Radius Optimization at CEPC

Hao Liang 2019/11/30

Track performance dependence on R and Z

- In the barrel, we fit the simulation result of $R_0 = 1.8$ m
- We extrapolate the results to other *R* assuming track resolution is proportional to the inverse square of the radius of TPC.
- Then we extrapolate results to the end-cup and correct it with a scale factor $\frac{\tan^2(\theta_c)}{\tan^2(\theta)}$. This scale factor is from the assumption that track resolution is proportional to the square inverse the maximum radius of track in TPC.

Fix Area or Volume

- We want to study the optimal R with fix cost
- We study similar problem
 - Optimal R with fix Area
 - Optimal R with fix Volume

Optimize R

- Criteria
 - The average PT resolution of tracks ($|\cos\theta| < 0.99$)

0.010

- Weighted by the overall tracks polar-angle distribution
 - Zpole->2tracks
 - ZH,H->2tracks

Fix Area = A_0

Fix Volume = V_0

Optimal R for fix area 1.65m Optimal R for fix volume 1.63m Optimal R for fix area 1.75m Optimal R for fix volume 1.73m

 $ZH, H \rightarrow ff$

-0.25 0.00 0.25 0.50 $\cos(\theta_1)$

Optimize R

- The average of track momentum resolution depends on acceptance
- Due to the simplicity of our analysis, the optimal ratio of Z/R is independent to the desire cost

