Updates: Mechanical design and optimization of the Silicon Vertex

Joao COSTA, Mingyi DONG, Jinyu FU, Quan Ji, Gang LI,

Zhijun LIANG, Kewei WU, Zhaoru ZHANG, Hao ZENG

IHEP, 2019-12-30

Outline

- Introduction
- Mechanical design & study
- Simulation and layout optimization
- Plan

Motivation

CEPC day @ IHEP

- Detector design motivated by physics motivation
 - Jet identification strongly depends on impact parameter precision
- CEPC dedicated to Higgs study, as well as SM and flavor physics
 - B, D, τ and other long-lived particles
- Physics always wants detector as good as possible
- Hardware gives the boundary
 - Resolution
 - Material budget
 - Power consumption
 - Layout
 - ...
- Optimization ...

2019-12-30

Impact Parameter Resolution:

- $\sigma_{d_0} = a \oplus rac{b}{p \sin^{3/2} heta}$
- p: the track momentum
- Θ : the polar track angle
- 'a' term: the intrinsic resolution of the vertex detector in the absence of multiple scattering, independent of the track parameters.
- 'b' term reflects the effects of multiple scattering.
- $a = 5 \mu m$ and $b = 10 \mu m \cdot GeV$ from CDR.
- 3 double- layer pixelated vertex detector.

	R (mm)	z (mm)	$ \cos \theta $	$\sigma(\mu{ m m})$
Layer 1	16	62.5	0.97	2.8
Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4

Design goal

CDR vertex detector concept

Vertex detector prototype

	$R ({\rm mm})$	z (mm)	in total
Layer 1	16	62.5	1 120 C mm
Layer 2	18	62.5	J 130.6 mm
Layer 3	37	125.0	1
Layer 4	39	125.0	j 263.1 mm
Layer 5	58	125.0	1
Layer 6	60	125.0	j 263.1 mm

- 3 double layer barrels
- Power dissipation: Final goal: ≤ 50 mW/cm2
- Current goal: ≤ 200 mW/cm2. (air cooling)
- Working temperature range: 20-50 °C
- Single point resolution: from 2.8-6 µm in CDR,
- Aim for only one type of pixel sensor of $3-5 \ \mu m$.

silicon strip detectors (SVD)

Mechanical design and study

Prototype design of VXD

Ladder layout - optimized

Half support barrel

Prototype design of VXD

Sensor chip : 14.8 x 25.6 x 0.05 mm (2 mm wide margin at one side for wire bonding) **Ladder**: support + chips + FPC

Ladder - support

Size: 264.1 x 16.8 x 2 mm (L x W x H), for outer and middle barrels.

131.6 x 16.8 x 2 mm for inner barrel. W is 2 mm wider than sensor.

Material: Carbon fiber in thickness of 0.15 mm (3 layers).

Channels inside the local support: to increase stiffness with less material, also work as a backup for air cooling from inside of the support.

Ladder - FPC & wire boding

FPC: shape and size of FPC of each ladder base on the current layout?

Can FPC be narrowed where it comes out of the ladder? The minimum width can be achieved?

Will there be connectors of the FPC and where?

Wire bonding: Height?

Materials of the ladder(?)- one side:

- FPC: kapton 50, Cu two layer 12x2=24, adhesive 15x2=30 um(Mingyi)
- the ladder: glue + flex+ sensor 15+105 +15+50= 185 um
- support : equivalent total thickness 0.15mmx3=0.45 mm
- Material budget need to be comfirmed.

Due to limited space and for easy installation, the ladders of inner layer are fixed onto the inner side of the neck flange, while those on middle and outer layers are fixed from outer side.

Ladder fixation

Option1: gluing.

Adhesive to be investigated, which has a good bonding strength at temperature lower than 80 °C(?) but can be easily peeled off under certain temperature or by chemical method?

Option2: as a backup, using non-magnetic screw(e.g. copper) and nut (e.g. made of PEEK) glue on back side of the flange?

Vertex assembling and cable routing

Ladders of inner and middle layers mounted to a half support barrel with double toothed rings.

Vertex assembling and cable routing

Ladders of outer layer mounted to a half support barrel which has one toothed ring.

Assuming FPCs or cables of several ladders can be put together to form a bundle, and then rout out from the slotted hole on the support neck to next layer. Finally, go out to the outer layer and lead out together $_{\circ}$

In CEPC, What else are outside the vertex can block the cable routing this way? e.g. End cap?

Installation of the VXD on CEPC -interface with beam pipe

VXD interface with beam pipe:

1-fixation of VXD support inside beam pipe

2-space for FPC or cable routing

3-inlets and outlets for cooling air, volume control

The latest ladder layout and preliminary estimation of air volume required by VXD has been provided to Quan.

More interactive work can be foreseen.

Cable routing at interaction area of CEPC

The same scheme as the cable routing inside the cooling box.

