Higgs Searches: A Status Report

Abdualazem Fadol

December 23, 2019

• Background Yields on the side-band

□ DiHiggs to Multilepton analysis

• Fixing the problem of splitting the channel

 \Box The signal for *RSH* is for $m_{4\ell} > 200 \text{ GeV}$;

 \Box A control region is defined by 130 $< m_{4\ell} <$ 190 GeV

	$qq \rightarrow ZZ$	gg ightarrow ZZ	ttZ	Z+Jets	tt	VVV	Observed	Expected
2µ2e	11.92±0.33	2.33±0.06	0.13±0.01	0.90±0.09	1.54±0.14	0.48±0.02	21.00±4.58	17.30±0.65
4 <i>e</i>	5.07±0.21	0.91±0.04	0.07±0.00	0.43±0.06	0.44±0.07	0.22±0.01	4.00±2.00	7.13±0.40
4 μ	8.21±0.27	1.45±0.05	0.06±0.00	0.46±0.06	0.19±0.05	0.31±0.02	10.00±3.16	10.68±0.45
4ℓ	25.19±0.47	4.69±0.08	0.26±0.01	1.79±0.13	2.17±0.17	1.01±0.03	35.00±5.92	35.11±0.89

3

Table: The expected yields of the background process in a control region defined by $130 < m_{4\ell} < 190$ GeV calculated from the state-of-the-art MC simulation with an integrated luminosity of 190 fb⁻¹. The observed number of events is calculated from Run 2 data at the side-band. The uncertainties included on the table are statistical uncertainty. The table show the result for the High Met 0 Central jet category

N^{central}

2.5

N_{b-jets}

m_{Z,} [GeV]

m_{Z,} [GeV]

Abdualazem | A Status Report

Update on $R \rightarrow SH \rightarrow 4\ell + E_T^{miss}$ analysis Kinematics of the 4-lepton on the control region

7

Kinematics of the 4-lepton on the control region

- □ Data/MC comparison on the side-band looks good;
- \Box But also shows us that we are missing a background process;
- □ So we will include the *WZ* background; jobs are submitted already;

Working on now ...

- \Box Working on the statistics;
- □ I managed to get a testing workspace for one category;
- □ The plan is to get at least one fit with the Asimov data before the end of the year;

DiHiggs to Multilepton analysis

	Non-Res	qq ightarrow ZZ	tīZ	tī	VVV	Total background
4ℓ	1757.97±61.79	1272.87±4.05	74.56±0.62	400.04±5.74	10.49±0.10	1757.96±10.52
Total charge = 0	1654.91±59.87	1238.84±3.99	66.10±0.58	317.33±5.12	9.79±0.10	1632.06±9.79
Trigger Match	1640.60±59.08	1202.70±3.94	65.56±0.58	296.34±4.95	9.75±0.10	1574.36±9.57
Iso FixedCutLoose	1268.06±52.69	1023.85±3.70	51.04±0.50	11.89±1.00	8.95±0.10	1095.73±5.29
$m_{\ell^+\ell^-}(SFOS) > 4 \text{ GeV}$	1182.34±50.83	846.44±3.44	46.97±0.48	11.21±0.97	8.18±0.09	912.80±4.98
b-jet-veto	1047.90±45.98	806.56±3.40	5.79±0.16	6.66±0.74	7.54±0.09	826.55±4.39
Efficiency	60%	63%	8%	2%	72%	47%

Table: The expected yields for non-resonant di-Higgs boson signal, and the total background calculated from the state-of-the-art MC simulation with an integrated luminosity of 36.2 fb^{-1} . The uncertainties included on the table are statistical uncertainty. The signal is normalised to the total number of background.

- \Box No lepton identifications, and $p_{\rm T}$ -requirement are applied;
- □ Soft requirements on lepton identification and p_T are already implemented on the production level, no?

 \Box Events with 4 ℓ , total charge equal zero, and η cut are selected;

 \Box For electrons: $|\eta^e| < 2.47$ excluding $1.37 < |\eta^e| < 1.52$; and

 \Box Muons: $|\eta^e| < 2.5$.

DiHiggs to Multilepton analysis

Events categorized depending on the SFOS lepton pairs;

10

- □ First category: $4e/4\mu/2\mu 2e \Rightarrow 2$ -SFOS;
- \Box Second category: $e\mu 2e/e\mu 2\mu \Rightarrow$ 1-SFOS;
- \Box Third category: 2(*e* μ) and SFSS \Rightarrow 0-SFOS;

□ The motivation: Because of the difference in background composition and statistics for each category.

DiHiggs to Multilepton analysis

	Non-Res	qq ightarrow ZZ	tīZ	tī	VVV	Total background
0-SFOS	833.32±45.29	686.36±3.19	27.18±0.37	115.19±3.09	4.59±0.07	833.32±6.72
Trigger Match	833.91±44.42	671.55±3.17	27.05±0.37	106.84±2.97	4.58±0.07	810.03±6.58
Iso FixedCutLoose	622.03±39.66	582.35±3.02	21.40±0.32	3.50±0.53	4.21±0.06	611.46±3.94
$m_{\ell^+\ell^-}(SFOS) > 4 \text{ GeV}$	622.03±39.66	582.35±3.02	21.40±0.32	3.50 ± 0.53	4.21±0.06	611.46±3.94
b-jet-veto	564.03±34.89	555.20±2.99	2.72±0.11	2.08±0.41	3.85±0.06	563.86±3.57
Efficiency	68%	81%	10%	2%	84%	68%
	Non-Res	qq ightarrow ZZ	tīZ	tī	VVV	Total background
1-SFOS	174.99±11.06	19.21±0.54	22.27±0.34	130.66±3.28	$2.85 {\pm} 0.06$	174.99±4.22
Trigger Match	171.32±10.96	18.33±0.53	22.04±0.34	122.94±3.18	2.84±0.06	166.15±4.10
Iso FixedCutLoose	135.43±9.67	11.25±0.38	16.91±0.29	5.49±0.69	2.61±0.05	36.27±1.42
$m_{\ell^+\ell^-}(SFOS) > 4 \text{ GeV}$	135.43±9.67	11.25±0.38	16.91±0.29	5.49 ± 0.69	2.61±0.05	36.27±1.42
b-jet-veto	120.13±9.06	10.68±0.37	2.03±0.10	3.27 ± 0.53	$2.42{\pm}0.05$	18.40±1.06
Efficiency	69%	55%	9%	3%	85%	11%
	Non-Res	qq ightarrow ZZ	tīZ	tī	VVV	Total background
2-SFOS	623.75±46.51	533.27±2.33	16.65±0.29	71.48±2.43	$2.35 {\pm} 0.05$	623.75±5.10
Trigger Match	616.13±46.28	512.82±2.29	16.47±0.29	66.56±2.35	2.33±0.05	598.18±4.97
Iso FixedCutLoose	497.10±41.71	430.25±2.10	12.73±0.25	2.90±0.48	2.13±0.04	448.00±2.88
$m_{\ell^+\ell^-}(SFOS) > 4 \text{ GeV}$	358.22±35.13	252.83±1.59	8.66±0.21	2.23±0.43	1.35±0.04	265.07±2.26
b-jet-veto	297.60±32.57	240.68±1.56	1.04±0.07	1.31±0.32	1.26±0.04	244.29±1.99
Efficiency	48%	45%	6%	2%	54%	39%

11

Table: For 0-SFOS (top), 1-SFOS (middle) and 2-SFOS (bottom). The signal is normalised to the total number of background for each category.

14

Abdualazem | A Status Report

□ Events categorized depending on SFOS lepton pairs;

To do next ...

- \Box Increase the statistics by adding mc16d;
- Paring the the invariant mass of the dilepton; and
- □ Work on the signal optimization by using MVA.

Thank you!

Signal samples have already been produced, JIRA, as follows:

- \Box The mass of *S* is fixed to 160 GeV;
- \Box The masses of *R* are 390 GeV, 450 GeV, 800 GeV and 1500 GeV:
 - *m_R* = 390 GeV: *m_H* = 220 GeV
 - $m_R = 450 \text{ GeV}$: $m_H = 220 \text{ GeV}$ and 250 GeV
 - *m_R* = 800 GeV: *m_H* = 220 GeV, 300 GeV and 500 GeV
 - $m_R = 1500 \text{ GeV}: m_H = 220 \text{ GeV}, 250 \text{ GeV} and 1000 \text{ GeV}$
- Requested HIGG2D1 derivation with cache: 21.2.55 and p-tag: p3782. All jobs are finished see here; and
 - □ The mini-tree production is done using HZZAnalRun2Code.

