

Full Size Sensor Designs for the CEPC Vertex Detector

Wei Wei & Yunpeng Lu On behalf of the CEPC Vertex detector design team

2019-12-30

CEPC Day, 2019.12.30

Outline

- CEPC Vertex Detector Concept
- Design activities for the full size sensor
 - Fine pitch low power approach
 - Fast readout approach
- Recent Status of the sensor designs
 - Jadepix3
 - TaichuPix1
 - Test & plans

CEPC Detector Concepts

- Baseline detector concept
 - either Silicon tracker + TPC or full Silicon Tracker
 - High granular calorimetry system
 - 3 Tesla solenoid
 - Muon detector

- Alternative detector concept,
 IDEA
 - Silicon pixel + Drift Chamber
 - 2 Tesla solenoid
 - Dual readout calorimeter
 - Muon chamber

Efficient tagging of heavy quarks (b/c) and τ leptons
 – impact parameter resolution

$$\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)\sin^{3/2}\theta} \,(\mu m)$$

CEPC Vertex Detector Concept

3-layers of double-sided pixel sensors

Ref: Pixel Vertex Detector Prototype MOST 2018-2023 (MOST2), Joao Costa, 2019.11

	ц.	R(mm)₌	z (mm).	σ(μm)-
Ladder1-{	Layer1,	16.	62.5.	2.8.
	Layer2 _e	18.	62.5 _e	6.
Ladder2-{	Layer3.	37 .	125 -	4 .
	Layer4-	39 #	125 -	4 .
Ladder3-{	Layer5-	58 _*	125 -	4₽
	Layer6₀	60 ∉	125 -	4.
50µm sensor		to co	ontrol board	
low mass flex cable				

A ladder module conceptual design

Resolution

ATLAS/CMS upgrade (15 μm) Alice upgrade (8 ~ 10 μm) CEPC vertex (3 ~ 5 μm)

Challenges and R&D activities on pixel sensors

۲

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness: ~18μm
 - Pixel size: $25\mu m \times 25\mu m$
- Hit rate: 120MHz/chip @W

- Two major constraints for the CMOS sensor
 - Pixel size: < 25μm* 25μm (σ~5μm)
 > aiming for 16μm*16μm (σ~3μm)
 - Readout speed: bunch crossing @ 40MHz
- None of the existing CMOS sensors can fully satisfy the requirement of high-rate CEPC Vertex Detector

6

 TID is also a constraint, 1~2.5Mrad/year is achievable

	ALPIDE	ATLAS-MAPS (MONOPIX / MALTA)	MIMOSA
Pixel size	v	Х	v
Readout Speed	Х	 ✓ 	Х
TID	X (?)	✓	✓

Challenges and R&D activities on pixel sensors

- TowerJazz CIS 0.18 μm process
 R & D on SOI in parallel
- Quadruple well process
- Thick (~20 μm) epitaxial layer
- with high resistivity ($\geq 1 \text{ k}\Omega \cdot \text{cm}$)
- Very small C_{diode} ~ a few fF

- Step 1: optimized separately either for spatial resolution or for readout speed
 - CPV1/2/3 and JadePix1/2/3
 - MIC4 and TaichuPix1
- Step 2: combine the two parts
 - with advanced technologies
 - > 3D-SOI is being pursuing
 - or on different layers

Previous CMOS pixel sensor prototypes

Prototype	Pixel pitch (µm²)	Collection diode bias (V)	In-pixel circuit	Matrix size	R/O architecture	Status
JadePix1	33 × 33 16 × 16	< 1.8	SF/ <u>amplifer</u>	96 × 160 192 × 128	Rolling shutter	In measurement
JadePix2	22 × 22	< 10 V	amp., discriminator	128 × 64	Rolling shutter	In measurement
MIC4	25 × 25	reverse bias	amp., discriminator	112 × 96	Asynchronous	In measurement

All prototypes in TowerJazz 180 nm process

- Slides from Y. Zhang: "IHEP CMOS pixel sensor activities for CEPC", 2018.3
- Y.P. Lu, "Pixel design and prototype characterization in China", The 2018 International Workshop on the High Energy Circular Electron Positron Collider

Outline

- CEPC Vertex Detector Concept
- Design activities for the full size sensor
 - Fine pitch low power approach
 - Fast readout approach
- Recent Status of the sensor designs
 - Jadepix3
 - TaichuPix1
 - Test & plans

JadePix3: Diode & Front-end design

- Design goals: small pixel size and low power consumption
- Sensing diode: negatively biased for high Q/C
 - Electrode size 4 μ m², with a small footprint 36 μ m²
- Frontend: tradeoff between FPN and layout area
 - Improvement on the FPN = 3.1e⁻ (simulation)
 - Reduction on the layout area, ~200 μm^2
 - A low power version (20nA), equivalent to 9 mW/cm²

