

A quick look at CEPC 360GeV $t\bar{t}$ run

Kaili Zhang 04/12/2019

Outline

- Physics overview
- Practice from Fcc-ee
 - $t\bar{t}$ threshold scan + $t\bar{t}$ run
 - $t\bar{t}$ cross section
- CEPC current estimation
 - Higgs extrapolation
 - Top decays

Processes at $t\overline{t}$ threshold

Fcc CDR and 2017 Top Physics WS, based on

Practice from Fcc-ee

CEPC

4

- Fcc-ee did a comprehensive study on threshold scan and 365GeV run, and how they helps the Top Physics, Coupling, EFT and so on.
 - Their CDR, Their theory report arXiv:1905.05078v2, and so on;
 - We could roughly refer to. Since our performance could be comparable.
- 0.2iab for threshold scan
 - 8 points between 340 to 345GeV, each 25ifb.
- 1.5iab for 365GeV
 - 365GeV is chosen to optimally measure the top-quark electroweak couplings, without the need of incoming beam polarization: <u>arXiv:1503.01325</u>

Fcc-ee Precision

Luminosity spectrum is assumed to be a gaussian with a σ of 0.19%

• Top:

- Top Mass: ±17MeV (stats)
 - ± 10 MeV (stats, fixed to SM prediction)
- Top Width: ±45MeV (stats)
- Current QCD theoretical uncertainty: ~40MeV. To be suppressed to 10MeV.

• Higgs

$\sqrt{s} \; (\text{GeV})$	240		365	
Luminosity (ab^{-1})	5		1	.5
$\delta(\sigma BR)/\sigma BR$ (%)	ΗZ	$\nu\overline{\nu}$ H	HZ	$\nu\overline{\nu}$ H
$H \rightarrow any$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c \bar c$	± 2.2		± 6.5	± 10
${\rm H} \rightarrow {\rm gg}$	± 1.9		± 3.5	± 4.5
$H \rightarrow W^+ W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \rightarrow \mathrm{ZZ}$	± 4.4		± 12	± 10
$H \to \tau \tau$	± 0.9		± 1.8	± 8
$H \rightarrow \gamma \gamma$	± 9.0		± 18	± 22
$ H \rightarrow \mu^+ \mu^-$	± 19		± 40	
$H \rightarrow invisible$	< 0.3		< 0.6	

• Width could be measured at 1.3%.

$t\bar{t}$ threshold scan

- pp collider can not measure Top mass better than 1GeV.
 - Top physics require a scan near the threshold first.

- For Higgs Physics
 - Sensitive to total integrated luminosity.
 - 340/345/360/365 do not have huge difference.
- CEPC also need a similar plan for scan.

Large uncertainties.

To measure Top mass and width.

tīt threshold - m_t^{PS} 171.5 GeV

Beneke et al. NNNLO

tt cross section

Many effects, beamstrahlung, beam spread, ISR.....

Calculation by Gang, whizard2, no top width:

Results are much smaller than ILC/Fcc did. Need further check.

For convenience, in the following we take $t\bar{t}$ cross section for 350GeV: 0.49pb; 360GeV: 0.60pb; 365GeV: 0.65pb;

• What the luminosity spectrum does to the threshold:

Also the bump ~344GeV is one interesting target for scan.

CEPC $t\bar{t}$ run

CEPC

- ttbar run would mostly benefit the physics like EW and Top.
- For Higgs, it improves width precision best.
 - Dominated by vvH->bb measurement.
- Temporary benchmark: 2 iab @ 365GeV

• Why 360? It saves 10% energy with respect to 365 GeV

- Main reason for 365GeV could refer to arXiv:1503.01325
 - Best precision for top-quark electroweak couplings
 - Also could note that, 350GeV run also has decent precision.
 - Need suggestion from Accelerator/Detector part.

2iab is also one temporary value. It would take about 5 years to take.

Major Processes

fb	240	350	360	365	365/240	pb	240	350	360	365	365/240
ZH	196.9	133.3	126.6	123.0	-38%	$ee(\gamma)$	930	336	325	319	-65%
WW fusion	6.2	26.7	29.61	31.1	+401%	μμ(γ)	5.3	2.2	2.1	2.1	-60%
ZZ fusion	0.5	2.55	2.80	2.91	+482%	qq(γ)	54.1	24.7	23.2	22.8	-57%
Total	203.6			157.0		WW	16.7	10.4	10.0	9.81	-40%
Total Events	1.14M			0.31M		ZZ	1.1	0.66	0.63	0.62	-43%
<u> </u>		· · · · · · · · · · · · · · · · · · ·				tt	١	0.49	0.60	0.65	+
t] b - 1 250-	Total ZH CE WW fusion					sZ	4.54	5.72	5.78	5.83	+27%
	- ZZ fusion	-				sW	5.09	5.89	6.00	6.04	+18%

In total ~1.45M Higgs would be collected in CEPC 240+365GeV. Correlation between ZH and vvH considered. For back ground processes, major 2f are reduced. ttbar cross section would be close to ZZ 4f process.

vvH->bb, full simulation

- 2d Recoil qq + Cos θ_{qq} Fit
- Clear separation between ZH and vvH.
- Constrain from other ZH->bb(*ee*, $\mu\mu$, qq) considered
 - $\sigma(vvH) * Br(H \rightarrow bb):0.76\%$
 - $\sigma(ZH) * Br(H \rightarrow bb): 0.63\%$
 - share the anti-correlation -15.8%.

