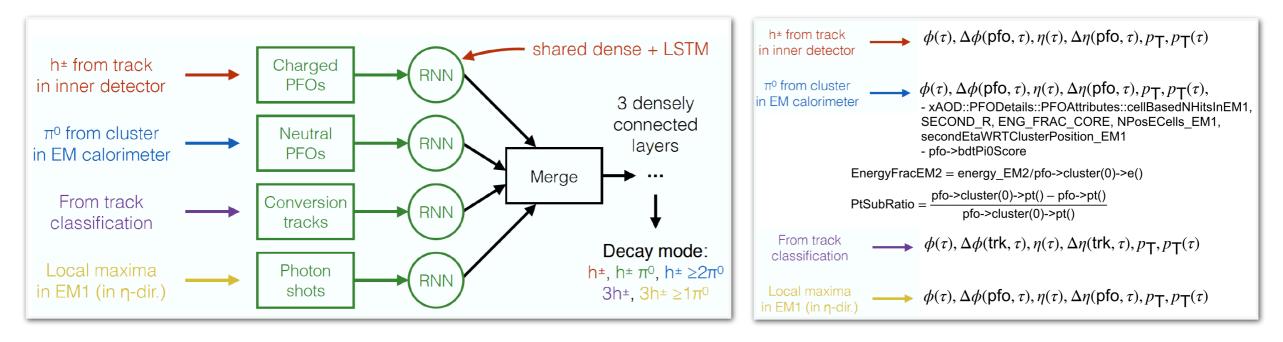
Tau Decay Mode Classification using Neural Network