Background samples

 \Box $qqZZ^*$, $qqZZ^*$, $t\bar{t}Z$, Z + jets, $t\bar{t}$ and VVV.

□ Signal and background are mc16a, mc16d and mc16e combined;

20

- \Box The signal cross section (xsection×BR) is 1 fb⁻¹ (set by hand);
- \Box The significance is calculated using $S/\sqrt{S+B}$ and S/\sqrt{B} ;
- \Box *S*, and *B* are the signal and background event, respectively;
- □ Background events are normalised to cross section for the $m_{4\ell}$ > 200 GeV;
- Scaling background events by 20.3% uncertainty. It's calculated as follow:

The background scaled by a number extracted as follows: For instance, for $m_H = 220$, and $m_R = 390$: events in $m_{4\ell}(210 - 230)$ GeV over the full range of $m_{4\ell}(> 200)$ GeV.

Additional slides

Event Selection						
QUADRUPLET	- Require at least one quadruplet of leptons consisting of two pairs of same-flavour					
Selection	opposite-charge leptons fulfilling the following requirements:					
	 p_T thresholds for three leading leptons in the quadruplet: 20, 15 and 10 GeV 					
	- At most 1 calo-tagged, stand-alone or silicon-associated muon per quadruplet					
	- Leading di-lepton mass requirement: $50 < m_{12} < 106$ GeV					
	- Sub-leading di-lepton mass requirement: $m_{\text{threshold}} < m_{34} < 115 \text{ GeV}$					
	- $\Delta R(\ell, \ell') > 0.10$ for all lepton pairs in the quadruplet					
	 Remove quadruplet if alternative same-flavour opposite-charge 					
	di-lepton gives $m_{\ell\ell} < 5 \text{ GeV}$					
	- Keep all quadruplets passing the above selection					
ISOLATION NEEDS UPDATING	- Contribution from the other leptons of the quadruplet is subtracted					
	- Muon track isolation ($\Delta R = 0.30$): $\Sigma p_T/p_T < 0.15$					
	- Muon calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_{\rm T}/p_{\rm T} < 0.30$					
	- Electron track isolation ($\Delta R = 0.20$) : $\Sigma E_T/E_T < 0.15$					
	- Electron calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_T / E_T < 0.20$					
Impact	- Apply impact parameter significance cut to all leptons of the quadruplet					
Parameter	- For electrons: $d_0/\sigma_{d_0} < 5$					
SIGNIFICANCE	- For muons: $d_0/\sigma_{d_0} < 3$					
Best	- If more than one quadruplet has been selected, choose the quadruplet					
QUADRUPLET	with highest Higgs decay ME according to channel: 4μ , $2e2\mu$, $2\mu 2e$ and $4e$					
Vertex	- Require a common vertex for the leptons:					
Selection	- χ^2 /ndof < 5 for 4 μ and < 9 for others decay channels					

□ Categorize event into 4 categories: Using S/\sqrt{B} instead of $S/\sqrt{S+B}$ to avoid the cross-section dependency

23

Abdualazem | A Status Report

Summary od the signal optimisation

Remark

• We avoid the dependency of the cross-section by using S/\sqrt{B} . For the optimisation we used only $(m_R, m_H) = (390, 220)$ GeV mass point. So no need to use other mass points because the new categories cover the low and the high Met region.

- \Box High met 0 central jet \Rightarrow 30\2.0
- \Box Low met 0 central jet \Rightarrow 15\1.5
- \Box High met 1 central jet \Rightarrow 10\3.5
- $\Box\;$ Low met 1 central jet $\Rightarrow 0.0 \backslash 2.5$

See tables for the categories on backup slides.

(m_R, m_H) GeV	4ℓ	4 μ	4 <i>e</i>	2µ2e
390, 220	23.01%	22.65%	23.11%	23.19%
450, 220	39.18%	38.46%	39.84%	39.34%
450, 250	36.46%	35.72%	37.50%	36.49%
800, 220	32.39%	31.97%	32.63%	32.53%
800, 300	31.97%	31.57%	32.67%	31.91%
800, 500	31.18%	30.01%	32.76%	31.15%
1500, 220	24.32%	23.24%	25.18%	24.56%
1500, 250	24.39%	23.14%	25.83%	24.44%
1500, 1000	23.53%	22.52%	24.13%	23.81%

Table: Signal efficiencies for the $4\ell + E_T^{\text{miss}}$ final states. The numbers recovered with simulated MC of mc16a, mc16d and mc16e for the High $-E_{T}^{miss}$ with zero central jet category. For the signal masses (m_R, m_H) of (390,220), (450,220), (450,250), (800, 220), (800, 300), (800, 500), (1500, 220), (1500, 220), and (1500, 1000) GeV. The efficiency is calculated by the ratio of the number of reconstructed events after all pre-selection requirements to the number of simulated events after the final selection the for inclusive lepton channel (4ℓ)

Abdualazem Astatus Report and 2µ2e channel

Signal acceptance

□ The Crystal ball, CB, plus Gaussian, G, Pdf has the following form:

28

 $f(m_{4\ell}) = f_{\mathsf{CB}} \cdot \mathsf{CB}(m_{4\ell}; \mu, \sigma_{\mathsf{CB}}, \alpha_{\mathsf{CB}}, n_{\mathsf{CB}}) + (1 - f_{\mathcal{CB}}) \cdot \mathsf{G}(m_{4\ell}; \mu, \sigma_{\mathcal{G}})$

- σ_{CB} and σ_{G} represent the invariant mass resolution;
- μ is the mean value fixed to same parameter for both Pdf;
- n_{CB} and α_{CB} model the shape and position of the non-Gaussian tail;
- Where n_{CB} is the slop of the tail and α_{CB} measures how far from the peak the distribution become non-Gaussian;
- *f_{CB}* is the relative normalisation of the Pdf.

High Met 0 central jet for $2\mu 2e$ channel

29

 \Box The samples have more high p_{T} events will have different resolution of the mass.

Abdualazem | A Status Report

30

Interpolation of μ , $f_C B$, σ_G , σ_{CB} and α_{CB} parameters

31

Interpolation of μ , $f_C B$, σ_G , σ_{CB} and α_{CB} parameters

Abdualazem | A Status Report

Update on $\overline{R} o SH o 4\ell + E_{ m T}^{miss}$ analysis

Background parametrisation

$$f^{ggZZ/qqZZ}(m_{4\ell}) = (f_1(m_{4\ell}) + f_2(m_{4\ell})) \times H(m_0 - m_{4\ell}) \times C_0 + f_3^{ggZZ/qqZZ}(m_{4\ell}) \times H(m_{4\ell} - m_0),$$

32

where:

$$\begin{split} f_1(m_{4\ell}) &= \exp(a_1 + a_2 \cdot m_{4\ell} + a_3 \cdot m_{4\ell}^2), \\ f_2(m_{4\ell}) &= \left\{ \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{m_{4\ell} - b_1}{b_2}\right) \right\} \times \frac{1}{1 + \exp\left(\frac{m_{4\ell} - b_1}{b_3}\right)}, \\ f_3^{qqZZ/ggZZ}(m_{4\ell}) &= \exp\left(c_1 + c_2 \cdot m_{4\ell} + c_3 \cdot m_{4\ell}^2 + c_4 \cdot m_{4\ell}^3 + c_5 \cdot m_{4\ell}^4 + c_6 \cdot m_{4\ell}^5\right) \\ C_0 &= \frac{f_3(m_0)}{f_1(m_0) + f_2(m_0)}. \end{split}$$

33

Background parametrisation

Update on $R \rightarrow SH \rightarrow 4\ell + E_T^{miss}$ analysis Background parametrisation

Additional slides Kinematic distributions for the signal

Additional slides Kinematic distributions for the signal

Additional slides Kinematic distributions for the signal

Additional slides Kinematic distributions for signal & background

38

Figure: The invariant mass of the first (left) and the second (right) lepton pairs.