Higgs width

- Now CEPC Higgs width is fitted in the 10- κ framework.
- Adding one mass point would significantly improve the constrain.
 - Much more vvH event and better separation. Significantly improve the constrain.
 - Standalone 240GeV gives 2.9%, while 360GeV alone gives 2.8%.
 - Combined fit

 $\Delta(\Gamma_H) \approx 1.4\%$

*: Fcc-ee assumes that exotic Br can not smaller than 0. This assumption lower the negative side, Like (-1.2%, 1.4%). Then Fcc use median 1.3%, We didn't take this assumption. The results are comparable.

Higgs measurement results

	240GeV, 5.6ab ⁻¹	360Ge	V, 2ab⁻¹
	ZH	ZH	vvH
any	0.50%	1%	١
$H \rightarrow bb$	0.27%	0.63%	0.76%
$H \rightarrow cc$	3.3%	6.2%	11%
$\mathrm{H} \rightarrow \mathrm{gg}$	1.3%	2.4%	3.2%
$H \rightarrow WW$	1.0%	2.0%	3.1%
$H \rightarrow ZZ$	5.1%	12%	13%
$H \rightarrow \tau \tau$	0.8%	1.5%	3%
$\mathrm{H} ightarrow \gamma \gamma$	5.4%	8%	11%
$H \rightarrow \mu \mu$	12%	29%	40%
$Br_{upper}(H \rightarrow inv.)$	0.2%	١	١
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	25%	١
Width	2.9%	1.4%	

Generally, since the extrapolation is not so accurate, results are comparable. For Higgs coupling, also similar performance could be expected. Higgs Performance would not have huge deviation for 360 and 365GeV.

\sqrt{s} (GeV)	24	.0	36	5
Luminosity (ab^{-1})	5	5	1.	5
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}\;H$
$H \rightarrow any$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c\bar{c}$	± 2.2		± 6.5	± 10
$H \rightarrow gg$	± 1.9		± 3.5	± 4.5
$H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$H \rightarrow ZZ$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H \rightarrow \gamma \gamma$	± 9.0		± 18	± 22
$\mid \mathrm{H} ightarrow \mu^+ \mu^-$	± 19		± 40	
$H \rightarrow invisible$	< 0.3		< 0.6	

See previous talk <u>@CEPC day</u>;

$t\overline{t}$ samples at CEPC

- From Gang: Now Whizard2 could generate the sample correctly.
 - Ready to request $t\overline{t}$ samples.
 - First need to discuss about the strategy.
- $t\bar{t} \rightarrow WW^*\bar{b}b$:
 - A brief estimation from Manqi:
 - qqqq+bb: Eff*Purity≈50%
 - *Ivqq+bb: Eff*Purity≈75%* One optimal-observable study in this channel described in <u>arXiv:1503.01325</u>
 - *lvlv+bb: Eff*Purity≈90%*
 - In total we would have ~1.3Million $t\overline{t}$ events.
 - ~62% of them would be easy to tag. -> 800k.
 - Strict requirement for our jet performance.
 - 2/4/6 Jet separation, b-tagging and BMR?
 - Others: Kinematic Fitting? Boosted Top quark?

$$\chi^{2} = \frac{(m_{\ell\nu b}^{2} - m_{t})^{2}}{\sigma_{m_{t}, \text{lep}}^{2}} + \frac{(m_{jj}^{2} - m_{W})^{2}}{\sigma_{m_{W}, \text{had}}^{2}} + \frac{(m_{jjj}^{2} - m_{t})^{2}}{\sigma_{m_{t}, \text{had}}^{2}}$$

Summary

- A brief look at top and higgs physics at $t\overline{t}$ run for CEPC
 - For Top, need a threshold scan for Top mass and width
 - From Fcc-ee result, Top Mass(Width): $\pm 17 MeV(\pm 45 MeV)$
 - For Higgs, need a ~365GeV run for vvH to constrain Higgs width
 - 2 different energy points would help for width and also triple Higgs coupling and so on.
 - Need to set a benchmark for CEPC run.
 - Fcc-ee use 0.2iab Scan + 1.5iab 365GeV. Our value?