Bowen Zhang 09/12/2019 NJU-TAU Meeting

Recap

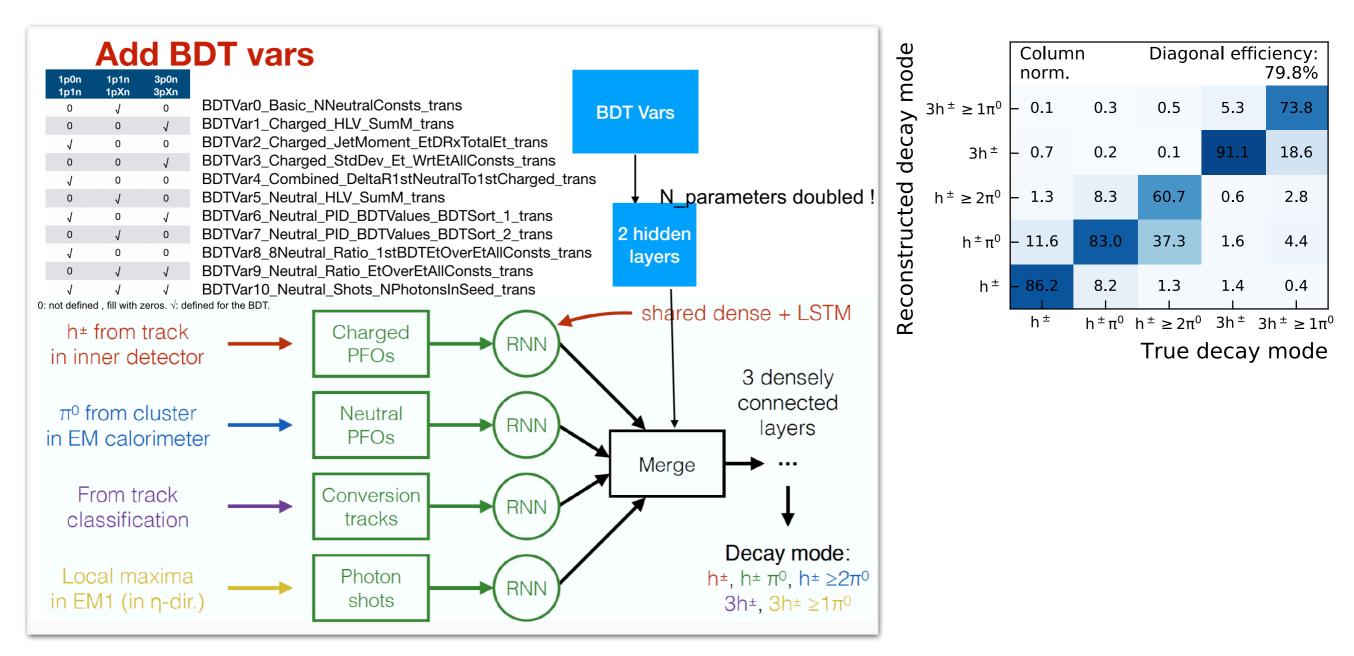
Presented RNN approach a while ago



Mode	ATLAS	Simulation	Internal	Diagonal	73.1% fficiency	mode		Colum norm.	n RNN		nal effic	iency: 80.4%
nXq£ Decay Decay	0.0	0.5	0.5	5.4	58.0	ay m	$3h^{\pm} \ge 1\pi^0$	- 0.1	0.4	0.6	5.4	74.9
ng 3p0n	0.1	0.1	0.1	91.4	36.6	decay	3h±	- 0.7	0.2	0.1	91.0	18.3
မ္ဘိ 1pXn	2.0	11.2	40.4	0.5	1.7	cted	$h^{\pm} \ge 2\pi^0$	- 1.2	7.8	61.3	0.5	2.4
1p1n	16.6	77.2	56.1	1.4	3.3	Ē	$h^{\pm}\pi^0$	- 11.4	83.6	36.7	1.6	4.0
1p0n	81.3	11.0	2.9	1.2	0.4	Reconstru	h ±	- 86.6	8.0	1.3	1.4	0.4
L	1p0n	1p1n	1pXn	3p0n	3pXn	Rec		h±	h±π ⁰	 h [±] ≥ 2π ⁰	3h± 3	$h^{\pm} \ge 1\pi^0$
	True Tau Decay Mode						True decay mode					

Recap

Checked inslusion of PanTau BDT vars



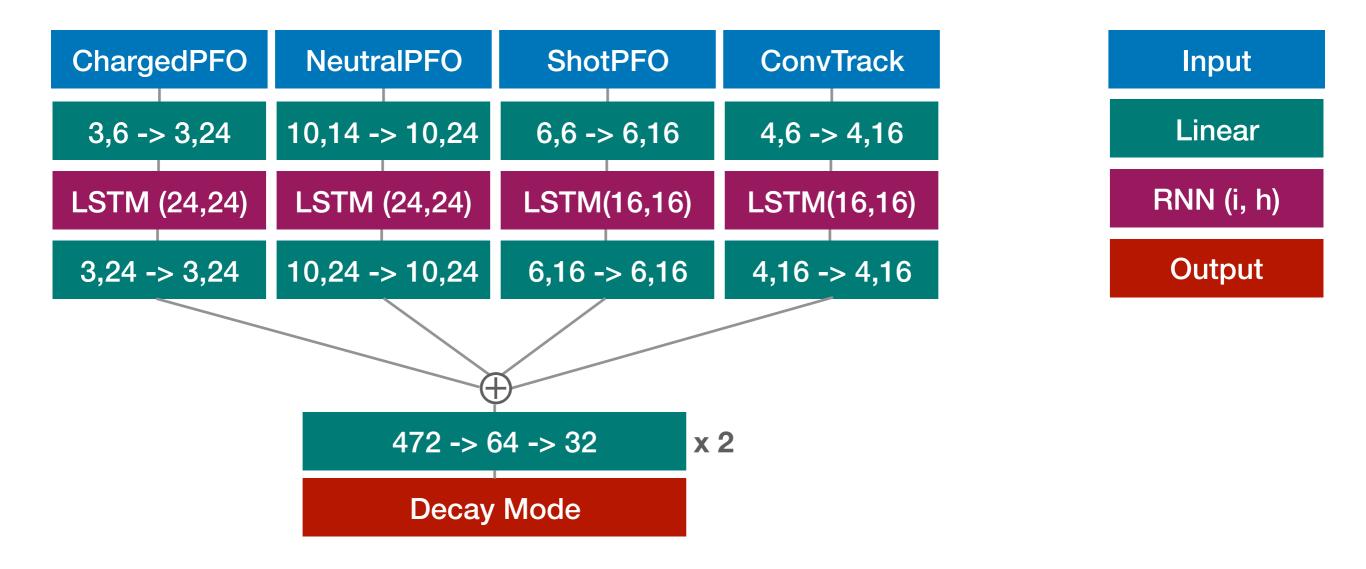
To be improved...

- Input variable:
 - Redundant variables?
 - New powerful discriminant variables?
 - Properly transformed?
 - The way to feed them into the NN?
- Neural Network:
 - Alternative architectures?
- Tool:
 - Better workflow? Memory problem? Paralell?
- Others:
 - Training / testing datasets
 - 0

More-or-less involved today

- Input variable:
 - Redundant variables?
 - New powerful discriminant variables?
 - Properly transformed?
 - The way to feed them into the NN?
- Neural Network:
 - Alternative architectures?
- Tool:
 - Better workflow? Memory problem? Paralell?
- Others:
 - Training / testing datasets
 - 0

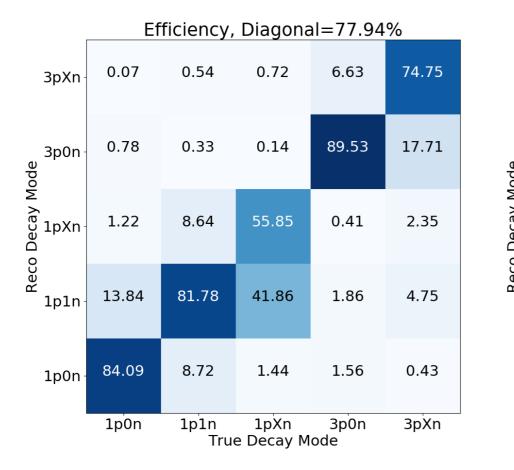
Baseline - the "multi-RNN"



• In the following:

- the inputs are the same: from Charged PFOs, Neutral PFOs, Shot PFOs and Conversion tracks
- Training: 4M (1/4 mc16d gammatautau), Validation: 1M, Testing: 0.1M

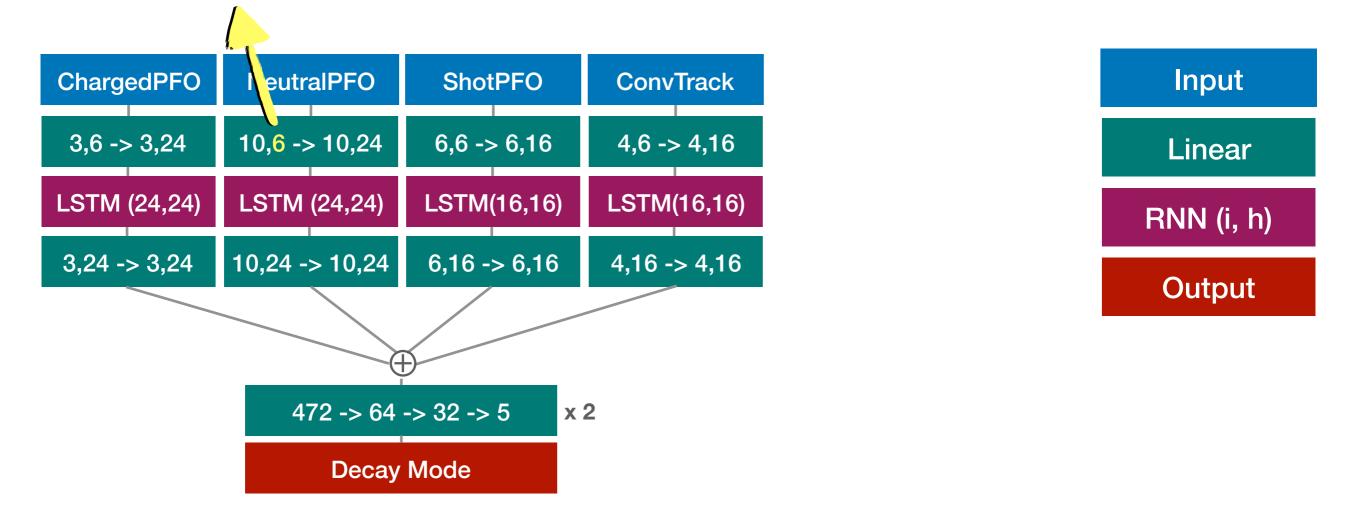
Baseline - the "multi-RNN"



Purity, Diagonal=77.94%								
3pXn-	0.17	3.14	1.86	13.19	81.65			
3p0n- əp	0.96	0.94	0.17	88.34	9.59			
Reco Decay Mode UXd1 - UXd1	1.49	25.08	71.74	0.41	1.28			
j 2 1p1n∙	5.43	75.95	17.21	0.59	0.83			
1p0n-	78.08	19.17	1.40	1.17	0.18			
·	1p0n 1p1n 1pXn 3p0n 3pXn True Decay Mode							

• **Try1:** Only use p4 in RNN: $\phi(\tau)$, $\Delta\phi(pfo, \tau)$, $\eta(\tau)$, $\Delta\eta(pfo, \tau)$, p_T , $p_T(\tau)$

-> Drop the Neutral PFO cluster variables (that defined PanTau BDT Variables)



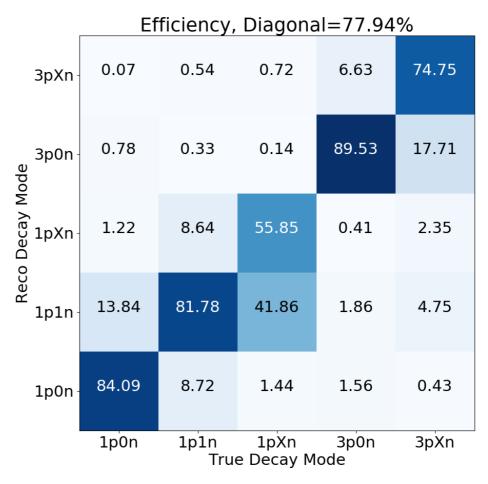
My assumption: With those infomation only, one would NOT get a good performance.

- **Try1:** Only use p4 in RNN
- Efficiency matrix

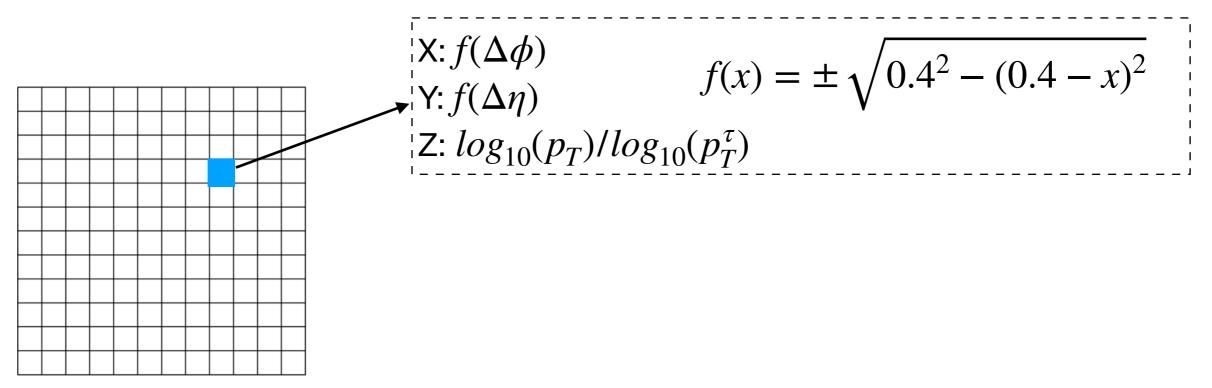
Efficiency, Diagonal=76.64%								
3pXn	0.04	0.46	0.67	5.14	70.42			
3p0n ep o	0.70	0.30	0.16	91.01	21.55			
Reco Decay Mode UXd1	1.42	8.00	51.80	0.53	2.63			
lpln	17.19	82.21	45.49	2.03	5.00			
1p0n	80.65	9.03	1.89	1.30	0.40			
1p0n 1p1n 1pXn 3p0n 3p> True Decay Mode								