Footprint

Electrode

JadePix3: Customized D-FlipFlop

- **D-FlipFlop (DFF) used to register the 'Hit' from the discriminator**
 - Set to 1 by the leading (falling) edge of discriminated pulse
 - Reset to 0 by the shared row line
 - Enhanced to drive the column line (capacitive)
 - Customized design to reduce the layout area

JadePix3: Rolling shutter readout of matrix

address decoder

No

- In-pixel circuit
 - Low power binary front-end
 - Optimized DFF
- Rolling shutter readout
 - 512 row * 192 col.
 - One row selected at a time
 - 102 us to finish 512 rows
 - Every 48 columns fed into the Priority Encoder at the end of columns.
- Minimum pixel size $16 \times 23.11 \ \mu m^2$
 - 4 variants to investigate possible optimizations

Sector	Diode	Front-end	Pixel digital	Pixel layout
0	$2+2\ \mu m$	FE_V0	DGT_V0	$16 \times 26 \ \mu m^2$
1	$2+2\ \mu m$	FE_V0	DGT_V1	$16 \times 26 \ \mu m^2$
2	$2+2\ \mu m$	FE_V0	DGT_V2	$16 \times 23.11 \ \mu m^2$
3	$2+2 \ \mu m$	FE_V1	DGT_V0	$16 \times 26 \ \mu m^2$

JadePix3: Periphery data processing

• Estimated Power consumption 60mW

۲

•

- 15mW (Zero suppression), 25mW (Serializer), 20mW (PLL)

JadePix3: Status

- Submitted in Oct. 2019
 - 10.4mm * 6.1 mm
- Minimum pixel size $16 \times 23.11 \ \mu m^2$
 - Rolling shutter readout 102 us/frame
- Estimated power consumption ~ 51 mW/cm²
 - 9mW/cm² (Pixel)
 - 30mW/cm² (Zero suppression)
 - 6.25mW/cm² (Serializer)
 - 5mW/cm² (PLL)
- Design team

IHEP: Yunpeng Lu, Ying Zhang, Yang Zhou, Zhigang
 Wu, Qun OuYang

- CCNU: Yang Ping, Weiping Ren, Le Xiao, Di Guo,
 Chenxing Meng, Anyang Xu, Xiangming Sun
- Dalian Minzu Unv: Zhan Shi
- SDU: Liang Zhang

6.1 mm

Outline

- CEPC Vertex Detector Concept
- Design activities for the full size sensor
 - Fine pitch low power approach
 - Fast readout approach
- Recent Status of the sensor designs
 - Jadepix3
 - TaichuPix1
 - Test & plans

Main specs of the full size chip for high rate vertex detector

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness: ~18μm
 - Pixel size: $25\mu m \times 25\mu m$

For Vertex	Specs	For High rate Vertex	Specs	For Ladder Prototype	Specs
Pixel pitch	<25µm	Hit rate	120MHz/chip	Pixel array	512row×1024col
TID	>1Mrad	Date rate	3.84Gbps triggerless ~110Mbps trigger	Power Density	< 200mW/cm ² (air cooling)
		Dead time	<500ns for 98% efficiency	Chip size	~1.4cm×2.56cm

From the CDR of CEPC

New proposed architecture by TaichuPix

- Similar to the ATLAS ITK readout architecture: "columndrain" readout
 - Priority based data driven readout
 - Modification: time stamp is added at EOC whenever a new fast-or busy signal is received
 - Dead time: 2 clk for each pixel (50ns @40MHz clk), negligible compared to the average hit rate

2-level FIFO architecture

- L1 FIFO: In column level, to de-randomize the injecting charge
- L2 FIFO: Chip level, to match the in/out data rate between the core and interface
- Trigger readout
 - Make the data rate in a reasonable range
 - Data coincidence by time stamp, only matched event will be readout¹⁷

Pixel architecture – Analog

- Digital-in-Pixel scheme: in pixel discrimination & register
- Pixel analog is derived from ALPIDE (and benefit from MIC4 for MOST1)
 - As most of ATLAS-MAPS sensors' scheme
- Biasing current has to be increased, for a peaking time of ~25ns
 - Now in MOST1 ~2us peaking time was designed, too slow for 40MHz BX
- Consequence:
 - Power dissipation increased
 - Modified TJ process for ATLAS has to be used
 - > With faster charge collection time, otherwise only fast electronics is of no meaning

Design effort aiming for 40MHz BX on digital

- ALPIDE-like scheme :
 - Fast-Or bus added to record the column hit time stamp
 - Boosting speed of the AERD (Address-Encoder & Reset-Decoder)
 - > To shift the Fast-Or by a half of the clock cycle
 - More margin in the timing constraint of the periphery circuit

