [X.Li+'16]

 Excludes second real solution in Δ^τ_{cb} plane (even scalar NP for R(D^{*})? [Alonso+'16, Akeroyd+'17])

► Global fits with scalar NP:

$$\mathcal{L}_{\mathsf{eff}} = -\frac{4G_F}{\sqrt{2}} \, V_{q_u q_d} \left[\bar{q}_u \left(g_L^{q_u q_d \ell} \, \mathcal{P}_L + g_R^{q_u q_d \ell} \, \mathcal{P}_R \right) q_d \right] \left[\bar{\ell} \mathcal{P}_L \nu_\ell \right]$$

Scalar
Form Factors
$$\begin{cases}
\delta R(D) \iff \delta_{cb}^{\ell} \equiv (g_L^{cb\ell} + g_R^{cb\ell}) \frac{(m_B - m_D)^2}{m_\ell (\bar{m}_b - \bar{m}_c)} \\
\delta R(D^*) \iff \Delta_{cb}^{\ell} \equiv (g_L^{cb\ell} - g_R^{cb\ell}) \frac{m_B^2}{m_\ell (\bar{m}_b + \bar{m}_c)}
\end{cases}$$

b

► The LQ model: one single scalar LQ with $M_{\phi} \sim 1$ TeV and $(\mathbf{3}, \mathbf{1}, -\frac{1}{3})$ added to SM; [M. Bauer and M. Neubert, 1511.01900]

$$\mathcal{L}_{\phi} = (D_{\mu}\phi)^{\dagger} D_{\mu}\phi - M_{\phi}^{2} |\phi|^{2} - g_{h\phi} |\Phi|^{2} |\phi|^{2}$$

$$+\,\bar{Q}^c\boldsymbol{\lambda}^L i\tau_2 L\,\phi^*+\bar{u}_R^c\,\boldsymbol{\lambda}^R e_R\,\phi^*+{\rm h.c.}\,,$$

 φ interactions with fermions: rotating from the weak to the mass basis for quarks and charged leptons, to get L^φ_{int};

$$\mathcal{L}_{int}^{\phi} = \bar{u}_{L}^{c} \lambda_{ul}^{L} l_{L} \phi^{*} - \bar{d}_{L}^{c} \lambda_{d\nu}^{L} \nu_{L} \phi^{*} + \bar{u}_{R}^{c} \lambda_{ul}^{R} l_{R} \phi^{*} + \text{h.c.},$$

$$\overset{\rho}{\underbrace{\qquad }} \underbrace{\qquad }_{\phi} \underbrace{\qquad }_{\psi} \underbrace{\qquad }_{\mu} \underbrace{\qquad }_{\psi} \underbrace{\qquad }_{\psi}$$

► Both tree- and loop-level $(\bar{u}_i d_j)(\bar{\nu}\ell)$, $(\bar{u}_i u_j)(\ell^+ \ell^-)$ and $(\bar{d}_i d_j)(\bar{\nu}\nu)$ generated; $\hookrightarrow \bar{B} \to D^{(*)} \tau \bar{\nu}_{\tau}, B_c^- \to \tau^- \bar{\nu}_{\tau}(\gamma), D^0 \to \mu^+ \mu^-, D^+ \to \pi^+ \mu^+ \mu^-, B \to X_s \nu \bar{\nu}, B \to K^{(*)} \nu \bar{\nu}, K \to \pi \nu \bar{\nu}, (g-2)_{\mu};$ [Bauer/Neubert, 1511.01900]

• \mathcal{H}_{eff} for $b \to c \tau \nu_{\tau}$ transitions: after integrating out ϕ ;

$$\begin{aligned} \mathcal{H}_{\text{eff}} = & \frac{4G_F}{\sqrt{2}} V_{cb} \left[C_V(M_\phi) \, \bar{c} \gamma_\mu P_L b \, \bar{\tau} \gamma^\mu P_L \nu_\tau + C_S(M_\phi) \, \bar{c} P_L b \, \bar{\tau} P_L \nu_\tau \right. \\ & \left. - \frac{1}{4} C_T(M_\phi) \, \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \right] \end{aligned}$$

▶ C_V , C_S , C_T : the WCs at the matching scale $\mu = M_{\phi}$;

$$C_V(M_{\phi}) = 1 + \frac{\lambda_{b\nu_{\tau}}^L \lambda_{c\tau}^{L*}}{4\sqrt{2}G_F V_{cb} M_{\phi}^2} , \quad C_S(M_{\phi}) = C_T(M_{\phi}) = -\frac{\lambda_{b\nu_{\tau}}^L \lambda_{c\tau}^{R*}}{4\sqrt{2}G_F V_{cb} M_{\phi}^2}$$

► Four best-fit solutions for $R(D^{(*)})$ along with acceptable q^2 spectra: $M_{\phi} = 1$ TeV; [M. Freytsis, Z. Ligeti, J. T. Ruderman, 1506.08896]

$$(\lambda_{b\nu_{\tau}}^{L}\lambda_{c\tau}^{L*},\lambda_{b\nu_{\tau}}^{L}\lambda_{c\tau}^{R*}) = (C_{S_{R}}^{\prime\prime},C_{S_{L}}^{\prime\prime}) = \begin{cases} (0.35, -0.03), P_{A} \\ (0.96, 2.41), P_{B} \\ (-5.74, 0.03), P_{C} \\ (-6.34, -2.39), P_{D} \end{cases}$$

► Solution P_A: explain in a natural way R(D^(*)), R(K) and (g-2)_µ, while satisfying other constraints without fine-tuning;
[Bauer and Neubert, 1511.01900]

One Leptoquark to Rule Them All: A Minimal Explanation for $R_{D^{(*)}}$, R_K and $(g-2)_{\mu}$

Martin Bauer^a and Matthias Neubert^{b,c}

^a Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany ^bPRISMA Cluster of Excellence & MITP, Johannes Gutenberg University, 55099 Mainz, Germany ^cDepartment of Physics & LEPP, Cornell University, Ithaca, NY 14853, U.S.A.

We show that by adding a single new scalar particle to the Standard Model, a TeV-scale leptoquark with the quantum numbers of a right-handed down quark, one can explain in a natural way three of the most striking anomalies of particle physics: the violation of lepton universality in $\vec{B} \to \vec{R} \ell^+ \ell^-$ decays, the enhanced $\vec{B} \to D^{(*)} \tau \bar{\nu}$ decay rates, and the anomalous magnetic moment of the muon. Constraints from other precision measurements in the flavor sector can be satisfied without fine-tuning. Our model predicts enhanced $\vec{B} \to \vec{K}^{(*)} \nu \bar{\nu}$ decay rates and a new-physics contribution to $B_s - B_s$ mixing close to the current central fit value.

• Question: these four best-fit solutions can be discriminated from each other using other processes mediated by the same quark-level $b \rightarrow c\tau\nu_{\tau}$ transition?

 \hookrightarrow in addition to $\bar{B} \to D^{(*)} \tau \bar{\nu}_{\tau}$, we examined the scalar LQ effects on $B_c^- \to \tau^- \bar{\nu}_{\tau}$, $B_c^- \to \gamma \tau^- \bar{\nu}_{\tau}$ and $B \to X_c \tau \bar{\nu}_{\tau}$ decays.

▶ Decay width of $B_c^- \rightarrow \tau^- \bar{\nu}_{\tau}$ with LQ-exchanged contribution:

$$\Gamma(B_c^- \to \tau^- \bar{\nu}_\tau) = \frac{G_F^2}{8\pi} |V_{cb}|^2 f_{B_c}^2 m_{B_c}^3 \frac{m_\tau^2}{m_{B_c}^2} \left(1 - \frac{m_\tau^2}{m_{B_c}^2}\right)^2 \\ \left| C_V - C_S \frac{m_{B_c}^2}{m_\tau [m_b(\mu_b) + m_c(\mu_b)]} \right|^2$$

Numerical results with the four best-fit solutions:

$$\Gamma(B_c^- \to \tau^- \bar{\nu}_{\tau}) = \begin{cases} 2.22 \times 10^{-2} \,\Gamma_{B_c}, & \text{SM} \\ 2.45 \times 10^{-2} \,\Gamma_{B_c}, & P_A \\ & 1.33 \,\Gamma_{B_c}, & P_B \\ 2.39 \times 10^{-2} \,\Gamma_{B_c}, & P_C \\ & 1.31 \,\Gamma_{B_c}, & P_D \end{cases}$$

► Conclusion: P_B and P_D already excluded by $\Gamma(B_c^- \to \tau^- \bar{\nu}_{\tau})$; \hookrightarrow needs only consider P_A and P_C ! [Alonso+'16, Akeryd+'17, Blanke+'19]

Model-independent analysis: Hu/Li/Yang, 1810.04939

• Most general $SU(3)_C \times U(1)_Q$ -invariant \mathcal{L}_{eff} at m_b scale:

$$\begin{split} \mathcal{L}_{\mathsf{SM}}^{(6)} &= -\frac{4G_F}{\sqrt{2}} \, V_{cb} \, \mathcal{O}_{V_L} + \mathsf{H.c.}, \\ \mathcal{L}_{\mathsf{NP}}^{(6)} &= -\frac{4G_F}{\sqrt{2}} \, V_{cb} \left(C_{V_L} \mathcal{O}_{V_L} + C_{V_R} \mathcal{O}_{V_R} + C_{S_L} \mathcal{O}_{S_L} + C_{S_R} \mathcal{O}_{S_R} + C_T \mathcal{O}_T \right) + \mathsf{H.c.}, \\ 其中 \end{split}$$

$$\begin{aligned} \mathcal{O}_{V_{L(R)}} &= (\bar{c}\gamma^{\mu}P_{L(R)}b)(\bar{\tau}\gamma_{\mu}P_{L}\nu_{\tau}),\\ \mathcal{O}_{S_{L(R)}} &= (\bar{c}P_{L(R)}b)(\bar{\tau}P_{L}\nu_{\tau}),\\ \mathcal{O}_{T} &= (\bar{c}\sigma^{\mu\nu}P_{L}b)(\bar{\tau}\sigma_{\mu\nu}P_{L}\nu_{\tau}). \end{aligned}$$

Observables considered:

$$\triangleright \quad R(D) \text{ and } R(D^*); \qquad \qquad \triangleright \quad R(X_c) = \frac{\Gamma(B \to X_c \tau \nu_{\tau})}{\Gamma(B \to X_c \ell \nu_{\ell})};$$

- $\triangleright \ d\Gamma(B \to D^{(*)} \tau \nu_{\tau})/dq^2;$
 - $\triangleright \ \tau$ longitudinal polarization fraction $P_{\tau}(D^*)$.
- $\triangleright \ \mathcal{B}(B_c \to \tau \nu_{\tau}) \leq 10 \ (30)\%; \quad \triangleright \ D^* \text{ longitudinal polarization fraction } F_L^{D^*}.$

Model-independent analysis: Hu/Li/Yang, 1810.04939

Global fit results:

[Murgui, Penuelas, Jung, Pich, 1904.09311]

Excluded by $Br(B_c \rightarrow \tau v) < 10\%$

Main observations:

 \triangleright With $R(D^{(*)})$, $d\Gamma/dq^2$, and $\Gamma(B_c)$, three minima obtained;

 \triangleright The 3rd with large C_T disfavored by distributions, removed by $F_L^{D^*}$;

 \triangleright Central value of $F_L^{D^*}$ cannot be accommodated, exp. confirmation!

Model-independent analysis: Hu/Li/Yang, 1810.04939

Possible NP mediators:

Murgui, Penuelas, Jung, Pich, 1904.09311

	Min 1	Min 2	Min 3	Min 1	Min 2	Min 3				
$\mathcal{B}(B_c o au u)$		10%		30%						
$\chi^2_{\rm min}/{\rm d.o.f.}$	34.1/53	37.5/53	58.6/53	33.8/53	36.6/53	58.4/53				
C_{V_L}	$0.17\substack{+0.13 \\ -0.14}$	$0.41^{+0.05}_{-0.06}$	$-0.57^{+0.23}_{-0.24}$	$0.19^{+0.13}_{-0.17}$	$0.42^{+0.06}_{-0.06}$	$-0.54^{+0.23}_{-0.24}$				
C_{S_R}	$-0.39\substack{+0.38\\-0.15}$	$-1.15\substack{+0.18\\-0.08}$	$0.06\substack{+0.59\\-0.19}$	$-0.56^{+0.49}_{-0.17}$	$-1.33\substack{+0.25\\-0.08}$	$-0.14\substack{+0.69\\-0.18}$				
C_{S_L}	$0.36\substack{+0.11\\-0.35}$	$-0.34^{+0.12}_{-0.19}$	$0.64^{+0.13}_{-0.49}$	$0.54^{+0.10}_{-0.46}$	$-0.16\substack{+0.13\\-0.22}$	$0.81^{+0.12}_{-0.58}$				
C_T	$0.01\substack{+0.06\\-0.05}$	$0.12\substack{+0.04\\-0.04}$	$0.32^{+0.02}_{-0.03}$	$0.01^{+0.07}_{-0.05}$	$0.12^{+0.04}_{-0.04}$	$0.32^{+0.02}_{-0.03}$				

• Min 1 \mathcal{O}_{V_L}

- W' boson, $M'_W \sim 0.2$ TeV ruled out by direct searches
- Leptoquarks: $U_3 \sim (3,3,2/3)$
- Scalar leptoquarks: $S_1 \sim (\bar{3},3,1/3)$
- Min 2 $\mathcal{O}_{S_{L,R}}, \mathcal{O}_{V_L}, \mathcal{O}_T$
 - Combination of several candidates, e.g, leptoquark $S_1 \sim (\bar{3}, 3, 1/3)$ and scalar boson $H_2 \sim (1, 21/3)$
- Min 3 $\mathcal{O}_{S_L}, \mathcal{O}_T$
 - Scalar leptoquarks $R_2 \sim (3,2,7/6)$ or $S_1 \sim (ar{3},1,1/3)$

► Quite useful for specific UV-complete NP model constructions.

Model-independent EFT analysis: Hu/Li/Yang, 1810.04939

- All available collider data show no NP signals up to TeV scale!
- SMEFT: parametrize any NP effects by higher-dim. operators; [Buchmuller, Wyler, '86; Grzadkowski, Iskrzynski, Misiak, Rosiek, 1008.4884]

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}}^{(4)} + \frac{1}{\Lambda} C_{ll\varphi\varphi} Q_{ll\varphi\varphi} + \frac{1}{\Lambda^2} \sum_i C_i Q_i + \mathcal{O}\left(\frac{1}{\Lambda^3}\right)$$

与 $b \rightarrow c\tau \nu_{\tau}$ 过程最相关的六维算符

$$\begin{split} Q_{lq}^{(3)} &= (\bar{l}\gamma_{\mu}\tau^{I}l)(\bar{q}\gamma^{\mu}\tau^{I}q), \qquad \qquad Q_{ledq} &= (\bar{l}^{j}e)(\bar{d}q^{j}), \\ Q_{lequ}^{(1)} &= (\bar{l}^{j}e)\varepsilon_{jk}(\bar{q}^{k}u), \qquad \qquad \qquad Q_{lequ}^{(3)} &= (\bar{l}^{j}\sigma_{\mu\nu}e)\varepsilon_{jk}(\bar{q}^{k}\sigma^{\mu\nu}u) \end{split}$$

- A → µEW, 重整化群演化[A. Manohar et al., Dimension-Six Renormalization Group 采用三圈的 Equations. http://einstein.ucsd.edu/smeft/]
- µEW, 匹配[J. Aebischer et al., JHEP05(2016)037; A. Manohar et al., JHEP03(2018)016]

$$C_{VL} = -\frac{\sqrt{2}}{2G_F\Lambda^2} \sum_n \left[C_{lq}^{(3)} \right]_{332n} \frac{V_{nb}}{V_{cb}}, \quad C_{SR} = -\frac{\sqrt{2}}{4G_F\Lambda^2} \frac{1}{V_{cb}} \left[C_{ledq} \right]_{3323}^*,$$

$$C_{S_L} = -\frac{\sqrt{2}}{4G_F\Lambda^2} \sum_n \left[C_{lequ}^{(1)} \right]_{33n2}^* \frac{V_{nb}}{V_{cb}}, \quad C_T = -\frac{\sqrt{2}}{4G_F\Lambda^2} \sum_n \left[C_{lequ}^{(3)} \right]_{33n2}^* \frac{V_{nb}}{V_{cb}},$$

