
Top threshold physics

Zhijun Liang

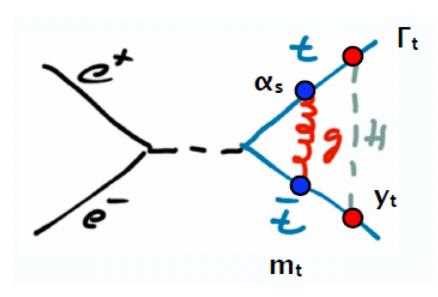
Institute of High Energy Physics, Chinese Academy of Science

Introduction

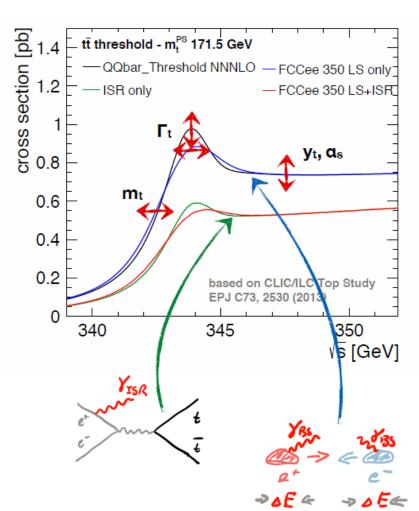
- CEPC is Higgs Factory (E_{cms}=240GeV, 10⁶ Higgs)
- CEPC is Z factory($E_{cms} \sim 91$ GeV), electroweak precision physics at Z pole.
 - baseline L=1.6 X 10^{35} cm⁻²s⁻¹, Solenoid =3T, 3X 10^{11} Z boson, two years
 - L= $3.2 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$, Solenoid = 2T, $6\times 10^{11} \text{ Z boson}$
- WW threshold scan runs (~160GeV) are also expected.
 - One year, Total luminosity 2.6 ab⁻¹ 14M WW events

From F. Bedeschi

Top threshold scan

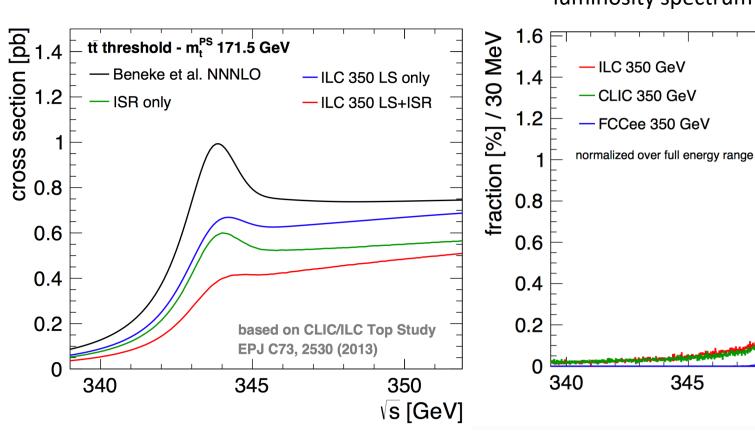

Review of the key electroweak constant

Fundamental constant	δx/x	measurements	
$\alpha = 1/137.035999139 (31)$	1×10 ⁻¹⁰	$\mathrm{e}^{\pm}g_2$	
$G_F = 1.1663787 (6) \times 10^{-5} \text{ GeV}^{-2}$	1×10 ⁻⁶	$\mu^{\pm} lifetime$	
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10 ⁻⁵	LEP	
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10 ⁻⁴	LEP/Tevatron/LHC	
$sin^2\theta_W = \ 0.23152 \pm 0.00014$	6×10 ⁻⁴	LEP/SLD	
$m_{top} = 172.74 \pm 0.46 \text{ GeV}$	3×10 ⁻³	Tevatron/LHC	Top s
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10 ⁻³	LHC	√ Runs


From PDG2018

top threshold scan

- Top threshold cross-section depends on:
 - top mass
 - top width (lifetime)
 - top-Higgs coupling
 - αQCD



Thanks to discussion and slides from Alain Blondel Study by Frank Simon (CLIC/ILC study, EPJC 73,(2013)2530)

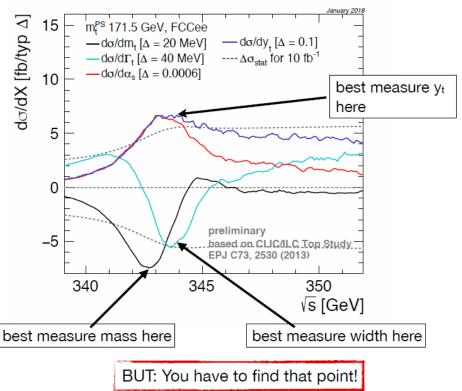
Theory prediction

- Impact due to luminosity spectrum and ISR is large
- Cross section to be re-calculated with CEPC luminosity spectrum

luminosity spectrum for ILC/CLIC/FCCee

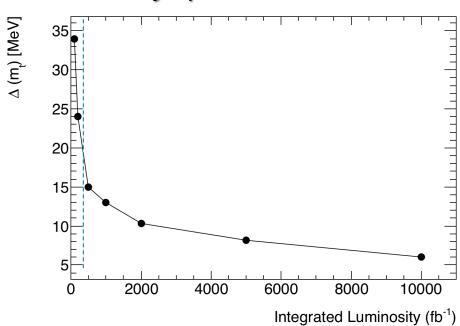
355

√s' [GeV]


350

Top threshold scan

Strategy:


- Need a rough scan in step of 1GeV to measure the top mass (5 fb⁻¹)
- Fix the final scan points
- since there are four parameters to fix, need at least 4 scan points
 - Scanning range 342GeV ~350GeV
 - Focusing 342GeV ~344GeV

Top threshold scan

- If CEPC decided to have top threshold scan
 - Better to have integrated Lumosity larger than 200~400fb⁻¹
 - Need to re-calculated with CEPC lumiosity spectrum
 - Aim for 15MeV precision

ILC/CLIC estimation with 100 fb-1

m_t stat. error	34 MeV
m_t theory syst. (1 %/3 %)	5 MeV/8 MeV
α_s stat. error	0.0009
α_s theory syst. (1 %/3 %)	0.0008/0.0022

Summary

- Potential of electroweak measurement at CEPC
 - Possible target for top mass precision (15MeV) for CEPC
 - Propose 200~400 fb⁻¹ integrated Luminosity scanning
 - Scan range: 342GeV~350GeV

Backup