4-vector

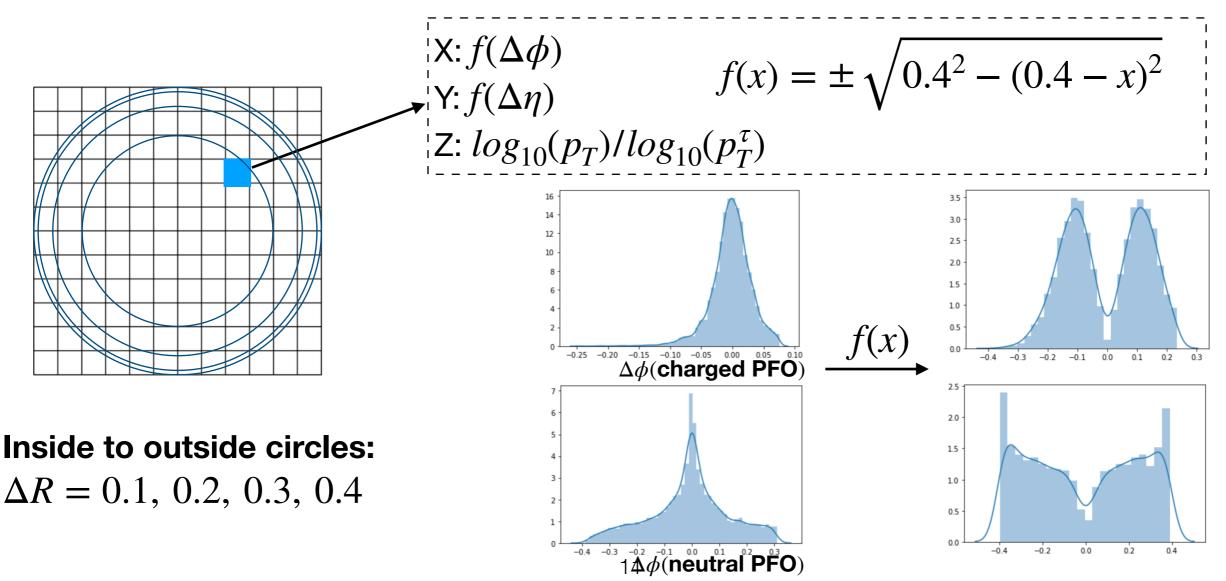
Baseline



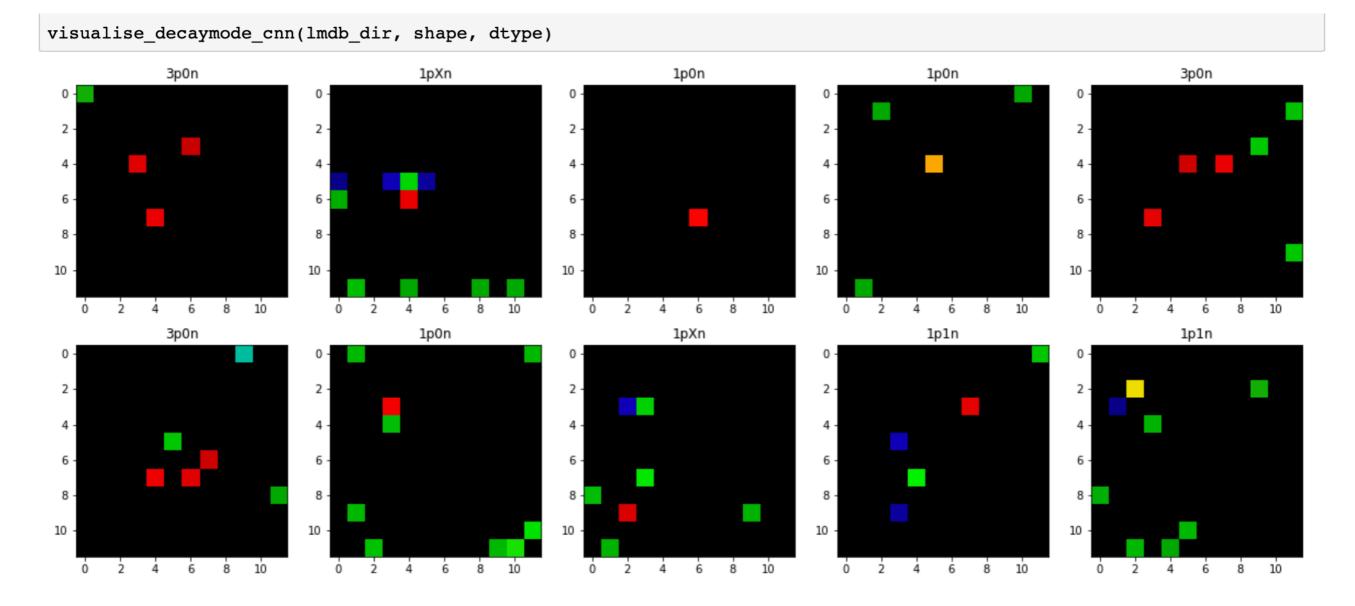
- To prove this in an intuitive way
- Try2:
 - Put the 4-vector infomation into an "image"
 - Train a CNN classifier.
- Put the 4-vector infomation into an 12x12 "image" (four layers)

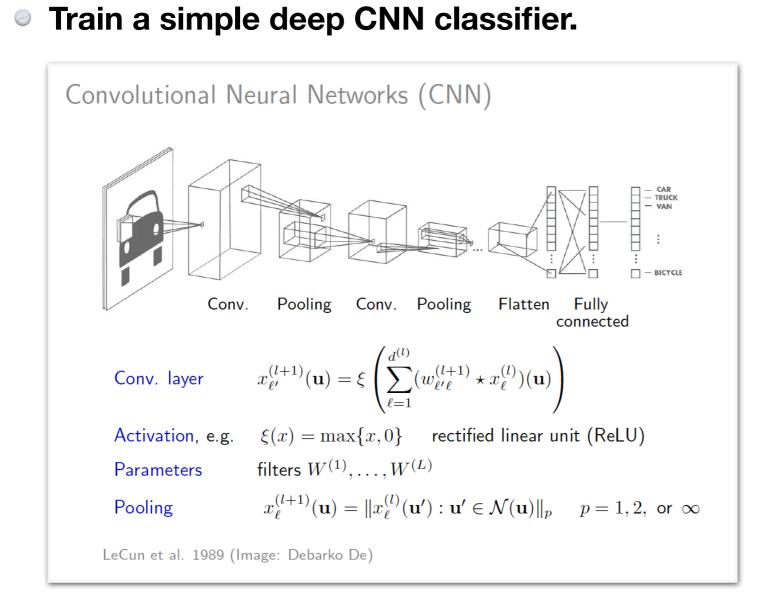


- To prove this in an intuitive way
- Try2:
 - Put the 4-vector infomation into an "image"
 - Train a CNN classifier.
- Put the 4-vector infomation into an 12x12 "image" (four layers)