● μ_{EW} → μ_b, 重整化群演化[J. Aebischer, et al., JHEP09(2017)158; E.E Jenkins et al., JHEP01(2018)084]

$$\begin{split} & \underset{M \neq j}{\operatorname{Sup}} \operatorname{Corb} u^{---} \max_{[k] \neq j} \operatorname{Evol} \operatorname{CD} y_{[\ell]}^{(3)}, \\ & C_{V_{\ell}}(\mu_{k}) = 0, \\ & C_{V_{\ell}}(\mu_{k}) = 0, \\ & C_{S_{\ell}}(\mu_{k}) = -1.257 \begin{bmatrix} C_{\ell}^{(1)} \\ C_{\ell}(\mu_{k}) \end{bmatrix}_{3332} (\Lambda) + 0.2076 \begin{bmatrix} C_{\ell}^{(1)} \\ C_{\ell}(\mu_{k}) \end{bmatrix}_{3332} (\Lambda), \\ & C_{S_{\ell}}(\mu_{k}) = -1.254 \begin{bmatrix} C_{\ell}(\mu_{k}) \\ C_{\ell}(\mu_{k}) \end{bmatrix}_{3332} (\Lambda) - 0.6059 \begin{bmatrix} C_{\ell}^{(3)} \\ C_{\ell}^{(2)} \end{bmatrix}_{3332} (\Lambda) \end{split}$$

Model-indep. EFT analysis: Hu/Li/Yang, 1810.04939

► Fit results with a single WC:

29/41

Model-independent EFT analysis: Hu/Li/Yang, 1810.04939

• With two WCs: green, $R(D^{(*)})$; cyan, $R(J/\Psi)$; blue, $R(X_c)$; purple, $\Gamma(B_c)$

Model-independent EFT analysis: Hu/Li/Yang, 1810.04939

▶ How to discriminate 11 most optimal scenarios?

Obs.		S1, S2		S3	S3 5		S6, S7			S8, S9		S10		S11	
R(D)	0.	3625(40)	0.	0.3986(42)		0.4016(46)		0.4007(45)		0.3956(43)		0.4015(48)		4015(48)	
$A_{\rm FB}(D)$	0	.3597(3)	0.4297(4)		0.3485(4)		0.3504(4)		(0.3695(4)		0.3130(5)		3072(4)	
$P_{\tau}(D)$	0.	3222(22)	0.0280(28)		0.4087(21)		0.3956(21)		0	0.3016(23)		0.5275(17)		5364(17)	
$\mathcal{X}_1(D)$	0.	2465(27)	0.2850(30)		0.2708(30)		0.2706(30)		0	0.2709(29)		0.2636(31)		2624(31)	
$X_2(D)$	0.	1161(13)	0.	0.1137(12)		0.1308(16) 0.130		1302(16)	0.1247(14)		0.1379(17)		0.1391(18)		
$\mathcal{X}_3(D)$	0.	2397(29)	0.2049(21)		0.2829(35)		0.	0.2796(34) 0.		.2574(30)		0.3067(39)		3085(39)	
$\mathcal{X}_4(D)$	0.	1229(12)	0.1937(22)		0.1187(12)		0.	0.1211(12)		0.1381(14)		0.0949(9)		0931(9)	
$R(D^*)$	0.	3119(35)	0.3042(43)		0.3049(35)		0.3050(35)		0	0.3057(35)		0.3057(34)		0.3058(35)	
$A_{\rm FB}(D^*)$	-0	.0559(22)	0.0	0312(15)	-0	.0468(22)	-0	0.0634(22)	-	0.0827(23)	C	0.0010(20)	-0	.0280(20)	
$P_{\tau}(D^*)$	-0	.5039(37)	0.1808(33)		-0.4867(40)		-0.5176(33)		_	-0.5173(42)		-0.4432(37)		-0.4973(21)	
$P_{\rm L}(D^*)$	0.	4552(31)	0.	1415(13)	0.4614(32)		0.4501(30)		0.4612(31)		0.4556(32)		0.4	4280(27)	
$R(J/\psi)$		$0.3012^{+0.0}_{-0.0}$	$0.1980^{+0.0}_{-0.0}$		0215 0167	$^{215}_{167}$ 0.2939 $^{+0.0073}_{-0.0066}$		$0.2949^{+0.0069}_{-0.0064}$ 0.2		$0.2935^{+0.0080}_{-0.0069}$ 0.		$0.2953^{+0.0067}_{-0.0067}$	$^{67}_{064}$ 0.2971 $^{+0.00}_{-0.00}$.62 163
$R(\eta_c)$	$R(\eta_c) = 0.3412^{+0.0219}_{-0.0185}$		$^{219}_{185}$	$0.3159^{+0.0}_{-0.0}$	$59^{+0.0304}_{-0.0261}$ $0.3766^{+0.0}_{-0.0}$		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$^{16}_{81}$	${}^{6}_{1}$ 0.3780 ${}^{+0.032}_{-0.027}$		$\frac{24}{77}$ 0.3788 $^{+0.033}_{-0.028}$	
$R(X_c)$	$R(X_c) = 0.2381(40)$		0.2439(39(39) 0.2388(3		(9) 0.2391(39		0.2405(39))	0.2366(40)		0.2365(40)		
$\mathcal{B}(B_c \rightarrow \tau \nu)$)[%]	$2.87^{+0.2}_{-0.2}$	6 9	5.32^{+0}_{-0}	47 54	$5.36^{+0.4}_{-0.5}$	8 5	$1.29^{+0.1}_{-0.1}$	1 3	$3.27^{+0.29}_{-0.33}$		$8.02\substack{+0.71 \\ -0.82}$	7.	$68^{+0.68}_{-0.78} \times 1$	0

K. Adamczyk, B to semitauonic decays at Belle/Belle II, Talk given at CKM2018, <u>1903.03102</u>

 $F_L^{D^*} = 0.60 \pm 0.08 ({\rm stat}) \pm 0.04 ({\rm syst})$

 $(F_L^{D^*})_{\rm SM} = 0.457 \pm 0.010$

S3 can be distinguished from other ones.

distinguish the scenario S11 from the other ones.

Non-leptonic B decays:

- Motivations: important inputs for the CKM UT angles α , β and γ ;
- Main issue: how to evaluate precisely the hadronic matrix element $\langle M_1 M_2 | \mathcal{O}_i | \bar{B} \rangle$;
- \hookrightarrow 3 scales involved: m_b , $\sqrt{m_b\Lambda_{\rm QCD}}$, $\Lambda_{\rm QCD}$;
- \hookrightarrow 4 modes: hard, hard-collinear, collinear, soft;
- \hookrightarrow factorization: separating scales;

► QCDF: To leading power in 1/m_b, ⟨M₁M₂|O_i|B̄⟩ obeys the following factorization formula:
[Beneke, Buchalla, Neubert, Sachrajda, '99-'04]

$$\begin{split} \langle M_1 M_2 | \mathcal{O}_i | \bar{B} \rangle &\simeq m_B^2 F_+^{BM_1}(0) f_{M_2} \int du \ T_i^I(u) \phi_{M_2}(u) + (M_1 \leftrightarrow M_2) \\ &+ f_B f_{M_1} f_{M_2} \int d\omega dv du \ T_i^{II}(\omega, v, u) \phi_B(\omega) \phi_{M_1}(v) \phi_{M_2}(u) \\ &+ \mathcal{O}(1/m_b) \end{split}$$

QCDF approach:

► QCDF formula: Beneke, Buchal

Beneke, Buchalla, Neubert, Sachrajda, '99-'04

- A rigorous and systematic framework to all orders in α_s , but limited by $1/m_b$ corrections.
- Soft-collinear factorization proof more transparent in the SCET formalism; [Bauer, Flemming, Pirjol, Stewart, '01; Beneke, Chapovsky, Diehl, Feldmann, '02]

Status of QCDF/SCET:

• Status of the hard kernels $T^{I,II}$: [Bell/Beneke/Huber/Li, from '09]

Two hard-scattering kernels for each operator insertion: T' (vertex), T'' (spectator)

 $\langle M_1 M_2 | \mathcal{O}_i | B \rangle \simeq F^{BM_1} T_i' \otimes \phi_{M_2} + T_i'' \otimes \phi_B \otimes \phi_{M_1} \otimes \phi_{M_2}$

and two classes of topological amplitudes: "Tree", "Penguin".

• Status: 2-loop vertex and penguin amplitudes with all O_i insertions finished!