Kinematic distributions

Additional slides

39

Figure: The invariant mass of the first (left) and the second (right) lepton pairs.

Additional slides

Abdualazem | A Status Report

Additional slides High Met 0 central jet

	$(m_{0}, m_{0}) = (290, 220)$	00ZZ*	aoZZ*	ńΖ	Z + intr	ú	WY	#/√D
4	64 51 + 0.24	2510 451 575	342 64+0 71	8 94+0.05	387-084	3 55 40 23	1905-011	2.001
B-veto	60.07±0.23	2294.48±5.70	334.961.0.69	1.72+0.02	3.63+0.64	2.27±0.16	17.79+0.11	2.540
Action = 0	28.02+0.16	1607.35+5.05	211.64+0.55	0.42±0.01	2.10±0.15	0.99±0.10	9.30±0.07	1.453
pC' > 0.00 & Metrig > 0.00	28.02+0.00	1607.35±0.00	211.64±0.00	0.42±0.00	2.10+0.00	0.9910.00	9.30±0.00	1.453
p ⁻ _c > 0.00 & Metaig > 0.50	27.47±0.00	1235.12+0.00	100.35+0.00	0.41±0.00	1.98+0.00	0.94±0.00	9.161.0.00	1.613
pC > 0.00 & Metaig > 1.00	25.61±0.00	685.37+0.00	117.69+0.00	0.40±0.00	1.62+0.00	0.90±0.00	8.77±0.00	1.991
p ^c ₂ > 0.00 & Metaig > 1.50	22.60±0.00	346.29+0.00	66.12+0.00	0.28±0.00	1.27±0.00	0.79±0.00	8.19±0.00	2.439
pf" > 0.00 & Metaig > 2.00	18.2610.00	172.22+0.00	34.04±0.00	0.35±0.00	0.79±0.00	0.68±0.00	7.50±0.00	2.761
pf" > 0.00 & Metaig > 2.50	12.83±0.00	83.44±0.00	16.71±0.00	0.33±0.00	0.53+0.00	0.60±0.00	6.77±0.00	2.736
pf" > 0.00 & Metaig > 3.00	7.52+0.00	39.01±0.00	8.01±0.00	0.29±0.00	0.30±0.00	0.55±0.00	6.02+0.00	2.267
pl ^o > 0.00 & Metaig > 3.50	3.71+0.00	18.93+0.00	3.77±0.00	0.26±0.00	0.17±0.00	0.45±0.00	5.32+0.00	1.533
pl ² > 0.00 & Metaig > 4.00	1.74+0.00	9.25+0.00	1.79±0.00	0.22+0.00	0.08+0.00	0.35±0.00	4.66±0.00	0.954
pl ^o > 0.00 & Metrig > 4.50	0.81±0.00	4.19+0.00	0.79±0.00	0.18±0.00	0.06+0.00	0.25±0.00	4.02+0.00	0.583
Br > 0.00 & Mettig > 5.00	0.39±0.00	2.29+0.00	0.38±0.00	0.16±0.00	0.05+0.00	0.22+0.00	3.47±0.00	0.330
BF > 10.00 £ Materia > 0.00	27.1740.00	1053.48±0.00	180.22+0.00	0.4210.00	1.82+0.00	0.95+0.00	9.15+0.00	1.702
pr > 10.00 £ Materia - 1.00	20.1010.01	887 15 1 44	100.0010.12	0.4010.00	1.40.0.04	0.8310.02	8.6910.00	3.156
pr > 10.00 £ Materia - 1.60	23.72.0.02	20110114	40.4010.10	0.10.00	1.2010.04	0.78.0.02	8.14:0.01	3.000
of - 10.00 & Mainin - 3.00	18.03.0.03	143.80.1.60	22.18.0.20	0.2610.00	0.77.0.05	0.7710.02	7.47.0.01	2.007
of > 10.00 £ Metalo > 2.50	12.67+0.02	68.91+1.62	15 83+0 21	0.32+0.00	0.52+0.05	0.59+0.02	675+0.01	2 918
of > 10.00 & Metain > 3.00	7.43+0.03	11 91-1 64	7 58+0.21	0 29+0 00	0.2910.05	0.5410.02	6.00+0.01	2 414
pl ² > 10.00 & Metaig > 3.50	3.65+0.03	15.05+1.64	3.53+0.21	0.26+0.00	0.17±0.05	0.45+0.02	5.31+0.01	1.627
pl ² > 10.00 & Metalg > 4.00	1.71+0.03	7.12+1.64	1.66+0.21	0.22+0.00	0.08+0.05	0.37±0.02	4.65+0.01	1.008
pl ² > 10.00 & Metalg > 4.50	0.72+0.03	3.09+1.65	0.73+0.21	0.18+0.00	0.06+0.05	0.25+0.02	4.02+0.01	0.611
pf' > 10.00 & Metsig > 5.00	0.38+0.03	1.84+1.65	0.3510.21	0.16±0.00	0.05+0.05	0.21+0.02	3.47±0.01	0.345
pf' > 20.00 & Metsig > 0.00	24.47±0.00	571.61-0.00	118.61.10.00	0.40±0.00	1.25+0.00	0.93±0.00	8.72+0.00	2.051
pl ² > 20.00 & Metsig > 0.50	24.17±0.02	510.65+1.31	107.98±0.17	0.40±0.00	1.22+0.03	0.91±0.03	8.64.10.01	2.138
pf > 20.00 & Metsig > 1.00	23.06±0.03	368.70+3.95	81.82+0.29	0.39+0.00	1.08+0.06	0.87±0.03	8.29+0.01	2.583
pf > 20.00 & Metsig > 1.50	20.91±0.04	217.03+4.13	51.37±0.33	0.37±0.00	0.9610.07	0.77±0.03	7.97±0.01	2.781
pf ² > 20.00 & Metsig > 2.00	17.13+0.05	110.51+4.19	27.50±0.35	0.34±0.00	0.65±0.05	0.66±0.03	7.3810.02	3.136
pf > 20.00 & Metsig > 2.50	12.10+0.05	53.17±4.22	13.63+0.36	0.32+0.00	0.45±0.09	0.59+0.03	6.69+0.02	3.103
pf > 20.00 & Metsig > 3.00	7.05±0.05	24.27±4.23	6.54±0.36	0.28+0.00	0.27±0.10	0.54±0.03	5.98+0.02	2.544
pf > 20.00 & Metsig > 3.50	3.41±0.05	11.15+4.24	3.03+0.36	0.25+0.00	0.17±0.10	0.45±0.03	5.30+0.02	1.678
pl ² > 20.00 & Metsig > 4.00	1.59+0.06	5.22+4.24	1.41+0.37	0.21±0.00	0.07±0.10	0.37±0.03	4.6510.02	1.019
pl ² > 20.00 & Metsig > 4.50	0.73+0.06	2.1914.24	0.62+0.37	0.18±0.00	0.05+0.10	0.25+0.03	4.01±0.02	0.598
pl ² > 20.00 & Metsig > 5.00	0.35+0.05	1.4014.24	0.29+0.37	0.15±0.00	0.04±0.10	0.21±0.03	3.47±0.02	0.336
pl ² > 30.00 & Metsig > 0.00	19.78+0.00	312.75±0.00	70.36±0.00	0.39+0.00	0.85+0.00	0.80±0.00	8.07±0.00	2.214
pl ^o > 30.00 & Metsig > 0.50	19.56±0.02	280.94±1.50	64.29+0.19	0.38±0.00	0.54±0.03	0.78±0.03	8.00+0.01	2.304