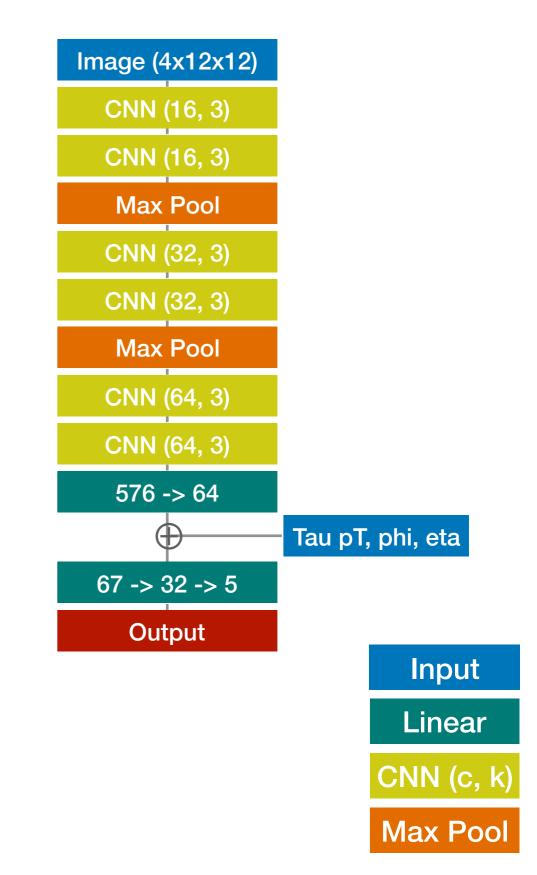
• To visualise:





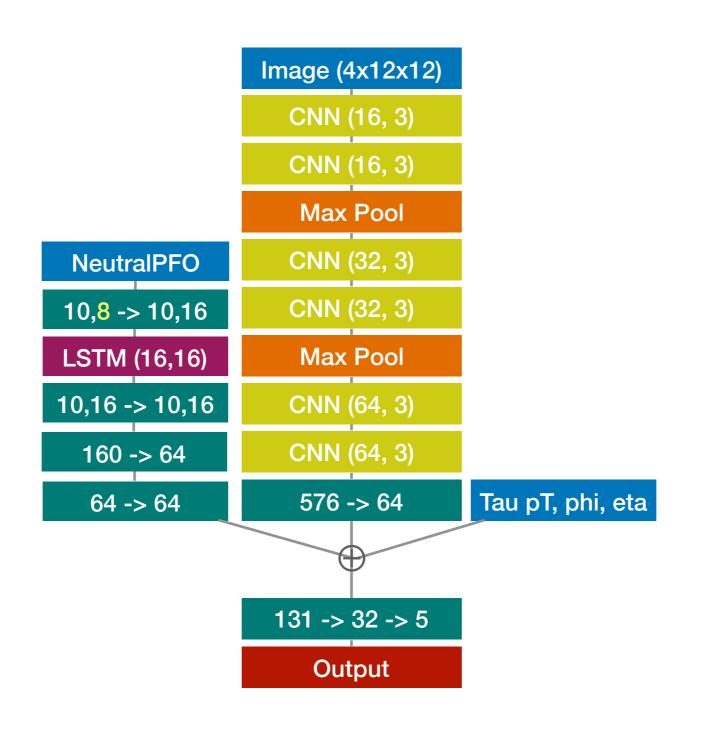
Result ...