- FE-I3-like scheme :
 - Simplify the pixel cell logic
 - All the logic gates were re-designed with fully customized layout
 For smaller pixel size

Full chip periphery logic design

- Main Functionality:
 - Trigger/Triggerless readout mode compatible
 - Data coincidence and trigger window logic
 - Two level FIFOs for hit derandomization
 - High speed serialization for data readout
 - 4Gbps data rate capability

From X.M. Wei for the CEPC Vertex MOST2 group meeting

- Other necessary blocks
 - Slow control of the pixel array and full chip via SPI interface
 - Bias generation by current- and voltage- DACs
 - Clock management: Phase Lock Loop and serializer
 - Power management: LDOs for on-chip low ripple power supply
 - High speed interface: CML & LVDS Drivers

TaichuPix Chip Status

- **First MPW tapeout of TaichuPix was** submitted in June
- Chip received in Nov.
 - With 60 chips, 40 chips delivered to China
- **One block area of 5mm × 5mm was** ulletfully occupied
 - A full functional pixel array (small scale)
 - > 85% of the block area
 - ➤ A 64×192 Pixel array + Periphery + PLL + Serializer
 - Bias generation included
 - > I/O arranged in one edge, as the final chip
 - other independent test blocks (less critical) > LDO + PLL

Chip size: 5mm×5mm Pixel size: 25µm×25µm

Encode

Diode

(3)

Digita

oaic

Diode

Digital

-ront-end

(4)

Team organization

• Design team:

- IHEP, SDU, NWPU, IFAE & CCNU
- Biweekly/weekly video design meeting on chip design (convened by IHEP)

Institutes	Tasks	Designers
IHEP	Full chip modeling & simulation Pixel Analog, TCAD simulation High speed interface: PLL + Serializer	Wei Wei, Ying Zhang Xiaoting Li, Weiguo Lu, Mei Zhao
CCNU/IFAE	Pixel Digital	Tianya Wu, Raimon Casanova
NWPU	Periphery Logic, LDO	Xiaomin Wei, Jia Wang
SDU	Bias generation	Liang Zhang

- Chip characterization
 - Test daughter boards: SDU & IFAE (Jianing Dong, IFAE)
 - FPGA Firmware: IHEP (Jun Hu, Wei Wei)
 - Electrical test: all designers + other interested parties
 - Irradiation test: X-ray irradiator + beam line

Outline

- CEPC Vertex Detector Concept
- Design activities for the full size sensor
 - Fine pitch low power approach
 - Fast readout approach
- Recent Status of the sensor designs
 - Jadepix3
 - TaichuPix1
 - Test & plans

Test system

Jadepix3 test system

TaichuPix1 test system

- Test setup based on KC705 Xilinx FPGA Eva board
 - For Jadepix3:
 - FPGA firmware to be adapted to the JadePix3 interface
 - > DAQ Software can be reused
 - For TaichuPix1
 - Communication interface with PC: SiTCP IP core & TCP/IP protocol
 - ➢ Downstream: TCPIP@MATLAB → SPI package@ FPGA → TaichuPix Periphery
 - ➢ Upstream : TaichuPix Serializer → FIFO@FPGA → TCPIP@MATLAB

TaichuPix1 preliminary test status

SPI incoming & outcoming stream by ChipScope

- Chip in test only for two weeks...
- Signs for the chip functionality:
 - PLL evaluated: locked@40MHz -> central freq. 2.24GHz
 - First condition of Triggerless capability satisfied
 - Serializer PRBS test
 @160Mbps stream
 observed
 - SPI control & output stream succeed
 - Periphery + Serializer combined test verified

```
Analog part to be tested
```


- Jadepix3 is going to be tested in June 2020
- The potential of the SOI-3D process will be explored by IHEP group
 - may bring about new design space in terms of shrinking the pixel size
- TaichuPix2 is about to be submitted in Feb. 2020
 - A fully functional chip was proposed with all the blocks integrated as in the full size chip
 - Pixel Matrix 64*192 + Periphery + DACs + PLL + Serializer + LDOs
 - New features will be studied in TaichuPix2
 - With chip-to-chip interconnection buses
 - > More testability added

Summary

- Two recent CMOS pixel sensor designs were discussed
- Jadepix3 for low power fine pitch objective
 - Minimum pixel size $16 \times 23.11 \ \mu m^2$
 - Estimated power consumption ~ 55 mW/cm²
 - Rolling shutter readout 102 us/frame
- TaichuPix1 for fast readout full functional objective
 - New scheme proposed based on column-drain architecture
 - > Event driven and time stamp, 2-level FIFOs,
 - Triggerless compatibility
 - > Possible to run @ 40MHz BX with high efficiency
- Test is progressing well for the system design and chip verification

Thank you !