Br > 30.00 & Metting > 1.00	18.7910.04	211.83±4.16	50.32+0.32	0.37±0.00	0.77±0.06	0.77±0.03	7.82+0.01	2.569
Br > 30.00 & Metting > 1.50	17.41±0.05	140.82+4.48	34.97±0.40	0.36±0.00	0.69+0.66	0.09+0.03	7.54±0.02	2.040
BF > 30.00 & Materia > 2.00	14.87±0.07	41.7314.01	20.88+0.43	0.33+0.00	0.55+0.10	0.63±0.04	7.13+0.02	3.143
BF > 30.00 & Metalog > 2.50	10.87±0.07	41.23+4.00	10.9510.44	0.31±0.00	0.39+0.10	0.55±0.04	6.57±0.02	3.114
of - 30.00 L Materia - 3.50	2.0510.05	0.1014.70	3.40.10.45	0.2410.00	0.1210.11	0.4410.04	5.0510.00	1.001
of - 30.00 & Mainin - 4.00	1.41.0.05	4 88 4 70	1.15.0.45	0.2410.00	0.0710.11	0.3510.04	4.63 0.00	0.013
of - 30.00 L Materia - 4.50	0.00	517.471	0.5010.45	0.18.0.00	0.0410.11	0.3410.04	4.0310.00	0.570
of > 30.00 £ Metric > 5.00	0.32+0.09	1 10+4 74	0.22+0.45	0.15+0.00	0.03+0.11	0.21+0.04	3.45+0.03	0.312
of > 40.00 & Metric > 0.00	13 20+0.00	157.47-0.00	40.51+0.00	0.37+0.00	0.4910.00	0.67+0.00	7 29+0.00	1 989
of > 40.00 & Metric > 0.50	13.04+0.02	150 71-1 61	37.07+0.20	0.16+0.00	0.47+0.03	0.67+0.03	7 24+0.01	2.055
pl ² > 40.00 & Metalg > 1.00	12.49+0.04	114,3414,25	29.0410.34	0.35+0.00	0.44±0.06	0.65+0.03	7.09+0.01	2,249
pl ² > 40.00 & Metaig > 1.50	11.61-0.05	78.22+4.60	20.74±0.42	0.34+0.00	0.29+0.08	0.58+0.03	6.89+0.02	2,490
pl ² > 40.00 & Metaig > 2.00	10.18-0.05	49.60+4.77	13.39+0.46	0.31+0.00	0.32+0.10	0.56+0.04	6.63+0.03	2.686
pl ² > 40.00 & Metsig > 2.50	8.0410.09	25.9414.54	7.8510.48	0.2910.00	0.25+0.11	0.4910.05	6.30±0.03	2.664
pl ² > 40.00 & Metsig > 3.00	5.10+0.11	14.09.14.00	4.1410.49	0.27±0.00	0.17±0.12	0.4510.05	5.79±0.03	2.232
pf ² > 40.00 & Metsig > 3.50	2.55+0.11	7.2014.90	1.97±0.49	0.2410.00	0.11+0.13	0.4410.05	5.20+0.03	1.452
pf" > 40.00 & Metsig > 4.00	1.18+0.11	3.5514.90	0.93+0.49	0.20+0.00	0.04+0.13	0.3510.05	4.60+0.03	0.845
pf" > 40.00 & Metsig > 4.50	0.55+0.11	1.7514.90	0.40±0.50	0.17±0.00	0.02+0.13	0.2410.05	3.99+0.03	0.472
pl" > 40.00 & Metsig > 5.00	0.27+0.11	0.8914.94	0.18+0.50	0.15-0.00	0.02+0.13	0.21+0.05	3.45+0.03	0.275
pl" > 50.00 & Metsig > 0.00	7.20+0.00	93.25+0.00	23.52+0.00	0.34+0.00	0.29+0.00	0.58+0.00	6.55+0.00	1.431
pl" > 50.00 & Metsig > 0.50	7.09-0.02	83.35+1.64	21.41-0.20	0.33+0.00	0.28-0.03	0.58+0.03	6.50+0.01	1.485
pl' > 50.00 & Metsig > 1.00	6.72+0.04	63.17-4.28	16.71+0.35	0.32+0.00	0.25-0.05	0.58+0.03	6.38-0.01	1.596
pr > 50.00 & Metsig > 1.50	6.19±0.06	43.2014.64	12.0010.44	0.31±0.00	0.2310.09	0.50±0.03	0.2310.02	1.729
pr > 50.00 & Metsig > 2.00	0.31+0.08	27.0414.02	7.942+0.48	0.2910.00	0.1240.11	0.4810.05	0.0410.03	1.600
pr > 50.00 & Metsig > 2.50	4.2/+0.10	17.2014.90	4.90+0.50	0.2710.00	0.1740.12	0.4510.05	5.83+0.03	1.760
pe -> 30.00 & Metrig > 3.00	3.05+0.12	2324436	±40+4.5	0.2310.00	0.12+0.13	0.44±0.05	1.5010.04	1.545
pr > 50.00 ± Materia > 3.50	0.0110.13	0.7014.90	0.7410.52	0.10.000	0.001.0.13	0.3410.07	4.5310.04	1.130
BF > 50.00 & Materia > 4.00	0.91+0.13	2.72+4.97	0.7610.52	0.1910.00	0.04+0.13	0.3410.07	4.5310.04	0.667
of > 50.00 & Metric > 5.00	0.2110.14	073+5.00	0.1410.52	0.14+0.00	0.02+0.13	0.2010.07	344-0.04	0.221
of > 50.00 & Metric > 0.00	38140.00	55 14+0.00	14 19-0.00	0.1410.00	0.17+0.00	0.47+0.00	575-0.00	0.951
of > 50.00 £ Metric > 0.50	3,73+0.02	42 73+1 65	12 79+0 21	0 10+0 00	0.15+0.03	0.47+0.03	5 70+0.01	1 000
of > 50.00 £ Metric > 1.00	3,4510,04	35 45 4 29	9 82-10 35	0.10+0.00	0 14+0 07	0.47+0.03	5.61+0.02	1.057
15 > 50.00 £ Metric > 1.50	3.09+0.05	24 45 4 66	7.01+0.44	0 28+0.00	0 13+0.09	0.41+0.04	545-0.02	1 117
15 > 50.00 £ Metric > 2.00	2 59 10 09	15 00-4 04	4 62+0.49	0 27+0.00	0.12+0.11	0.72+0.05	5 35+0.03	1.115
p > 60.00 & Metaig > 2.00	2.05+0.11	10.04.14.92	2.09+0.51	0.25+0.00	0.11+0.12	0.35+0.04	5,21+0.03	1.045
pt" > 60.00 & Metsig > 3.00	1.49+0.13	6.08+4.97	1.72+0.52	0.23+0.00	0.09+0.13	0.37±0.06	5.01+0.04	0.898
pt" > 60.00 & Metsig > 3.50	1.01+0.14	3.6114.99	1.02+0.53	0.21+0.00	0.05+0.14	0.35+0.07	4.74±0.04	0.712
pt" > 60.00 & Metsig > 4.00	0.58+0.14	2.0514.99	0.55+0.53	0.18±0.00	0.03+0.14	0.30±0.07	4.3610.04	0.474
pt" > 60.00 & Metsig > 4.50	0.31+0.15	1.14+5.00	0.25+0.53	0.16±0.00	0.02+0.14	0.21±0.07	3.89+0.04	0.289
pC" > 60.00 & Metsig > 5.00	0.17+0.15	0.64+5.00	0.11+0.53	0.14±0.00	0.02+0.14	0.18+0.07	3.40±0.04	0.174