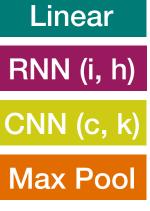
- Unfortunately the model was not found...
- The validation diagonal efficiency was 76%



Try3: CNN + RNN

Now we can simplify the "multi-RNN" and combine it with the CNN

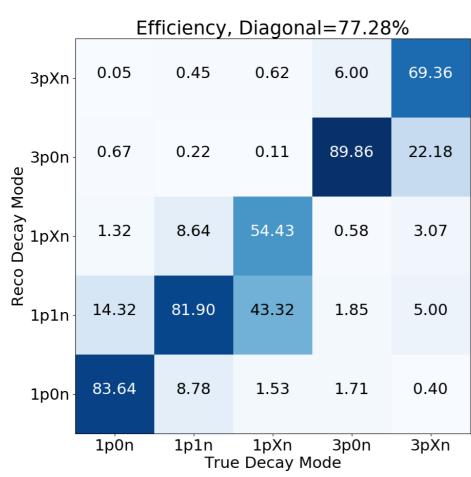




Input

Try3: CNN + RNN

Efficiency matrix



CNN+RNN

Baseline

Efficiency, Diagonal=77.94%							
3pXn	0.07	0.54	0.72	6.63	74.75		
3p0n ep o	0.78	0.33	0.14	89.53	17.71		
Reco Decay Mode uXd1	1.22	8.64	55.85	0.41	2.35		
lpln	13.84	81.78	41.86	1.86	4.75		
1p0n	84.09	8.72	1.44	1.56	0.43		
	1p0n 1p1n 1pXn 3p0n 3pXn True Decay Mode						

Package Status

ROOT I/O in pure Python and Numpy. (Replace root_numpy, directly use MxAODs)

Better control of computing graph (RNN hidden state, easier to combine multi algs) Efficient loading of large dataset (working on this...)

Visualizing data, model and training

Core: Uproot + Lmdb + PyTorch

- Still converting MxAOD into flat ntuples now.
- Almost no memory consumption using Lmdb
- Pytorch is very flexible to use for testing and debugging the computing graghs
- Basic code structure is in good shape
- ToDo:
 - Visualising data and testing. (could be Jupyter-notebook-based)
 - Performance plots. (efficiency, ROC, …)
 - Deploy models in C++ framework

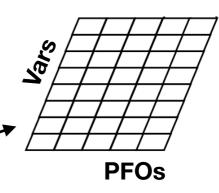
Summary

Investigate the variables that are curently being used

- With 4-vector information only, the classifier outperform BDT
- As a next step, I'd like to understand the neutral PFO variables

Test alternative NN architectures

- Feed 4-vector information into images
 - CNN: compatible performance with multi-RNN
 - Image creation and CNN architecture can be improved
 - No limit on the number of objects (N), could be interesting if N is large -> larger image
- CNN + RNN: compatible performance with multi-RNN
- Interesting to try:
 - Embedding the neutral branch in an "image": fully-CNN
 - Attention-based RNN: learn better the relationship between ojects and between branches
 - Define a customised loss function. (i.e. weighted CrossEntropyLoss)



Backup

Selection

df[(df["TauJets.truthDecayMode"] > 4) | (df["TauJets.IsTruthMatched"] != 1) |
(df["TauJets.pt"] < 20000) | (df["TauJets.truthPtVis"] < 20000) |
(df["TauJets.pt"] > 100000) | (df["TauJets.truthPtVis"] > 100000) |
(df["TauJets.eta"] > 2.5) | (df["TauJets.truthEtaVis"] > 2.5) |
((df["TauJets.eta"] > 1.37) & (df["TauJets.eta"] < 1.52)) |
((df["TauJets.truthEtaVis"] > 1.37) & (df["TauJets.truthEtaVis"] < 1.52)) |
((df["TauJets.nTracks"] != 1) & (df["TauJets.nTracks"] != 3)) |
((df["TauJets.truthProng"] != 1) & (df["TauJets.truthProng"] != 3))]</pre>