
Tau Decay Mode
Classification using

Neural Network
Bowen Zhang

09/12/2019

NJU-TAU Meeting

1

Presented RNN approach a while ago

Recap

RNNBDT

2

Checked inslusion of PanTau BDT vars

Recap

3

Input variable:

Redundant variables?

New powerful discriminant variables?

Properly transformed?

The way to feed them into the NN?

Neural Network:

Alternative architectures?

Tool:

Better workflow? Memory problem? Paralell?

Others:

Training / testing datasets

…

To be improved…

4

Input variable:

Redundant variables?

New powerful discriminant variables?

Properly transformed?

The way to feed them into the NN?

Neural Network:

Alternative architectures?

Tool:

Better workflow? Memory problem? Paralell?

Others:

Training / testing datasets

…

More-or-less involved today

5

In the following:

the inputs are the same: from Charged PFOs, Neutral PFOs, Shot PFOs and Conversion tracks

 Training: 4M (1/4 mc16d gammatautau), Validation: 1M, Testing: 0.1M

Baseline - the “multi-RNN”

Output

Linear

RNN (i, h)

InputChargedPFO NeutralPFO ShotPFO ConvTrack

3,6 -> 3,24

LSTM (24,24)

3,24 -> 3,24

10,14 -> 10,24

LSTM (24,24)

10,24 -> 10,24

6,6 -> 6,16

LSTM(16,16)

6,16 -> 6,16

4,6 -> 4,16

LSTM(16,16)

4,16 -> 4,16

Decay Mode

⊕
472 -> 64 -> 32 x 2

6

Baseline - the “multi-RNN”

7

ChargedPFO NeutralPFO ShotPFO ConvTrack

3,6 -> 3,24

LSTM (24,24)

3,24 -> 3,24

10,6 -> 10,24

LSTM (24,24)

10,24 -> 10,24

6,6 -> 6,16

LSTM(16,16)

6,16 -> 6,16

4,6 -> 4,16

LSTM(16,16)

4,16 -> 4,16

Decay Mode

⊕
472 -> 64 -> 32 -> 5 x 2

Try1: Only use p4 in RNN:

4-vector of individual objects (wrt. Tau jet)

My assumption: With those infomation only, one would NOT get a good performance.

-> Drop the Neutral PFO cluster variables

(that defined PanTau BDT Variables)

ϕ(τ), Δϕ(pfo, τ), η(τ), Δη(pfo, τ), pT, pT(τ)

Output

Linear

RNN (i, h)

Input

8

Try1: Only use p4 in RNN

Efficiency matrix

4-vector of individual objects (wrt. Tau jet)

4-vector Baseline

9

To prove this in an intuitive way

Try2:

Put the 4-vector infomation into an “image”

Train a CNN classifier.

Put the 4-vector infomation into an 12x12 “image” (four layers)

4-vector of individual objects (wrt. Tau jet)

X:

Y:

Z:

f(Δϕ)
f(Δη)
log10(pT)/log10(pτ

T)

f(x) = ± 0.42 − (0.4 − x)2

10

To prove this in an intuitive way

Try2:

Put the 4-vector infomation into an “image”

Train a CNN classifier.

Put the 4-vector infomation into an 12x12 “image” (four layers)

4-vector of individual objects (wrt. Tau jet)

X:

Y:

Z:

f(Δϕ)
f(Δη)
log10(pT)/log10(pτ

T)

f(x) = ± 0.42 − (0.4 − x)2

f(x)
Δϕ(charged PFO)

Δϕ(neutral PFO)

Inside to outside circles:
ΔR = 0.1, 0.2, 0.3, 0.4

11

To visualise:

4-vector of individual objects (wrt. Tau jet)

ChargedPFO NeutralPFO ShotPFO
12

Train a simple deep CNN classifier.

Result …

Unfortunately the model was not found…

The validation diagonal efficiency was 76%

4-vector of individual objects (wrt. Tau jet)

Linear

Input

CNN (c, k)

Max Pool

Output

Image (4x12x12)

CNN (16, 3)

CNN (16, 3)

Max Pool

CNN (32, 3)

CNN (32, 3)

Max Pool

CNN (64, 3)

CNN (64, 3)

576 -> 64

67 -> 32 -> 5

Tau pT, phi, eta⊕

13

Now we can simplify the “multi-RNN” and combine it with the CNN

Try3: CNN + RNN

Linear

Input

CNN (c, k)

Max Pool

RNN (i, h)
Output

Image (4x12x12)

CNN (16, 3)

CNN (16, 3)

Max Pool

CNN (32, 3)

CNN (32, 3)

Max Pool

CNN (64, 3)

CNN (64, 3)

576 -> 64

131 -> 32 -> 5

Tau pT, phi, eta

NeutralPFO

10,8 -> 10,16

LSTM (16,16)

10,16 -> 10,16

160 -> 64

64 -> 64

⊕

14

Efficiency matrix

Try3: CNN + RNN

CNN+RNN Baseline

15

Package Status
ROOT I/O in pure Python and Numpy.

(Replace root_numpy, directly use MxAODs)
Efficient loading of large dataset

(working on this…)

Better control of computing graph
(RNN hidden state, easier to combine multi algs)

Visualizing data, model and training

Core: Uproot + Lmdb + PyTorch

Still converting MxAOD into flat ntuples now.

Almost no memory consumption using Lmdb

Pytorch is very flexible to use for testing and debugging the computing graghs

Basic code structure is in good shape

ToDo:

Visualising data and testing. (could be Jupyter-notebook-based)

Performance plots. (efficiency, ROC, …)

Deploy models in C++ framework
16

Summary
Investigate the variables that are curently being used

With 4-vector information only, the classifier outperform BDT

As a next step, I’d like to understand the neutral PFO variables

Test alternative NN architectures

Feed 4-vector information into images

CNN: compatible performance with multi-RNN

Image creation and CNN architecture can be improved

No limit on the number of objects (N), could be interesting if N is large -> larger image

CNN + RNN: compatible performance with multi-RNN

Interesting to try:

Embedding the neutral branch in an “image”: fully-CNN

Attention-based RNN: learn better the relationship between ojects and between branches

Define a customised loss function. (i.e. weighted CrossEntropyLoss)

PFOs

Va
rs

17

Backup

18

df[(df["TauJets.truthDecayMode"] > 4) | (df["TauJets.IsTruthMatched"] != 1) |
 (df["TauJets.pt"] < 20000) | (df["TauJets.truthPtVis"] < 20000) |
 (df["TauJets.pt"] > 100000) | (df["TauJets.truthPtVis"] > 100000) |
 (df["TauJets.eta"] > 2.5) | (df["TauJets.truthEtaVis"] > 2.5) |
 ((df["TauJets.eta"] > 1.37) & (df["TauJets.eta"] < 1.52)) |
 ((df["TauJets.truthEtaVis"] > 1.37) & (df["TauJets.truthEtaVis"] < 1.52)) |
 ((df["TauJets.nTracks"] != 1) & (df["TauJets.nTracks"] != 3)) |
 ((df[“TauJets.truthProng"] != 1) & (df["TauJets.truthProng"] != 3))]

Selection

19

20