Additional slides Low Met 0 central jet

	$(m_B, m_H) = (390, 220)$	qqZZ*	ggZZ*	ttZ	Z + jets		VVV	s/√b
4ℓ	64.51±0.24	2510.45±5.75	349.64±0.71	8.94±0.05	3.87±0.84	3.55±0.23	19.08±0.11	2.661
B-veto	60.07±0.23	2394.48±5.70	334.96±0.69	1.72±0.02	3.63±0.84	2.27±0.16	17.79±0.11	2.540
N _{iet} = 0	28.02±0.16	1607.35±5.06	211.64±0.55	0.42±0.01	2.10±0.15	0.99±0.10	9.30±0.07	1.453
p ^{4ℓ} _T > 0.00 & Metsig > 0.00	13.15±0.00	1526.61±0.00	190.77±0.00	0.09±0.00	1.55±0.00	0.36±0.00	2.17±0.00	0.703
p _T ^{4ℓ} > 0.00 & Metsig > 0.50	12.60±0.00	1155.38±0.00	159.47±0.00	0.08±0.00	1.43±0.00	0.31±0.00	2.03±0.00	0.770
p _T ^{4ℓ} > 0.00 & Metsig > 1.00	10.74±0.00	604.62±0.00	96.81±0.00	0.07±0.00	1.07±0.00	0.27±0.00	1.64±0.00	0.898
p _T ^{4ℓ} > 0.00 & Metsig > 1.50	7.73±0.00	265.55±0.00	45.24±0.00	0.05±0.00	0.73±0.00	0.16±0.00	1.06±0.00	0.970
p _T ^{4ℓ} > 10.00 & Metsig > 0.00	12.30±0.00	982.74±0.00	159.35±0.00	0.08±0.00	1.27±0.00	0.32±0.00	2.03±0.00	0.807
p ^{4ℓ} _T > 10.00 & Metsig > 0.50	11.88±0.01	832.47±1.03	139.00±0.12	0.08±0.00	1.21±0.02	0.30±0.02	1.91±0.00	0.844
p _T ^{4ℓ} > 10.00 & Metsig > 1.00	10.25±0.02	486.36±1.44	88.59±0.18	0.07±0.00	0.94±0.04	0.26±0.02	1.56±0.01	0.946
p ^{4ℓ} _T > 10.00 & Metsig > 1.50	7.39±0.02	210.36±1.55	41.54±0.20	0.05±0.00	0.65±0.05	0.15±0.02	1.01±0.01	1.030
p ^{4ℓ} _T > 15.00 & Metsig > 0.00	11.22±0.00	689.13±0.00	128.27±0.00	0.08±0.00	0.96±0.00	0.31±0.00	1.83±0.00	0.869
p ^{4ℓ} _T > 15.00 & Metsig > 0.50	10.86±0.01	600.82±1.18	113.76±0.15	0.07±0.00	0.91±0.03	0.30±0.03	1.74±0.01	0.900
p _T ^{4ℓ} > 15.00 & Metsig > 1.00	9.49±0.02	386.30±1.79	76.84±0.25	0.06±0.00	0.73±0.05	0.26±0.03	1.45±0.01	0.976
p ^{4ℓ} _T > 15.00 & Metsig > 1.50	6.89±0.03	172.44±1.98	36.85±0.28	0.04±0.00	0.53±0.06	0.15±0.03	0.95±0.01	1.052
p ^{4ℓ} _T > 20.00 & Metsig > 0.00	9.60±0.00	490.87±0.00	97.73±0.00	0.07±0.00	0.70±0.00	0.30±0.00	1.59±0.00	0.877
p ^{4ℓ} _T > 20.00 & Metsig > 0.50	9.31±0.02	429.91±1.31	87.10±0.17	0.07±0.00	0.67±0.03	0.28±0.03	1.51±0.01	0.906
p ^{4ℓ} _T > 20.00 & Metsig > 1.00	8.19±0.03	287.96±3.95	60.95±0.29	0.06±0.00	0.53±0.06	0.24±0.03	1.26±0.01	0.970
p ^{4ℓ} _T > 20.00 & Metsig > 1.50	6.04±0.04	136.29±4.13	30.49±0.33	0.04±0.00	0.41±0.07	0.14±0.03	0.84±0.01	1.033
p ^{4ℓ} _T > 25.00 & Metsig > 0.00	7.54±0.00	345.05±0.00	70.89±0.00	0.07±0.00	0.53±0.00	0.25±0.00	1.29±0.00	0.818
p ^{4ℓ} _T > 25.00 & Metsig > 0.50	7.29±0.02	300.51±1.44	62.89±0.18	0.06±0.00	0.51±0.03	0.23±0.03	1.21±0.01	0.846
p _T ^{4ℓ} > 25.00 & Metsig > 1.00	6.37±0.03	202.95±4.09	44.15±0.31	0.05±0.00	0.38±0.06	0.22±0.03	1.00±0.01	0.896
p ^{4ℓ} _T > 25.00 & Metsig > 1.50	4.64±0.05	98.43±4.36	22.49±0.37	0.03±0.00	0.28±0.08	0.13±0.03	0.66±0.02	0.932
p _T ^{4ℓ} > 5.00 & Metsig > 0.00	12.94±0.00	1333.50±0.00	182.83±0.00	0.09±0.00	1.45±0.00	0.36±0.00	2.14±0.00	0.737
p _T ^{4ℓ} > 5.00 & Metsig > 0.50	12.42±0.01	1058.18±0.68	154.94±0.07	0.08±0.00	1.34±0.01	0.31±0.00	2.00±0.00	0.791
p _T ^{4ℓ} > 5.00 & Metsig > 1.00	10.61±0.01	568.66±0.88	95.02±0.09	0.07±0.00	1.01±0.02	0.27±0.00	1.62±0.00	0.912
p _T ^{4ℓ} > 5.00 & Metsig > 1.50	7.64±0.01	247.18±0.93	44.36±0.10	0.05±0.00	0.69±0.02	0.16±0.00	1.05±0.00	0.990

Additional slides High Met 1 central jet

	(m, m) - (200 220)	0077°	00771	67	Z + inte	a.	WW	*/\\\
4	64 55 40 54	20310 454-5 75	342 (44.0 71	0.944.0.05	3 8740 84	0.5510.00	12000-0011	2.654
5-veto	60.07±0.22	2394.48+5.70	234.96±0.69	1.72+0.02	3.63+0.84	2.27+0.16	17.79+0.11	2.542
North 21	32.05+0.17	787.13+2.63	123.31+0.42	1.30+0.02	1.53+0.83	1.27+0.13	8.49+0.08	2.341
p ^P > 0.00 GeV & Metsig > 0.00	22.05+0.17	787.13+2.63	123.31±0.42	1.30±0.02	1.53+0.83	1.27+0.12	8.4910.08	2.341
p ₁ ^{ac} > 0.00 GeV & Metsig > 0.50	31.46±0.17	657.01+2.45	105.88+0.29	1.28+0.02	1.49+0.83	1.27+0.12	8.22+0.08	2.506
p ^M ₄ > 0.00 GeV & Metsig > 1.00	29.70±0.16	429.28+1.53	72.34±0.32	1.23+0.02	1.43+0.83	1.21+0.12	7.89+0.08	2.968
pl ⁴ > 0.00 GeV & Metsig > 1.50	25.92+0.16	217.56+1.12	41.32+0.25	1.15+0.02	1.29+0.82	1.15+0.12	7.29+0.08	2.638
pr > 0.00 GeV & Metein > 2.50	10 581/0.13	49.63+0.61	10 13+0 12	0.93+0.02	0.18+0.04	0.9510.14	5 29+0 07	5 924
of > 0.00 GeV & Metein > 3.00	15 63 - 0 12	22 57 + 6 93	4 78+0.08	0.81+0.01	0.09+0.03	0.0510.11	505-0.05	5.932
pl" > 0.00 GeV & Metsig > 3.50	11,99+0.10	10.42+0.23	2,21±0.05	0.69+0.01	0.05+0.03	0.67±0.09	4.42±0.06	6.198
p ^{tr} _T > 0.00 GeV & Metsig > 4.00	8.99±0.09	4.83+0.15	0.98±0.04	0.58±0.01	0.03+0.02	0.55±0.08	3.78+0.05	6.079
p ₁ ^{ac} > 0.00 GeV & Metsig > 4.50	6.61±0.08	2.36+0.10	0.45±0.03	0.49±0.01	0.01+0.02	0.43±0.07	3.25+0.05	5.553
p ^p > 0.00 GeV & Metsig > 5.00	4.74±0.07	1.14+0.07	0.18+0.02	0.43±0.01	-0.01±0.01	0.29±0.07	2.77±0.05	4.769
pl ² > 10.00 GeV & Metsig > 0.00	31.54+0.17	768.05+2.61	121.50+0.42	1.29+0.02	1.51+0.83	1.26+0.13	8.42+0.08	2.331
p, > read devic hering > 0.50	20.0010.17	500 51 1 21	71.01.0.00	1.33 0.00	1.4010.83	1.2010.12	7.03.0.00	2.589
of > 10.00 GeV & Metric > 1.50	26.4410.16	207 68-110	40 38+0.24	114+0.02	1 29+0 82	1.1410.12	72410.00	2.047
pl ² > 10.00 GeV & Metsig > 2.00	22.97+0.14	99.05+0.80	20.70+0.17	1.04+0.02	0.25+0.05	1.03+0.12	6.50+0.07	4.495
p ₁ ^{tr} > 10.00 GeV & Metsig > 2.50	19.23+0.13	46.05±0.60	9.89+0.12	0.92±0.02	0.18+0.04	0.9410.11	5.75+0.07	5.345
p ₁ ²⁰ > 10.00 GeV & Metsig > 3.00	15.35+0.12	21.45±0.32	4.67±0.08	0.81±0.01	0.09+0.03	0.05±0.11	5.03+0.06	5.940
p ^p > 10.00 GeV & Metsig > 3.50	11.00±0.10	9.81+0.22	2.15+0.05	0.69±0.01	0.05+0.03	0.65±0.09	4.37±0.06	6.221
pp > 10.00 GeV Z Mettig > 4.00	0.00-0.09	4.5410.15	0.9010.04	0.58-10.01	0.0310.02	0.54-0.00	3.7910.05	6.107
p ₁ > recorded & Metalg > 4.50	472+0.05	1.05+0.05	0.18+0.02	0.40+0.01	-0.01+0.02	0 22+0 07	2 26.40.00	4 783
of > 20.00 GeV & Metsin > 0.00	20.03+0.17	727.67+2.55	115.22+0.44	1.27+0.00	1.49+0.83	1,24+0.45	8,24+0,74	2,272
p ^o > 20.00 GeV & Metsig > 0.50	29.45±0.16	602.63+1.99	99.52+0.38	1.25+0.02	1.45+0.83	1.24+0.12	8.03+0.08	2.445
p," > 20.00 GeV & Metsig > 1.00	27.75+0.16	368.32+1.43	66.64±0.31	1.20+0.02	1.39+0.83	1.18+0.12	7.67±0.08	2.915
p ^P > 20.00 GeV & Metsig > 1.50	25.08+0.15	190.63±1.02	37.62±0.23	1.12+0.02	1.27±0.82	1.12+0.12	7.09±0.07	3.601
p ^P > 20.00 GeV & Metsig > 2.00	21.75±0.14	89.85+0.76	19.19+0.17	1.02+0.02	0.23+0.05	1.02+0.12	6.39±0.07	4.449
ρ ^e ₁ > 20.00 GeV & Metsig > 2.50	18.20+0.13	41.70±0.58	9.15+0.12	0.91±0.02	0.15+0.04	0.93±0.11	5.65±0.07	5.282
pr > 20.00 GeV & Metog > 3.00	14.59+0.11	19,25+0.30	4.33+0.08	0.79±0.01	0.08+0.03	0.05+0.11	4.95±0.06	0.885
of > 20.00 GeV & Metric > 4.00	856-0.09	4 09+0 14	0.00+0.04	0.57+0.01	0.03+0.02	0.54+0.00	3 72+0.05	6.062
p ² > 20.00 GeV & Mettig > 4.50	6.40+0.01	2.02+0.09	0.41+0.02	0.47±0.01	0.01+0.02	0.43+0.07	3,21+0.05	5.549
p ^{er} > 20.00 GeV & Metsig > 5.00	4.64±0.06	0.95+0.05	0.16±0.01	0.39±0.01	-0.01±0.01	0.29±0.07	2.74±0.05	4.788
p ² > 30.00 GeV & Metsig > 0.00	27.84+0.16	669 92+2.05	104.23+0.33	1.23+0.02	1.44+0.83	1.18+0.12	7.97±0.08	2.234
$p_1^{\rm pr} > 30.00~{\rm GeV}$ & Metsig > 0.50	27.29+0.16	552.48+1.85	89.67±0.36	1.21+0.02	1.41+0.83	1.18+0.12	7.82±0.08	2.369
p ₁ ^{er} > 30.00 GeV & Metsig > 1.00	25.66±0.15	235.10±1.31	59.69+0.29	1.16±0.02	1.36+0.83	1.12+0.12	7.42±0.07	2.827
