Radius Optimization at CEPC

Hao Liang
2019/11/30

Track performance dependence on R and Z

- In the barrel, we fit the simulation result of $R_{0}=1.8 \mathrm{~m}$
- We extrapolate the results to other R assuming track resolution is proportional to the inverse square of the radius of TPC.
- Then we extrapolate results to the end-cup and correct it with a scale factor $\frac{\tan ^{2}\left(\theta_{c}\right)}{\tan ^{2}(\theta)}$. This scale factor is from the assumption that track resolution is proportional to the square inverse the maximum radius of track in TPC.

Fix Area or Volume

- We want to study the optimal R with fix cost
- We study similar problem
- Optimal R with fix Area
- Optimal R with fix Volume

Optimize R

- Criteria

- The average PT resolution of tracks (|cos $\theta \mid<0.99)$
- Weighted by the overall tracks polar-angle distribution
- Zpole->2tracks
- ZH,H->2tracks

Optimal R for fix area 1.65 m
Optimal R for fix volume 1.63 m

Optimal R for fix area 1.75 m Optimal R for fix volume 1.73 m

Optimize R

- The average of track momentum resolution depends on acceptance
- Due to the simplicity of our analysis, the optimal ratio of Z / R is independent to the desire cost