34 / 41

Two-loop Feynman diagrams for tree amplitudes:

► Two-loop non-fact. diagrams: **BBNS** '00 4a6a 7a ₩, totally 62 "non-factorizable" diagrams; \triangleright \triangleright vacuum polarization insertions in gluon propagators; \triangleright the one-loop counter-term insertions;

Two-loop Feynman diagrams for penguin amplitude:

Motivation for NNLO calculation:

- Motivation for these nontrivial NNLO calculations:
 - conceptually: check if factorization theorem still held at the NNLO? needed to check the reliability of the pert. expansion and reduce scale uncertainties.
 - \triangleright phenomenologically: strong phases are of $\mathcal{O}(\alpha_s)$ or of $\mathcal{O}(1/m_b)$, both of $\mathcal{O}(1/10)$, unclear whether direct CP dominated by short- or long-distance.
 - \hookrightarrow NNLO is only the LO correction, quite relevant for short-distance direct CP!
 - \triangleright exp. data driven: α_2 seems to be too small, and the $A_{CP}(\pi K)$ puzzle;
- For a 2-body decay, three topological amplitudes most relevant:

colour-allowed tree α_1

colour-suppressed tree α_2

QCD penguins α_4

Final numerical results:

• Numerical results for the tree amplitudes a_1 and a_2 :

$$a_1(\pi\pi) = 1.009 + [0.023 + 0.010i]_{\text{NLO}} + [0.026 + 0.028i]_{\text{NNLO}}$$

$$-\left[\frac{r_{\rm sp}}{0.445}\right] \left\{ \left[0.014\right]_{\rm LOsp} + \left[0.034 + 0.027i\right]_{\rm NLOsp} + \left[0.008\right]_{\rm tw3} \right\}$$
$$= 1.000^{+0.029}_{-0.069} + (0.011^{+0.023}_{-0.050})i$$

$$\begin{split} a_2(\pi\pi) &= 0.220 - [0.179 + 0.077\,i]_{\rm NLO} - [0.031 + 0.050\,i]_{\rm NNLO} \\ &+ \left[\frac{r_{\rm sp}}{0.445}\right] \left\{ [0.114]_{\rm LOsp} + [0.049 + 0.051i]_{\rm NLOsp} + [0.067]_{\rm tw3} \right\} \\ &= 0.240^{+0.217}_{-0.125} + (-0.077^{+0.115}_{-0.078})i \end{split}$$

• Large cancellation between LO and NLO for α_2 , particularly sensitive to NNLO;

NNLO to vertex and spectator terms separately significant, but tend to cancel!

Final numerical results:

• Numerical results for the leading penguin amplitudes a_4^p :

$$\begin{aligned} a_4^u(\pi\bar{K})/10^{-2} &= -2.87 - [0.09 + 0.09i]_{V_1} + [0.49 - 1.32i]_{P_1} \\ &- [0.32 + 0.71i]_{P_2, Q_{1,2}} + [0.33 + 0.38i]_{P_2, Q_{3-6,8}} \\ &+ \left[\frac{r_{sp}}{0.434}\right] \left\{ [0.13]_{LO} + [0.14 + 0.12i]_{HV} - [0.01 - 0.05i]_{HP} + [0.07]_{tw3} \right\} \\ &= (-2.12^{+0.48}_{-0.29}) + (-1.56^{+0.29}_{-0.15})i \\ a_4^c(\pi\bar{K})/10^{-2} &= -2.87 - [0.09 + 0.09i]_{V_1} + [0.05 - 0.62i]_{P_1} \end{aligned}$$

$$- [0.77 + 0.50i]_{P_2, Q_{1,2}} + [0.33 + 0.38i]_{P_2, Q_{3-6,8}} + \left[\frac{r_{sp}}{0.434}\right] \left\{ [0.13]_{LO} + [0.14 + 0.12i]_{HV} + [0.01 + 0.03i]_{HP} + [0.07]_{tw3} \right\} = (-3.00^{+0.45}_{-0.32}) + (-0.67^{+0.50}_{-0.39})i$$

Further detailed pheno. analyses for all 130 decay modes in progress.

Scale dependence of a_4^p on μ_b :

40 / 41

Conclusion and outlook

- High-luminosity frontier very complementary to high-energy frontier, especially for NP searches;
- ► Great progress achieved in both theo. and exp. sides for B physics, and also a very promising future (LHCb and Belle II, ···);
- CKM mechanism of flavor and CP violation well established; however, $15\% \sim 20\%$ NP effect in most FCNC processes often possible;
- ▶ LFUV observed in B decays might be the first hint of NP! \rightarrow hot topic in B physics!
- Non-trivial NNLO calculations in QCDF at leading power finished; NLO short-distance direct CP available.

Thank You for Your Attention!