

Institute of High Energy Physics Chinese Academy of Sciences

Circular Electron Positicon Collider

CEPC collider design and challenges at tt bar energy

Yiwei Wang for the CEPC Accelerator Physics Group

CEPC Physics and Detector Plenary Meeting Dec. 4, 2019 at IHEP

CEPC parameters (Tentative at tt)

30MW 0.38*10³⁴cm⁻²s⁻¹@ 350GeV 0.32*10³⁴cm⁻²s⁻¹@ 365GeV

If 50MW 0.63*10³⁴cm⁻²s⁻¹@ 350GeV 0.53*10³⁴cm⁻²s⁻¹@ 365GeV

tt based on lattice fcp=0.3%and $\varepsilon x = 1.2$ nm, if fcp=0.2%and $\varepsilon x = 0.89$ nm or even lower, the luminosity at tt will be higher.

	Higgs (high)	Higgs (CDR)	tt	tt
Number of IPs	2	2	2	2
Beam energy (GeV)	120	120	175	182.5
Circumference (km)	100	100	100	100
Synchrotron radiation loss/turn (GeV)	1.68	1.73	7.61	9.0
Crossing angle at IP (mrad)	16.5×2	16.5×2	16.5	16.5
Piwinski angle	3.78	3.48	0.91	0.89
Number of particles/bunch N_e (10 ¹⁰)	17.0	15.0	24.15	26.7
Bunch number (bunch spacing)	218 (0.76µs)	242 (0.68µs)	34	26
Beam current (mA)	17.8	17.4	3.95	3.3
Synchrotron radiation power /beam (MW)	30	30	30	30
Bending radius (km)	10.7	10.7	10.9	10.9
Momentum compact (10 ⁻⁵)	0.91	1.11	1.14	1.14
β function at IP β_x^* / β_y^* (m)	0.33/0.001	0.36/0.0015	1.2/0.0037	1.2/0.0037
Emittance $\boldsymbol{\varepsilon}_x/\boldsymbol{\varepsilon}_y$ (nm)	0.89/0.0018	1.21/0.0024	2.24/0.0068	2.46/0.0074
Beam size at IP $\sigma_x / \sigma_y (\mu m)$	17.1/0.042	20.9/0.06	51.8/0.16	54.4/0.17
Beam-beam parameters ξ_x/ξ_y	0.024/0.113	0.018/0.109	0.077/0.105	0.076/0.103
RF voltage V _{RF} (GV)	2.4	2.17	8.93	10.3
RF frequency f_{RF} (MHz) (harmonic)	650 (216816)	650 (216816)	650 (217500)	650 (217500)
Natural bunch length σ_{z} (mm)	2.2	2.72	2.54	2.62
Bunch length σ_z (mm)	3.93	4.4	2.87	2.93
HOM power/cavity (2 cell) (kw)	0.58	0.46	0.53 (5cell)	0.49
Energy spread (%)	0.19	0.134	0.14	0.15
Energy acceptance requirement (%)	1.7	1.35	1.57	1.7
Energy acceptance by RF (%)	3.0	2.06	2.67	2.48
Photon number due to beamstrahlung	0.104	0.082	0.19	0.15
Beamstruhlung lifetime /quantum lifetime* (min)	30/50	80/80	60	1.0
Lifetime (hour)	0.22	0.43		0.7
F (hour glass)	0.85	0.89	0.89	0.88
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	5.2	2.93	0.38	0.32

CEP

D. Wang et al

Collider design at tt bar

- CEPC is optimized at Higgs energy. The tt bar running will be based on the hardware for Higgs except adding RF cavities.
 - Lattice design:
 - In the arc and most part of interaction region, magnets strength margin reserved for running at tt bar; just need to make re-matching to keep the same beam size at the 4 final quadrupoles.
 - Error correction: same scheme as normalized strength is the same with Higgs mode
 - Dynamic aperture: The optimization of the DA at tt should be done for a asymmetric momentum acceptance in order to match the distribution with beamstrahlung (ref: FCC-ee, -2.8% and +2.4%).
 - MDI: The critical energy of radiated photon will be 3.5 times (i.e. 91keV and 130keV from last bends of upstream and downstream) but the power will be a bit lower.
 - RF cavity: space of 5-cell RF cavities is reserved for running at tt bar

Challenges of collider design at tt bar

- No much challenges on the accelerator physics design as not high luminosity is required at tt bar for CEPC.
- MDI: The critical energy of radiated photon will be 3.5 times. The shielding should be stronger. The photon background will be worse.
- RF cavity: high gradient 5-cell RF cavities is necessary

