

Institute of High Energy Physics Chinese Academy of Sciences

Searching for New Physics in Higgs Physics

Hao Zhang

Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences

Dec 07th, 2019, Beijing For Chinese Academy of Sciences Center for Excellence in Particle Physics

> Based on Phys. Rev. Lett **122**, 041803 (2019), arXiv:191x.abcde[hep-ph], and arXiv:191y.ijklm[hep-ph]

Origin of Mass

Ine Energy Frontier

Matter/Anti-matter Asymmetry

Dark Matter

Origin of Universe

Unification of Forces

New Physics Beyond the Standard Model

Neutrino Physics

The Cosmic Horizon

The Intensity Frontier

Origin of Mass

Ine Energy Frontier

Matter/Anti-matter Asymmetry

Dark Matter

Origin of Universe

Unification of Forces

New Physics Beyond the Standard Model

The Intensity Frontier **Neutrino Physics**

The Cosmic Horizan

Where to search for new physics?

What can we learn with the LHC and future Higgs factory?

Production and Hadronic Decays of Higgs Bosons in Heavy-Ion Collisions

Phys. Rev. Lett 122, 041803 (2019)

Heavy-Ion Collision at the LHC

• Jet Quenching: the quark and gluon travel in the hot dense phase, the QGP, will lose their energy by collisions and radiations.

Heavy-Ion Collision at the LHC

• Jet Quenching: the quark and gluon travel in the hot dense phase, the QGP, will lose their energy by collisions and radiations.

How about the Higgs boson?

Heavy-Ion Collision at the LHC

The lifetime of the QGP produced in the heavy-ion collision at the LHC.

$$1 \text{fm/c} = \frac{10^{-15} \text{m}}{2.99792458 \times 10^8 \text{m/s}} = 3.33564 \times 10^{-24} \text{s}$$
$$= \frac{3.33564 \times 10^{-24} \text{s}}{6.58 \times 10^{-25} \text{s} \cdot \text{GeV}} = \frac{1}{197 \text{MeV}}$$

Higgs in Heavy-Ion Collision

Collider simulation.

Higgs in Heavy-Ion Collision

• Significance at the LHC and future hadron colliders.

Higgs in Heavy-Ion Collision

• Significance at the LHC and future hadron colliders.

Studying the Phase Angles in the Yukawa Interactions

arXiv:191x.abcde[hep-ph],
and arXiv:191y.ijklm[hep-ph]

Parameter value

Parameter value

An Era of Precisely Higgs Physics

• More precisely result in near future.

ATLAS Collaboration, ATLAS-PHYS-PUB-2018-054; CMS Collaboration, CMS PAS FTR-18-011.

An Era of Precisely Higgs Physics

Generic form of the SFF interaction

$$\mathscr{L} = y_f h \bar{f} (\cos \alpha_f + i \gamma_5 \sin \alpha_f) f$$
$$y_f \in \mathbb{R}^+, \ \alpha_f \in (-\pi, \pi]$$

- The non-zero phases in the Yukawa interactions are evidence of new sources of EWSB and might be important for us to understand the matter-antimatter asymmetry in our universe.
- Can we measure the α_f ?

- Very interesting parameter.
- Exp: 2HDMs

Wei Su, arXiv:1910.06269[hep-ph].

- Indirect measurement (e.g. EDM).
- Hadronic EDMs (90% C.L.):

$$\frac{y_b}{y_b^{\rm SM}} |\sin \alpha_b| < 5$$

• Electron EDM (90% C.L.):

$$\frac{y_b}{y_b^{\rm SM}} |\sin \alpha_b| < 0.4$$

But indirectly measurements are suffered by the NP contributions to the loop...

J. Brod and E. Stamou, arXiv:1810.12303[hep-ph].

- Very difficult at the LHC!
- Direct: large background, large contribution from Hgg.

N. Deutschmann, F. Maltoni, M. Wiesemann and Marco Zaro, JHEP 1907 (2019) 054.

• Interference in Higgs decay:

 Advantage: the Hgg interaction can be well measured at both the LHC and the Higgs factory, with the information of the Lorentz structure.

$$hG^a_{\mu
u}G^{a,\mu
u}$$
 vs $hG^a_{\mu
u} ilde{G}^{a,\mu
u}$

Results

• 240GeV Higgs factory with 5.6ab⁻¹ integrated luminosity.

 $\partial \alpha_h \sim 40^\circ$

Results

 240GeV Higgs factory with 5.6ab⁻¹ integrated luminosity+ 365GeV Higgs factory with 1.5ab⁻¹ integrated luminosity.

Results

 240GeV Higgs factory with 5.6ab⁻¹ integrated luminosity+ 365GeV Higgs factory with 1.5ab⁻¹ integrated luminosity.

- Higgs physics: what can we learn with the LHC and future Higgs factory?
- The property of the Higgs boson in extreme environment.
- The interacting strength and the Lorentz structure between the Higgs boson and the SM particles.
- For us phenomenologist: proposing more and more interesting observables which are robust (less model dependent) and clearly (show specific property of particles). WHY?

- Higgs physics: what can we learn with the LHC and future Higgs factory?
- The property of the Higgs boson in extreme environment.
- The interacting strength and the Lorentz structure between the Higgs boson and the SM particles.
- For us phenomenologist: proposing more and more interesting observables which are robust (less model dependent) and clearly (show specific property of particles). WHY?
- We also do not want to be tricked by the modelbuilders :P

- Higgs physics: what can we learn with the LHC and future Higgs factory?
- The property of the Higgs boson in extreme environment.
- The interacting strength and the Lorentz structure between the Higgs boson and the SM particles.
- For us phenomenologist: proposing more and more interesting observables which are robust (less model dependent) and clearly (show specific property of particles). WHY?
- We also do not want to be tricked by the modelbuilders :P