p; > 30.00 GeV & Metog > 1.50	23.14+0.15	1/2.38+0.93	20.51+0.22	1.08±0.02	1.24+0.82	1.05±0.12	6.87.40.07	2.463
pr > 30.00 GeV & Metog > 2.00	16 23+0.13	27.05+0.54	17.03+0.16	0.99+0.02	0.21+0.05	0.97+0.11	5.50+0.07	4.310
pt > 30.00 GeV & Meteig > 3.00	12.42+0.11	16.77±0.26	3.79+0.07	0.77±0.01	0.07+0.03	0.01+0.10	4.82+0.06	5,736
p ^P > 30.00 GeV & Metsig > 3.50	10.47.40.10	7.70±0.18	1.74±0.05	0.65±0.01	0.04+0.02	0.61±0.09	4.22+0.06	6.010
p ^P > 30.00 GeV & Metsig > 4.00	8.08+0.09	3.56+0.12	0.77±0.03	0.56+0.01	0.02+0.02	0.53+0.08	3.65+0.05	5.951
p ^o ₁ > 30.00 GeV & Metsig > 4.50	6.12±0.07	1.77+0.03	0.36±0.02	0.45±0.01	40.00±0.01	0.4210.07	3.16+0.05	5.476
p ^{er} ₄ > 30.00 GeV & Metsig > 5.00	4.52+0.06	0.79±0.05	0.14±0.01	0.38±0.01	-0.01±0.01	0.29±0.07	2.70±0.05	4.784
pr > 40.00 GeV & Mettig > 0.00	25.03+0.15	591.10+1.71	90.10+0.36	1.17+0.02	1.34+0.82	1.19+0.12	7.60±0.07	2.111
pr > 40.00 GeV & Meteo > 1.00	24.54+0.15	488.41=1.53	51.00+0.22	1.15+0.02	1.22+0.82	1.10+0.12	7.08+0.07	2.297
p ^c > 40.00 GeV & Metsig > 1.50	20.77±0.14	151.47±0.84	29.01+0.21	1.03+0.02	1.17+0.82	1.05+0.12	6.56+0.07	2,342
p ^P > 40.00 GeV & Metsig > 2.00	17.93+0.13	70.10±0.63	14.65±0.15	0.94±0.02	0.19+0.04	0.95±0.11	5.94±0.07	4.131
pl ² > 40.00 GeV & Metsig > 2.50	15.04±0.12	31.61±0.50	6.90±0.10	0.84±0.02	0.13+0.03	0.88+0.11	5.28+0.06	4.941
$p_T^{\rm st} > 40.00 \text{ GeV} & \text{Metsig} > 3.00$	12.1740.10	14.29+0.23	3.22+0.07	0.74±0.01	0.08+0.03	0.7910.10	4.64±0.06	5.542
p ^e ₁ > 40.00 GeV & Metsig > 3.50	9.61±0.09	6.49+0.16	1.47±0.05	0.63±0.01	0.05+0.02	0.61±0.09	4.08±0.06	5.840
pr > 40.00 GeV & Metsig > 4.00	7.52+0.08	2.96+0.10	0.00+0.03	0.53+0.01	0.03+0.05	0.52+0.08	3.04+0.05	5.824
at" > 40.00 GeV & Metsig > 5.00	4.37±0.05	0.69+0.04	0.12+0.01	0.37+0.01	0.00+0.00	0.22+0.07	2.65+0.05	4,722
p ^C > 50.00 GeV & Metsig > 0.00	22.01+0.14	507.40+1.49	74.79+0.23	1.11+0.02	0.42+0.05	1.02+0.12	7.22+0.07	2,008
p ^P > 50.00 GeV & Metsig > 0.50	21.57+0.14	421.04+1.33	64.7410.31	1.10+0.02	0.39+0.05	1.02+0.12	7.08+0.07	2.151
p ^c ₁ > 50.00 GeV & Metsig > 1.00	20.25+0.14	256.89+1.04	43.4010.25	1.05±0.02	0.25±0.05	0.97±0.11	6.74±0.07	2.556
ρ ₁ ^{er} > 50.00 GeV & Metsig > 1.50	18.23+0.13	130.96+0.76	24.23+0.19	0.99+0.02	0.26+0.05	0.92+0.11	6.26+0.07	3.164
pr > 50.00 GeV & Metsig > 2.00	15.7840.12	60.20±0.58	12.23+0.13	0.90±0.02	U.18±0.04	0.04+0.11	0.9810.07	3364
[14] > 10.00 LeV & Mettig > 2.50 (27) > 50.00 GeV & Metric > 3.00	12.29+0.11	40.90+0.47	2 70+0.09	0.81+0.01	0.02+0.03	0.7740.10	44740.05	4.691
aC > 50.00 GeV & Metsig > 3.50	8.69+0.09	5.56+0.14	1,24+0.04	0.60+0.01	0.05+0.02	0.53+0.00	2,92+0.06	5.591
of > 50.00 GeV & Metsig > 4.00	6.94±0.03	2.62+0.09	0.50+0.03	0.51+0.01	0.02+0.01	0.44+0.07	2.42+0.05	5.599
p ^P > 50.00 GeV & Metsig > 4.50	5.45+0.07	1.36+0.05	0.24+0.02	0.43+0.01	0.01+0.01	0.35±0.07	2.9910.05	5.211
μ ² / ₂ > 50.00 GeV & Metsig > 5.00	4.17±0.05	0.60+0.04	0.10±0.01	0.35±0.01	0.00+0.00	0.33+0.06	2.58+0.04	4.650
μ ^w > 60.00 GeV & Metsig > 0.00	18.99-0.13	431.79+1.28	60.82+0.30	1.04+0.02	0.30+0.05	0.09+0.11	6.79±0.07	1.682
pr > 60.00 GeV & Metsig > 0.50	18.62+0.13	258.85+1.13	52.82+0.28	1.03+0.02	0.2910.05	0.09+0.11	0.6740.07	2.016
pr > 60.00 GeV & Metric > 1.50	15.01.0.12	112 76+0.60	10.0410.17	0.93+0.02	0.17+0.04	0.04140.11	5 95 10 07	0.050
nº - 60.00 GaV & Metein - 2.00	12 26+0.11	51 0510 41	10.05+0.12	0.05+0.02	0.12+0.03	0 23+0 10	5 3840.05	3.678
of > 60.00 GeV & Metsig > 2.50	11.70+0.10	23.52+0.28	4.75+0.08	0.76+0.01	0.07+0.03	0.65+0.10	4.82+0.06	4.417
p ^o > 60.00 GeV & Metsig > 3.00	9.68+0.09	10.50±0.18	2.25+0.05	0.67±0.01	0.04+0.02	0.59±0.09	4.2510.06	5.022
p ¹⁰ ₁ > 60.00 GeV & Metsig > 3.50	7.91±0.08	4.80+0.12	1.02+0.04	0.57±0.01	0.02+0.01	0.4310.07	3.75±0.05	5.395
pl" > 60.00 GeV & Metsig > 4.00	6.42+0.08	2.27+0.08	0.44±0.03	0.49±0.01	0.01+0.01	0.36+0.07	3.28+0.05	5.443
1 eV ~ 60.00 GeV & Metric ~ 4.50	5.14-0.07	1.15+0.05	0.19+0.02	0.41+0.01	0.01+0.01	0.23+0.06	2.88+0.05	5.113