- CEPC is optimized at Higgs energy. The tt bar running will be based on the hardware for Higgs except adding RF cavities.
- No much changement on the collider design and no much challenges on the accelerator physics design as not high luminosity is required at tt bar for CEPC.
- Two issues of the physics and detector people may concern:
 - a asymmetric momentum acceptance in order to match the distribution with beamstrahlung (ref: FCC-ee, -2.8% and +2.4%).
 - In the interaction region, the critical energy of radiated photon will be 3.5 times (i.e. 91keV and 130keV from last bends of upstream and downstream) but the power will be a bit lower.

FCC-ee parameter Ref: FCC-ee CDR

Circumference	[km]			97.756				
Bending radius	[km]			10.760				
Free length to IP ℓ^*	[m]	2.2						
Solenoid field at IP	[T]	2.0						
Full crossing angle at IP θ	[mrad]	30						
SR power / beam	[MW]	50						
Beam energy	[GeV]	45.6	80	120	175	182.5		
Beam current	[mA]	1390	147	29	6.4	5.4		
Bunches / beam		16640	2000	328	59	48		
Average bunch spacing	[ns]	19.6	163	994	2763 ^a	3396 ⁴		
Bunch population	[10 ¹¹]	1.7	1.5	1.8	2.2	2.3		
Horizontal emittance ε_{π}	[nm]	0.27	0.84	0.63	1.34	1.46		
Vertical emittance ε_{y}	[pm]	1.0	1.7	1.3	2.7	2.9		
Arc cell phase advances	[deg]	60	60/60 90/90					
Momentum compaction α_p	[10-6]	14	14.8 7.3					
Arc sextupole families		20	208 292					
Horizontal β_{π}^{*}	[m]	0.15	0.2	0.3 1.0		.0		
Vertical β_{u}^{*}	[mm]	0.8	1.0	1.0	1	.6		
Horizontal size at IP σ_{π}^*	[um]	6.4	13.0	13.7	36.7	38.2		
Vertical size at IP σ_n^*	[nm]	28	41	36	66	68		
Energy spread (SR/BS) σ_{δ}	[%]	0.038/0.132	0.066/0.131	0.099/0.165	0.144/0.186	0.150/0.192		
Bunch length (SR/BS) σ_z	[mm]	3.5/12.1	3.0/6.0	3.15/5.3	2.01/2.62	1.97/2.54		
Piwinski angle (SR/BS) ϕ		8.2/28.5	3.5/7.0	3.4/5.8	0.8/1.1	0.8/1.0		
Length of interaction area L_t	[mm]	0.42	0.85	0.90	1.8	1.8		
Hourglass factor R _{HC}		0.95	0.89	0.88	0.84	0.84		
Crab sextupole strength ^b	[%]	97	87	80	40	40		
Energy loss / turn	[GeV]	0.036	0.34	1.72	7.8	9.2		
RF frequency	[MHz]		400 400 / 800		/ 800			
RF voltage	IGVI	0.1	0.75	2.0	4.0/5.4	4.0/6.9		
Synchrotron tune Q _a	1	0.0250	0.0506	0.0358	0.0818	0.0872		
Longitudinal damping time	[turns]	1273	236	70.3	23.1	20.4		
RF bucket height	[%]	1.9	3.5	2.3	3.36	3.36		
Energy acceptance (DA)	[%]	±1.3	±1.3	±1.7	-2.8	+2.4		
Polarisation time t_n	Iminl	15000	900	120	18.0	14.6		
Luminosity / IP	[10 ³⁴ /cm ² s]	230	28	8.5	1.8	1.55		
Horizontal tune Q_	[10 / 10 0]	269.139	269.124	389.129	389	108		
Vertical tune Q_{μ}		269.219	269.199 389.199 389.175					
Beam-beam $\mathcal{E}_{\pi}/\mathcal{E}_{\mu}$		0.004/0.133	0.010/0.113	0.016/0.118	0.097/0.128	0.099/0.126		
Allowable e ⁺ e ⁻ charge asymmetry	[%]	+5	+5 +3					
Lifetime by rad. Bhabha scattering	[min]	68	59	38	40	30		
Actual lifetime due to beamstrahlung	Imin	> 200	> 200	18	24	18		
Actual metime due to beamstraniung	[mm]	> 200	> 200	10	24	10		

ww

ZH

fŤ

