

Transverse spin asymmetry as a probe of new physics beyond the SM

Bin Yan Institute of High Energy Physics

HENPIC seminar Oct. 10 , 2024

Xin-Kai Wen, Bin Yan, Zhite Yu, C.-P. Yuan, PRL 131 (2023) 241801, 2408.07255 Dingyu Shao, Bin Yan, Shu-Ruan Yuan, Cheng Zhang, Sci. China Phys. Mech. Astron. 67 (2024) 281062 Hao-Lin Wang, Xin-Kai Wen, Hongxi Xing, Bin Yan, PRD 109 (2024) 095025 Xu Li, Bin Yan, C.-P. Yuan, 2405.04069

The status of SM

Remarkable agreement between SM theory and data

New Physics beyond the SM new measurements

New Physics Searches @ LHC

*Only a selection of the available mass limits on new states or phenomena is shown † Small-radius (large-radius) jets are denoted by the letter j (J).

Top-down approach and the Bottom-up approach by a strong Bottom-up approach

New Physics and EFT

1. The κ framework for the couplings:

BSM physics is expected to affect the production modes and decay channels by a SM like interactions

2. The Standard Model Effective Field Theory

Linear realized EFT

W. Buchuller, D. wyler 1986 B. Grzadkowski et al, 2010 L. Lehman, A. Marin, 2015 B. Henning et al, 2015 H-L. Li et al, 2020 Murphy, 2020

$$
\mathcal{L}=\frac{C_6}{\Lambda^2}\mathcal{O}_6+\frac{C_8}{\Lambda^4}\mathcal{O}_8+\ldots
$$

3. Higgs Effective Field Theory

Callan, Coleman, Wess, Zumino, 1969 The electroweak chiral Lagrangian+light Higgs, A.C. Longhitano, 1980,….

Global analysis @ SMEFT

So, what's the next step for the new physics searches from the theoretical point of view?

- \triangleright Global analysis with more processes; the combination of low energy and high energy measurements
- \triangleright QCD and EW correction to reduce the theoretical uncertainties

 \triangleright New observables and new measurements

Transverse/linear polarization observables

New Physics and SMEFT

B. Grzadkowski et al, JHEP 10 (2010) 085

Interference effects

 $\sim \mathcal{O}(\frac{1}{\Lambda^4})$

The constraints will be very weak

Example: Dipole Operator

R. Boughezal et al, PRD 104 (2021) 095022

=0 for the cross section

New physics and Dipole Operator

 \triangleright Magnetic dipole moments: probing the internal structures of particles

Elementary particle: Electron: g/2=1.001159… Muon: g/2=1.0011659..

- \triangleright The Lattice's results agree with data, but different from data-driven approach
- \triangleright New physics or non-perturbative issue? Loop-induced by the BSM

$$
\bar\ell\,\sigma^{\mu\nu}e\tau^I\varphi W^I_{\mu\nu}\,, \bar\ell\,\sigma^{\mu\nu}e\varphi B_{\mu\nu}
$$

O Composite particle: Proton: g/2=2.7928444.. Neutron: g/2=-1.91394308..

New physics and Dipole Operator

 \triangleright Magnetic dipole moments: probing the internal structures of particles

■ How to probe the electroweak dipole interactions?

■ Do quarks have any internal structures or probing quark dipole moments?

Electroweak dipole moments of leptons

?

Is it possible to probe the dipole operators at $o\left(\frac{1}{\lambda}\right)$ Λ^2

Transversely polarized effect of beams: The interference between the different helicity states

$$
\boldsymbol{s}=(b_1,b_2,\lambda)=(b_{\mathrm{T}} \cos \phi_0,b_{\mathrm{T}} \sin \phi_0,\lambda)
$$

$$
\rho = \frac{1}{2} \left(1 + \boldsymbol{\sigma} \cdot \boldsymbol{s} \right) = \frac{1}{2} \begin{pmatrix} 1 + \lambda & b_{\text{T}} e^{-i\phi_0} \\ b_{\text{T}} e^{i\phi_0} & 1 - \lambda \end{pmatrix}
$$

Breaking the rotational invariance *&* A nontrivial azimuthal behavior

Xin-Kai Wen, Bin Yan, Zhite Yu, C.-P. Yuan, PRL 131 (2023) 241801

Transverse spin effects @ CEPC

- \triangleright Linearly dependent on the dipole couplings C_{dipole} and spin b_T
- \triangleright Without depending on other NP operators

 e^+_{L} +

Single Transverse Spin Asymmetries

$$
A_{LR}^i = \frac{\sigma^i(\cos\phi > 0) - \sigma^i(\cos\phi < 0)}{\sigma^i(\cos\phi > 0) + \sigma^i(\cos\phi < 0)} = \frac{2}{\pi}A_R^i
$$

$$
\sqrt{s}
$$
 = 250 GeV, L = 5 ab⁻¹ (b_T, \bar{b}_T) = (0.8, 0.3)

CP-conserved dipole operator CP-violated dipole operator

$$
A_{UD}^i = \frac{\sigma^i(\sin\phi > 0) - \sigma^i(\sin\phi < 0)}{\sigma^i(\sin\phi > 0) + \sigma^i(\sin\phi < 0)} = \frac{2}{\pi}A_I^i,
$$

Xin-Kai Wen, Bin Yan, Zhite Yu, C.-P. Yuan,

PRL 131 (2023) 241801

- \triangleright Our bounds are much stronger than other approaches by 1~2 orders of magnitude
- \triangleright Weak dipole coupling, SSA: 0.01%, LHC: 1%

Transverse spin effects of electron @ EIC

\triangleright Electron dipole operators

 $\bm{+}$

R. Boughezal, D. Florian, F. Petriello, W. Vogelsang, PRD 107 (2023) 7, 075028

$$
\frac{1}{\sqrt{1+\frac{1}{\lambda^2}}}
$$

$$
\mathcal{O}_{eW} = (\bar{l}\sigma^{\mu\nu}e)\tau^I \varphi W^I_{\mu\nu},
$$

$$
\mathcal{O}_{eB} = (\bar{l}\sigma^{\mu\nu}e)\varphi B_{\mu\nu},
$$

$$
A_{TU} = \frac{\sigma (e^{\dagger} p^{U}) - \sigma (e^{\dagger} p^{U})}{\sigma (e^{\dagger} p^{U}) + \sigma (e^{\dagger} p^{U})}
$$

Electroweak dipole moments of quarks

 \triangleright The quark can not be a free particle due to the QCD confinement

\triangleright How to probe the spin information of quarks?

The non-perturbative functions, i.e., the parton distirbuion functions and the fragmentation functions

Transverse spin effects of quark @ EIC

Quark Spin

 \triangleright Quark dipole operators R. Boughezal, D. Florian, F. Petriello, W. Vogelsang, PRD 107 (2023) 7, 075028

Leading Quark TMDPDFs

$$
\mathcal{O}_{uW} = (\bar{q}\sigma^{\mu\nu}u)\tau^I \varphi W^I_{\mu\nu},
$$

\n
$$
\mathcal{O}_{uB} = (\bar{q}\sigma^{\mu\nu}u)\varphi B_{\mu\nu},
$$

\n
$$
\mathcal{O}_{dW} = (\bar{q}\sigma^{\mu\nu}d)\tau^I \varphi W^I_{\mu\nu},
$$

\n
$$
\mathcal{O}_{dB} = (\bar{q}\sigma^{\mu\nu}d)\varphi B_{\mu\nu}.
$$

 \triangleright The transversity is difficult to be constrained

$$
A_{UT} = \frac{\sigma(e^U p^{\dagger}) - \sigma(e^U p^{\dagger})}{\sigma(e^U p^{\dagger}) + \sigma(e^U p^{\dagger})}
$$

- □ Collins Azimuthal Asymmetries in SIDIS, Collins function
- **D** Drell-Yan process

□ Dihadron production in SIDIS, Interference dihadron fragmentation

Nucleon Spin

Kang, Prokudin, Sun, Yuan, PRD 93 (2016) 014009; Zeng, Dong, Liu, Sun, Zhao, PRD 109 (2024) 056002; JAM Collaboration, PRD 106 (2022) 034014

Transverse spin effects @ EIC

 \triangleright Scalar and tensor four fermion operators

 $P_{T,e}=P_{T,p}=0.7, \mathcal{L}=100~\mathrm{fb^{-1}}$

$$
\begin{array}{lcl} \mathcal{O}_{ledq} & = & \left(\bar{L}^{j}e\right)\left(\bar{d}Q^{j}\right), \\ \mathcal{O}^{(1)}_{lequ} & = & \left(\bar{L}^{j}e\right)\epsilon_{jk}\left(\bar{Q}^{k}u\right), \\ \mathcal{O}^{(3)}_{lequ} & = & \left(\bar{L}^{j}\sigma^{\mu\nu}e\right)\epsilon_{jk}\left(\bar{Q}^{k}\sigma_{\mu\nu}u\right), \end{array}
$$

Hao-Lin Wang, Xin-Kai Wen, Hongxi Xing, Bin Yan, PRD 109 (2024) 095025

 \boldsymbol{x}

17

Transverse spin effects of quark @ EIC

 \triangleright The transverse spin of quarks can be generated by the quark dipole moments

 \triangleright The interference dihadron fragmentation function: chiral-odd

$$
\frac{d\sigma}{dx\,dy\,dz\,dM_h\,d\phi_R} = \frac{N}{2\pi} \sum_q f_q(x,Q) \big[D_{h_1h_2/q}(z,M_h;Q) - (s_{T,q}(x,Q) \times \hat{\mathbf{R}}_T)^z H_{h_1h_2/q}(z,M_h;Q) \big] C_q(x,Q)
$$
\n
$$
- (s_{T,q}(x,Q) \times \hat{\mathbf{R}}_T)^z H_{h_1h_2/q}(z,M_h;Q) \big] C_q(x,Q)
$$
\n
$$
s_q^x = \frac{2}{C_q} \left(w_\gamma^q \operatorname{Re} \Gamma_\gamma^q + w_Z^q \operatorname{Re} \Gamma_Z^q \right) \qquad (s_{T,q} \times \hat{\mathbf{R}}_T)^z = s_q^x \sin \phi_R - s_q^y \cos \phi_R
$$
\n
$$
s_q^y = \frac{2}{C_q} \left(w_\gamma^q \operatorname{Im} \Gamma_\gamma^q + w_Z^q \operatorname{Im} \Gamma_Z^q \right) \qquad \text{Xin-Kai Wen, Bin Yan, Zhite Yu, C.-P. Yuan, 2408.07255}
$$

⁺ [−] **Dihadron fragmentation functions**

JAM Collaboration, PRL 132 (2024) 091901 , PRD 109 (2024) 034024

⁺ [−] **Dihadron fragmentation functions**

JAM Collaboration, PRL 132 (2024) 091901 , PRD 109 (2024) 034024

Transverse spin effects of quark @ EIC

Xin-Kai Wen, Bin Yan, Zhite Yu, C.-P. Yuan, 2408.07255

The non-trivial azimuthal distribution requires parityviolation effects:

- the longitudinal polarization of the electron
- the parity-violating Z interactions

$$
(\bm{s}_{T,q} \times \hat{\bm{R}}_T)^z = s_q^x \sin \phi_R - s_q^y \cos \phi_R
$$

$$
A_{LR} = \frac{\sigma(\cos\phi_R > 0) - \sigma(\cos\phi_R < 0)}{\sigma(\cos\phi_R > 0) + \sigma(\cos\phi_R < 0)} = \frac{2}{\pi}A_I
$$

$$
e
$$

\n
$$
e
$$

\n
$$
h_{\text{a}}
$$

\n
$$
h_{\text{b}}
$$

$$
A_{UD} = \frac{\sigma(\sin \phi_R > 0) - \sigma(\sin \phi_R < 0)}{\sigma(\sin \phi_R > 0) + \sigma(\sin \phi_R < 0)} = \frac{2}{\pi} A_R
$$

$$
\sqrt{s}=105~\text{GeV}, \mathcal{L}=1~\text{ab}^{-1}
$$

\n- □ Photon:
$$
O(0.01)
$$
\n- □ Z-boson: $O(0.1)$
\n

The flat direction in dipole couplings?

Linear polarization @ UPCs

C. Li, J. Zhou, Y. J. Zhou, Phys. Lett. B. 795, 576 (2019)

- \triangleright Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic field
- \triangleright Weizsacker-Williams equivalent photon approximation
- \triangleright Photons are linearly polarized
- > Large quasi-real photon flux $\propto Z^2$
- ≻ The impact parameter $b_{\perp} > 2R_A$

The linear polarization for gluons based on the NEEC: Yuxun Guo, Xiaohui Liu, Feng Yuan, HuaXing Zhu, 2406.05880 Xiao Lin Li, Xiaohui Liu, Feng Yuan, HuaXing Zhu, PRD 108 (2023) L091502

Linear polarization @ UPCs

D. Y. Shao, C. Zhang, J. Zhou, Y. Zhou, PRD107 (2023) 3, 036020

Tau pair production @ UPCs

Phys. Rev. Lett. ¹³¹ (2023) 15, ¹⁵¹⁸⁰² Phys. Rev. Lett. ¹³¹ (2023) ¹⁵¹⁸⁰³

Linear polarization @ UPCs

Linear polarization @ UPCs

Dingyu Shao,Yujie Tian, Bin Yan, Cheng Zhang, working in progress

Linear polarization of gluon

$$
\rho_{\lambda\lambda'} = \frac{1}{2} (1 + \xi \cdot \sigma)_{\lambda\lambda'} = \frac{1}{2} \begin{pmatrix} 1 + \xi_3 & \xi_1 - i \xi_2 \\ \xi_1 + i \xi_2 & 1 - \xi_3 \end{pmatrix}
$$

C.-P. Yuan's talk @ MBI 2023

Linear polarization of W boson

- \triangleright Measuring longitudinal polarization of boosted top
- \triangleright New top tagger against QCD jets

A new tool to probe the NP effects, e.g. the CP violation in top quark decay

Qi Bi, Bin Yan, Zhite Yu, working in progress

Collins-Soper frame

$$
\frac{d\sigma}{d^4q \text{ d}\cos\theta \text{ d}\phi} = \frac{3}{16\pi} \frac{d\sigma^{\text{unpol.}}}{d^4q} \left\{ (1 + \cos^2\theta) + \frac{1}{2} A_0 (1 - 3\cos^2\theta) + A_1 \sin(2\theta) \cos\phi + \frac{1}{2} A_2 \sin^2\theta \cos(2\phi) + A_3 \sin\theta \cos\phi + A_4 \cos\theta + A_5 \sin^2\theta \sin(2\phi) + A_6 \sin(2\theta) \sin\phi + A_7 \sin\theta \sin\phi \right\},\
$$

$$
\rho_{\lambda_Z \lambda_Z'} = \left(\begin{array}{ccc} \frac{1-\delta_L}{3}+\frac{J_3}{2} & \frac{J_1+2Q_{xz}-i(J_2+2Q_{yz})}{2\sqrt{2}} & \lambda_T - iQ_{xy} \\ \frac{J_1+2Q_{xz}+i(J_2+2Q_{yz})}{2\sqrt{2}} & \frac{1+2\delta_L}{3} & \frac{J_1-2Q_{xz}-i(J_2-2Q_{yz})}{2\sqrt{2}} \\ \lambda_T + iQ_{xy} & \frac{J_1-2Q_{xz}+i(J_2-2Q_{yz})}{2\sqrt{2}} & \frac{1-\delta_L}{3}-\frac{J_3}{2} \end{array}\right)
$$