Simulation and optimization

Full Simulation baseline design in CDR

- $e^+e^- \rightarrow \mu^+\mu^- @ 240 GeV$
- Full simulation : MokkaC & Marlin
- Point-like beam spot
- Energy = 3-120 GeV & full angle
- Best resolution ~ 2 μ m

20

0

-20

17

40

τεμτ_1

Fast simulation tool - tkLayout

- Compare different detector layouts
- Fair comparison of layouts with a priori estimate of performance(occupancy, tracking and trigger approximate efficiencies, approximate financial cost, power consumption)
- Narrow down the parameter space
- Pre-optimized designs
- Does not depend on optimised reco algorithms
- IS NOT a replacement for the MC simulation
 - estimate impact on trigger
 - physics channels
 - occupancy
 - efficiency
 -

- From/validated by CMS
- Fast
- Flexibility to change detector design
- Automatic optimization
- Optimizing given layouts
- Realistic material description, power consumption, backgrounds, an so on
- Useful tool for CEPC vertex prototype layout optimization

Vertex geometry simulation results

• CDR vertex detector geometry

Prototype design by Jinyu

Prototype V1

- 3 layers of double-sided ladder
- Only need to rotate one ladder around Z axis with a fixed angle to cover the whole barrel
- Sensors are on both sides of the yellow slash region

Vertex geometry simulation results

• Prototype V1

XY Section of the tracker barrel. - (png) - (pdf) - (root)

	numRods	R(mm)	skewAngle(rad)	module width(mm)
Layer 1	10	17.11637	0.290338	12.8
Layer 2	10	19.04127	0.260264	12.8
Layer 3	22	37.66656	0.307478	12.8
Layer 4	22	39.57739	0.292183	12.8
Layer 5	32	58.91426	0.275036	12.8
Layer 6	32	60.84152	0.266108	12.8

Calculated value

Output value of tkLayout

Comparing CDR baseline with Prototype V1

0.4

0.6

0.8

0.0

0.2

Hit map and statistics of baseline design and prototype V1

Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4

1.95 1.83 1.53 1.47 overlaps.

uniform due to overlaps.

PrototypeV1 module

PrototypeV1 material budget

Components details:

Average (eta = [0, 4.0])	Radiation length	Interaction length
IT Module: FPC	0.00256	0.00092
IT Module: Glue sensor	0.00021	0.00010
IT Module: Glue support	0.00021	0.00010
IT Module: Ladder support	0.00444	0.00221
IT Module: Sensor	0.00256	0.00052
Services	0.00000	0.00000
Supports	0.00000	0.00000

Material budget in CDR: $0.15\%X_0$ per layer

 $0.15\% \times 6 = 0.9\% < 0.01$

Bear in mind: 0.9% is on average

Too much material!

Material budget: alternative design

Material budget comparison

Material budget in CDR: 0.15%X₀ per layer

 $0.15\% \times 6 = 0.9\%$

The alternative design still has too much material even at $\theta = 90^{\circ}$

Impact parameter resolution of Prototype V1

Changing radius

Hit map and statistics of different radius

increase radius, number of stripes approaches 10. Equal to the number of ladders of the first layer.

Impact parameter resolutions of different radius

Changing the number of layers

Hit coverage comparison

Impact parameter resolutions of different number of layers

34

New beampipe

Design by Ji Quan

first layer: Ø33mm, +z=130mm second layer: Ø68mm, +z=255mm third layer: Ø103mm, +z=380mm

Layouts comparison

ayer	1	2	3	4	5	6	
	17.116	19.041	37.667	39.577	58.914	60.842	
max	693.800	693.800	693.800	693.800	693.800	693.800	
roas	10	10	<u></u>	22	3Z	3Z	
mods	540	540	1188	1188	1728	1728	6912

Material budget comparison

Radiation Length by Component(extend to beampipe)

IT Module: FPC IT Module: Glue sensor

Radiation Length by Component(z=700mm)

$AII > 0.9\%X_0$!

Impact parameter resolutions of different number of layers

Summary

- Realistic VXD design for both MOST2 prototype and CEPC experiment ongoing.
- Prototype V1 design evaluated with tkLayout fast simulation tool
 - Material budget requirement rather challenge
 - Impact parameter resolution need more check, the trend looks reasonable
- Plan
 - Improve workable mechanical design
 - Understand and validate the simulation tools
 - And evaluate the design with fast simulation → full simulation → physics performance
 - Realistic designs for beam test and CEPC experiment

Beam Pipe

- from Quan Ji

Prototype V1

Number of hits ۲ 4 20 م سسا 60 Number of hits 18 19 3 40 2 14 20 12 10F C 8 -20 -40 -60 and marken densels 00 Ľı. -3 3.5 4 0.5 1.5 2 2.5 3 -60 -40 -20 0 20 40 60 1 η x [mm] Hit coverage across eta. - (png) - (pdf) - (root) 0.0 0.6 0.8 0.2 0.4 -4 [] -3 -2 -1 2 3 ¹⁴⁰ ø 1.0 Hit coverage in eta, phi - (png) - (pdf) - (root) 120 100 1.2 Barrel : PXB1 Total 80 1.4 5 2 3 4 6 Layer 1 1.6 17.116 19.041 37.667 39.577 58.914 60.842 60 1.8 z_max 64.200 64.200 128.450 128.450 128.450 128.450 2.0 40 22 22 32 32 2.2 # rods 10 10 220 220 320 # mods 50 50 320 1180 20 40 60 80 100 120 1 ¹⁴⁰,η 0 20 z [mm]

Number of hits

9

8

6

2

PrototypeV1 material budget

Material distribution:

PrototypeV1 material budget

Impact parameter resolutions of different radius

Layouts comparison

• Different number of layers(resolution vs θ)

Layouts comparison Different number of layers(resolution vs θ)

Layouts comparisonDifferent number of layers(resolution vs p)

Possible answer

0

High momentum track can pass through this small gap at θ around 90°, there will be no hits in this double layer. So the resolution of high p will be worse if there are gaps at z=0.

Layouts comparison

• Resolution for different z length:

