Contribution ID: 17 Type: not specified

Radiative decays of h_c to the light mesons $\eta^{(\prime)}$: A perturbative QCD calculation

Thursday, 19 December 2019 16:30 (20 minutes)

We study the radiative decays $h_c \to \gamma \eta^{(\prime)}$ in the framework of perturbative QCD and evaluate analytically the one-loop integrals with the light quark masses kept. Interestingly, the branching ratios $\mathcal{B}(h_c \to \gamma \eta^{(\prime)})$ are insensitive to both the light quark masses and the shapes of $\eta^{(\prime)}$ distribution amplitudes. And it is noticed that the contribution of the gluonic content of $\eta^{(\prime)}$ is almost equal to that of the quark-antiquark content of $\eta^{(\prime)}$ in the radiative decays $h_c \to \gamma \eta^{(\prime)}$. By employing the ratio $R_{h_c} = \mathcal{B}(h_c \to \gamma \eta)/\mathcal{B}(h_c \to \gamma \eta')$, we extract the mixing angle $\phi = 33.8^{\circ} \pm 2.5^{\circ}$, which is in clear disagreement with the Feldmann-Kroll-Stech result $\phi = 39.0^{\circ} \pm 1.6^{\circ}$ extracted from the ratio $R_{J/\psi}$ with nonperturbative matrix elements $\langle 0 \mid G_{\mu\nu}^a \tilde{G}^{a,\mu\nu} \mid \eta^{(\prime)} \rangle$, but in consistent with $\phi = 33.5^{\circ} \pm 0.9^{\circ}$ extracted from the asymptotic limit of the $\gamma^* \gamma - \eta'$ transition form factor and $\phi = 33.9^{\circ} \pm 0.6^{\circ}$ extracted from $R_{J/\psi}$ in perturbative QCD. We also briefly discuss possible reasons for the difference in the determinations of the mixing angle.

Publications

Phys. Rev. D100 (2019) 034005

Presenter

Chao-Jie Fan

Master Student, PhD Student or Postdoc

PhD Student

Primary author: 樊, 超杰 (CCNU)

Co-author: 何, 俊康 (华中师范大学)

Presenter: FAN, Chao-Jie

Session Classification: Afternoon Session II