$$
\begin{split} \frac{\Gamma}{\Omega_f^*} \propto & \frac{|B_+|^2 + |B_-|^2}{2} \left[\frac{2}{3} + \frac{\delta_L}{3} \left(1 - 3 \cos^2 \theta_f^* \right) + \lambda_T \sin^2 \theta_f^* \cos 2\phi_f^* \right. \\ & \left. + Q_{yz} \sin 2\theta_f^* \sin \phi_f^* + Q_{xz} \sin 2\theta_f^* \cos \phi_f^* + Q_{xy} \sin^2 \theta_f^* \sin 2\phi_f^* \right] \\ & \left. + \frac{|B_+|^2 - |B_-|^2}{2} \left(J_1 \sin \theta_f^* \cos \phi_f^* + J_2 \sin \theta_f^* \sin \phi_f^* + J_3 \cos \theta_f^* \right) \right. \end{split}
$$

Lam-Tung relation: $A_0 = A_2$

Linear and Longitudinal polarization of Z boson

 $A_0 \neq A_2$ @ NNLO in QCD non-coplanarity between the hadron and parton planes

J.C. Peng et al, PLB 758,384 (2016)

These results are confirmed by CMS (PLB750, 154 (2015)) and LHCb (PRL 129 (2022) 091801) collaborations

> The discrepancy with the SM prediction NP effects or non-perturbative effects ?

Boer-Mulders function

Quark Spin

 \mathbf{v}

 \bullet

The $cos2\phi$ dependence can be induced by the Boer-Mulders function

Nucleon Spin

Leading Quark TMDPDFs

Transversely polarized quark

Lam-Tung relation and NP

Center-of-mass frame:

$$
\frac{d\sigma}{d\Omega} = a\cos\hat{\theta} + b\cos^2\hat{\theta} + c\cos^3\hat{\theta} + d
$$

$$
\cos \hat{\theta} = \cos \theta \cos \theta_1 + \sin \theta \sin \theta_1 \cos (\phi - \phi_1)
$$

$$
A_0 = \left\langle \frac{2(d-b) + 4b\sin^2\theta_1}{b+3d} \right\rangle,
$$

$$
A_2 = \left\langle \frac{4b\sin^2\theta_1\cos 2\phi_1}{b+3d} \right\rangle.
$$

 $\langle P_l(\cos\theta,\phi)\rangle = \frac{\int P_l(\cos\theta,\phi) d\sigma d\cos\theta d\phi}{\int d\sigma d\cos\theta d\phi}$

J.C. Peng et al, PLB 758,384 (2016)

$$
A_0 \neq A_2
$$

- \triangleright Coplanarity case: $b \neq d$, BSM effects
- Non-coplanarity case: $\phi_1 \neq 0$, NNLO and beyond or by the nonperturbative effects

Xu Li, Bin Yan, C.-P. Yuan, arxiv: 2405.04069

 \triangleright The discrepancy in Lam-Tung relation could be explained by electroweak dipole interactions (transversely polarized quark or lepton)

 \triangleright It could be more significant in high-invariant mass region

- \triangleright The accuracy for the normalization of the angular coefficients in high invariant mass: $O(\alpha_s)$
- \triangleright The breaking effects from the weak dipole interactions could be enhanced by one order of magnitude

 \triangleright The accuracy from A0-A2 would be comparable to the results from cross section, but the violation effects will dominantly depend on the dipole interactions.

Xu Li, Bin Yan, C.-P. Yuan, arxiv: 2405.04069

Summary

- \triangleright The electroweak dipole operators are difficult to be probed at colliders since their leading effects are from $1/A^4$
- \triangleright These operators can be probed at $1/\Lambda^2$ via transverse spin effects (beams or nonperturbative functions)
- Both Re & Im parts can be well constrained, *without impact from other NP and* offering a new opportunity for directly probing potential CP-violating effects.
- \triangleright Our bounds are much stronger than other approaches by 1~2 orders of magnitude
- \triangleright The photons from UPCs are linearly polarized and can be used to probe the NP
- Polarized Muon collider, hadron colliders, electron-Ion collider
- \triangleright The linear polarization of the gauge bosons: photon, gluon and W/Z

Thank you