43

Additional slides Low Met 1 central jet

	(m _R , m _H) - (390, 220)	qqZZ*	ggZZ*	tīΖ	Z + jets	tī	vvv	s/√b
4 <i>l</i>	64.51±0.24	2510.45±5.75	349.64±0.71	8.94±0.05	3.87 ± 0.84	3.55 ± 0.23	19.08±0.11	2.661
B-veto	60.07±0.23	2394.48±5.70	334.96±0.69	1.72 ± 0.02	3.63±0.84	2.27±0.16	17.79±0.11	2.540
$N_{int}^{corteal} \ge 1$	32.05±0.17	787.13±2.63	123.31±0.42	1.30 ± 0.02	1.53±0.83	1.27±0.13	8.49±0.08	2.341
pf ² > 0.00 GeV & Metsig > 0.00	20.25±0.14	777.32±2.62	121.16±0.42	0.61±0.01	1.47±0.83	0.61±0.09	4.12±0.05	1.494
p _T ^{&} > 0.00 GeV & Metsig > 0.50	19.66±0.13	647.21±2.44	104.73±0.39	0.59±0.01	1.44±0.83	0.61±0.09	3.96±0.05	1.584
p _T ^{dr} > 0.00 GeV & Metsig > 1.00	17.90±0.13	399.48±1.52	70.19±0.32	0.54±0.01	1.37±0.83	0.54±0.08	3.52±0.05	1.822
p _f ⁴² > 0.00 GeV & Metsig > 1.50	15.12±0.12	207.75±1.10	39.17±0.24	0.46±0.01	1.24 ± 0.82	0.49±0.08	2.92±0.05	2.114
p ₁ ^{4/} > 0.00 GeV & Metsig > 2.00	11.60±0.10	94.91±0.79	19.08±0.17	0.36±0.01	0.20±0.04	0.37±0.07	2.18±0.04	2.379
p _T ^{4/} > 0.00 GeV & Metsig > 2.50	7.78±0.08	38.83±0.57	7.99±0.11	0.24±0.01	0.12±0.03	0.28±0.06	1.42±0.03	2.469
$p_T^{4t} > 0.00 \text{ GeV} \& \text{Metsig} > 3.00$	3.83±0.06	12.77±0.25	2.64±0.06	0.13±0.01	0.04 ± 0.02	0.20 ± 0.06	0.69±0.02	2.093
p _T ^{4ℓ} > 5.00 GeV & Metsig > 0.00	20.12±0.14	771.50±2.61	120.76±0.42	0.61±0.01	1.47±0.83	0.61±0.09	4.10±0.05	1.490
p _T ^{4ℓ} > 5.00 GeV & Metsig > 0.50	19.54±0.13	641.99±2.43	104.36±0.39	0.59±0.01	1.43±0.83	0.61±0.09	3.94±0.05	1.580
p ^{4z} _T > 5.00 GeV & Metsig > 1.00	17.78±0.13	395.31±1.51	69.90±0.32	0.54±0.01	1.37±0.83	0.54 ± 0.08	3.51±0.05	1.818
p ^{ec} _T > 5.00 GeV & Metsig > 1.50	15.01±0.12	204.76±1.09	38.96±0.24	0.46±0.01	1.23±0.82	0.49±0.08	2.91±0.05	2.112
p _T ^{4ℓ} > 5.00 GeV & Metsig > 2.00	11.50±0.10	93.23±0.79	18.94±0.17	0.36±0.01	0.19±0.04	0.37±0.07	2.17±0.04	2.377
p _T ^{4/} > 5.00 GeV & Metsig > 2.50	7.70±0.08	38.05±0.57	7.92±0.11	0.24±0.01	0.12±0.03	0.28±0.06	1.41±0.03	2.464
p ^{er} _T > 5.00 GeV & Metsig > 3.00	3.76±0.06	12.47±0.25	2.60±0.06	0.12±0.01	0.04±0.02	0.20±0.06	0.68±0.02	2.081
p _T ^{4ℓ} > 10.00 GeV & Metsig > 0.00	19.74±0.13	758.25±2.60	119.35±0.41	0.60±0.01	1.46±0.83	0.60±0.09	4.05±0.05	1.473
p _T ^{4ℓ} > 10.00 GeV & Metsig > 0.50	19.15±0.13	629.87±2.42	103.07±0.39	0.59±0.01	1.42±0.83	0.60±0.09	3.89±0.05	1.563
p _T ^{ac} > 10.00 GeV & Metsig > 1.00	17.40±0.13	385.54±1.49	68.86±0.32	0.53±0.01	1.36±0.83	0.54±0.08	3.46±0.05	1.800
p _T ^{4ℓ} > 10.00 GeV & Metsig > 1.50	14.64±0.12	197.87±1.07	38.24±0.24	0.45±0.01	1.23±0.82	0.48±0.08	2.87±0.05	2.092
p _T ^{4ℓ} > 10.00 GeV & Metsig > 2.00	11.17±0.10	89.24±0.77	18.55±0.16	0.35±0.01	0.19±0.04	0.37±0.07	2.13±0.04	2.354
p _T ^{ac} > 10.00 GeV & Metsig > 2.50	7.43±0.08	36.26±0.56	7.75±0.11	0.24±0.01	0.12±0.03	0.28±0.06	1.38±0.03	2.430
p ^{ec} _T > 10.00 GeV & Metsig > 3.00	3.55±0.06	11.65±0.24	2.52±0.06	0.12±0.01	0.04±0.02	0.19±0.06	0.66±0.02	2.023
p _T ^{4ℓ} > 15.00 GeV & Metsig > 0.00	19.32±0.13	740.77±2.58	116.98±0.41	0.60±0.01	1.45±0.83	0.59±0.09	4.01±0.05	1.458
p _T ^{dc} > 15.00 GeV & Metsig > 0.50	18.73±0.13	613.95±2.40	100.89±0.38	0.58±0.01	1.41 ± 0.83	0.59±0.09	3.85±0.05	1.548
p _T ^{ac} > 15.00 GeV & Metsig > 1.00	17.01±0.13	373.09±1.46	67.16±0.31	0.53±0.01	1.35±0.83	0.53±0.08	3.42±0.05	1.787
p _T ^{4ℓ} > 15.00 GeV & Metsig > 1.50	14.28±0.11	189.70±1.04	37.14±0.23	0.45±0.01	1.23±0.82	0.47±0.08	2.83±0.05	2.081
p _T ^{dl} > 15.00 GeV & Metsig > 2.00	10.87±0.10	84.88±0.76	17.98±0.16	0.35±0.01	0.18±0.04	0.37±0.07	2.11±0.04	2.345
p _T ^{ac} > 15.00 GeV & Metsig > 2.50	7.21±0.08	34.46±0.55	7.49±0.10	0.24±0.01	0.11±0.03	0.28±0.06	1.36±0.03	2.413
p _T ^{4ℓ} > 15.00 GeV & Metsig > 3.00	3.45±0.06	10.96±0.23	2.45±0.06	0.12±0.01	0.04±0.02	0.19±0.06	0.65±0.02	2.015
p ₁ ^{4ℓ} > 20.00 GeV & Metsig > 0.00	18.75±0.13	718.82±2.19	113.33±0.40	0.59±0.01	1.43±0.83	0.58±0.09	3.93±0.05	1.437
<i>p</i> ^{ac} _T > 20.00 GeV & Metsig > 0.50	18.18±0.13	593.98±1.98	97.53±0.37	0.58±0.01	1.39±0.83	0.58±0.09	3.77±0.05	1.527
p ^{er} _L > 20.00 GeV & Metsig > 1.00	16.47±0.12	359.47±1.42	64.65±0.31	0.52±0.01	1.33±0.83	0.52±0.08	3.35±0.05	1.763
p _T ^{ec} > 20.00 GeV & Metsig > 1.50	13.80±0.11	181.78±1.00	35.63±0.23	0.45±0.01	1.21±0.82	0.46±0.08	2.77±0.05	2.054
p _T ^{ec} > 20.00 GeV & Metsig > 2.00	10.47±0.10	81.00±0.73	17.20±0.16	0.35±0.01	0.17±0.04	0.37±0.07	2.07±0.04	2.310
$p_{\rm L}^{\rm m} > 20.00 \text{ GeV & Metsig} > 2.50$	6.92±0.08	32.84±0.54	7.16±0.10	0.24±0.01	0.10 ± 0.03	0.28±0.06	1.34 ± 0.03	2.3/3
p _T ^{ec} > 20.00 GeV & Metsig > 3.00	3.31±0.06	10.40±0.22	2.34±0.06	0.12±0.01	0.03±0.02	0.19±0.06	0.63±0.02	1.981
p _T ^{ec} > 25.00 GeV & Metsig > 0.00	18.08±0.13	693.64±2.13	108.53±0.39	0.58±0.01	1.42±0.83	0.58±0.09	3.85±0.05	1.411
p _T ^m > 25.00 GeV & Metsig > 0.50	17.51±0.13	5/1.60±1.92	93.22±0.37	0.57±0.01	1.39 ± 0.83	0.58±0.09	3.69±0.05	1.501
pt > 25.00 GeV & Metsig > 1.00	15.84±0.12	344.28±1.36	61.60±0.30	0.52±0.01	1.32 ± 0.83	0.51±0.08	3.28±0.05	1.733
p _T ^m > 25.00 GeV & Metsig > 1.50	13.24±0.11	1/3.81±0.96	33.86±0.22	0.44±0.01	1.20±0.82	0.45±0.08	2./1±0.05	2.017
p _T ^m > 25.00 GeV & Metsig > 2.00	10.01±0.10	77.39±0.70	16.32±0.15	0.34±0.01	0.1/±0.04	0.3/±0.0/	2.02±0.04	2.261
p_ > 25.00 GeV & Metsig > 2.50	6.59±0.08	31.16±0.52	o./6±0.10	0.23±0.01	0.10±0.03	0.28±0.06	1.31±0.03	2.319
p _T ^m > 25.00 GeV & Metsig > 3.00	3.13±0.05	9.72±0.20	2.21±0.06	0.12±0.01	0.03±0.02	0.19±0.06	0.62±0.02	1.938
p ₁ > 30.00 GeV & Metsig > 0.00	17.36±0.13	662.22±2.06	102.50±0.38	0.57±0.01	1.40±0.83	0.56±0.09	3.76±0.05	1.388
p _T > 30.00 Gev & Metsig > 0.50	10.81±0.12	544./9±1.85	87.93±0.36	0.55±0.01	1.38±0.83	0.56±0.09	3.00±0.05	1.4//
p _T ^m > 30.00 GeV & Metsig > 1.00	15.19±0.12	327.41±1.30	57.95±0.29	0.50±0.01	1.32±0.83	0.50±0.08	3.20±0.05	1./05
pr > 30.00 GeV & Metsig > 1.50	12.66±0.11	164.68±0.91	31.//±0.21	0.43±0.01	1.20±0.82	0.45±0.08	2.65±0.04	1.962
p= > 30.00 Gev & Metsig > 2.00	9.54±0.09	73.18±0.66	15.29±0.15	0.33±0.01	0.17±0.04	0.36±0.07	1.98±0.04	2.216
pp > 30.00 Gev & Metsig > 2.50	0.20±0.08	29.35±0.50	0.30±0.10	0.22±0.01	0.10±0.03	0.28±0.06	1.28±0.03	2.268
p _T > 30.00 GeV & Metsig > 3.00	2.96±0.05	9.07±0.19	2.05±0.05	0.11±0.01	0.03±0.02	0.19±0.06	0.61±0.02	1.891

Signal parametrisation High Met 0 central jet for 2µ2e channel

45

Signal parametrisation High Met 0 central jet for 2µ2e channel

Signal parametrisation High Met 0 central jet for 4 µ channel

Signal parametrisation High Met 0 central jet for 4 µ channel

Signal parametrisation High Met 0 central jet for 4 µ channel

Signal parametrisation High Met 0 central jet for 4*e* channel

50

Signal parametrisation High Met 0 central jet for 4*e* channel

Signal parametrisation High Met 0 central jet for 4*e* channel

Interpolation of μ , f_C , σ_G , σ_C and α_C parameters $_{4\mu\text{-channel}}$

53

Interpolation of μ , f_C , σ_G , σ_C and α_C parameter 4e-channel

Signal parametrisation Low Met 0 central jet for 4μ channel

Signal parametrisation Low Met 0 central jet for 4μ channel

Signal parametrisation Low Met 0 central jet for 4μ channel

Signal parametrisation Low Met 0 central jet for 4*e* channel

58

Signal parametrisation Low Met 0 central jet for 4*e* channel

Signal parametrisation Low Met 0 central jet for 4*e* channel

60

Interpolation of μ , f_C , σ_G , σ_C and α_C parameters $2\mu^{2e-channel}$

Interpolation of μ , f_C , σ_G , σ_C and α_C parameters

62

Interpolation of μ , f_C , σ_G , σ_C and α_C parameter 4e-channel

Study the bias induced by the signal extraction

Signal parametrisation High Met 1 central jet for 4µ channel

Signal parametrisation High Met 1 central jet for 4µ channel

66

Signal parametrisation High Met 1 central jet for 4µ channel

Signal parametrisation High Met 1 central jet for 4*e* channel

Signal parametrisation High Met 1 central jet for 4*e* channel

Signal parametrisation High Met 1 central jet for 4*e* channel

Interpolation of μ , f_C , σ_G , σ_C and α_C parameter α_{μ} parameter α_{μ}

Interpolation of μ , f_C , σ_G , σ_C and α_C parameters

72

Interpolation of μ , f_C , σ_G , σ_C and α_C parameter 4e-channel

73

Study the bias induced by the signal extraction High Met 1 central jet for all the channels

74

