

Yuxiang Zhao

Institute of Modern Physics, Chinese Academy of Sciences

Outline

- Introduction
- Selected physics highlights at EicC
- Detector conceptual design
- China Hyperon-Nuclear Spectrometer (CHNS)
- Summary

Experimentally... we need to determine each of the above contributions

Origin of proton mass

Lattice QCD calculation Phys. Rev. Lett. 121 (2018) 21, 212001

- Quark energy and gluon energy constrained by PDFs
- Quark mass via πN low energy scattering

• **Trace anomaly** via threshold production of J/Psi and Upsilon **???**

One of the hot topics under discussions

Near threshold J/Psi production

Near threshold Upsilon production

Origin of proton spin

Quark spin contribution

Gluon spin contribution

Quark/gluon OAM

$$S_{tot} = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_q + \mathcal{L}_g$$

EicC white paper (arXiv: 2102.09222)

Published in the *Frontiers of Physics* (2021)

https://link.springer.com/article/10.1007/s11467-021-1062-0

- Spin structure of the nucleon: 1D, 3D
 - polarized electron + polarized proton/light nuclei
- Partonic structure of nuclei and the Parton interaction with the cold nuclear environment
 >unpolarized electron + unpolarized various nuclei
- Quarkonium with c/cbar, b/bbar
- Origin of the proton mass study

Detector + Accelerator preliminary design

45 institutes and >100 physicists

EicC organization for the CDR preparation

Electron Ion Collider in China...Huizhou(惠州) in Guangdong province

Picture in May 2024 \rightarrow Deliver the first heavy ion beam in 2025

H,

Location: Huizhou, Guangdong

(9)

High Intensity heavy-ion Accelerator Facility (HIAF)

High Intensity heavy-ion Accelerator Facility (HIAF)

HIAF beam parameters

Ion	Intensity (ppp)	Energy (GeV/u)
²³⁸ U ³⁵⁺	2.0×10 ¹¹	0.84
238 U $^{76+}$	5.0×10 ¹⁰	2.5
129 Xe $^{27+}$	3.6×10 ¹¹	1.4
⁷⁸ Kr ¹⁹⁺	5.0×10 ¹¹	1.7
⁴⁰ Ar ¹²⁺	7.0×10 ¹¹	2.3
¹⁸ O ⁶⁺	8.0×10 ¹¹	2.6
р	5.0×10 ¹³	9.3

EicC Accelerator complex layout

- EicC covers the kinematic region between JLab experiments and EIC@BNL
- EicC complements the ongoing scientific programs at JLab and future EIC project
- EicC focuses on moderate x and sea-quark region

Kinematic region VS physics

See a video at: http://eicug.org/

- Different x \rightarrow different picture
- Broad Q² coverage:
 - QCD evolution
 - ➢ Non-perturbative → perturbative

Gluon dominates

Gluon + sea quarks

Valence quarks

Outline

- Introduction
- Selected physics highlights at EicC
- Detector conceptual design
- China Hyperon-Nuclear Spectrometer (CHNS)
- Summary

EicC -helicity distribution via SIDIS (1D spin)

D. Anderle, T. Hou, H. Xing, M. Yan, C. -P. Yuan, Y. X. Zhao, JHEP08, 034 (2021)

EicC and EIC-gluon polarization (at large x)

 $A_{LL}^{\vec{e}+\vec{p}\to e'+D^{0}+X} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}}$ $N^{++} - N^{+-}$ $= \frac{1}{P_e P_p} \frac{1}{N^{++} + N^{+-}}$ e e γ*(q) C С **g** (N(p)

D. Anderle, X. Dong, ..., E. Sichtermann, ..., F. Yuan, Y. X. Zhao, Phys. Rev. D104, 114039 (2021)

EicC and EIC-gluon polarization (at large x)

 $e + p \rightarrow e' + D^0 + x$ 0.3 $A_{LL}^{\vec{e}+\vec{p}\to e'+D^{0}+X} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}}$ 50 0.25 EIC Charm hadrons Absolute uncertaint 0.2 A^c₁ Abs. Polarizations: 18 GeV x 275 GeV e: 80%, p: 70% Int. Luminosity: 100 0.15 Uncert 3.0 0.1 EicC 3.5 x 20 GeV² EIC 5 x 41 GeV² 2.5 0.05 EIC 18 x 275 GeV² 0.0 ^{2.0} م/م^س 10⁻¹ complementary 1.0 0.3 + x Eic(0.5 0.25 10^{-1} 10-2 A^c Abs. х e: 80%, p 0.2 (Ge/ 3.5 GeV x 20 GeV С 0.15 Uncert. Ö 20 10 0.05 N(p) 0.0 10⁻³ 10⁻¹ 10⁻² Bjorken x

D. Anderle, X. Dong, ..., E. Sichtermann, ..., F. Yuan, Y. X. Zhao, Phys. Rev. D104, 114039 (2021)

GPDs: deformation of Parton's spatial distribution when hadron is polarized TMDs: deformation of Parton's confined motion when hadron is polarized

EicC and EIC-Sivers TMDs

20 40 60 80 100 Q² (GeV²)

1. Higher Q², smaller effect

-0.0

2. Smaller x, smaller effect

complementary

EicC impact on Transversity

C. Zeng, H. Dong, T. B. Liu, P. Sun, and Y. X. Zhao, Phys. Rev. D 109 (5), 056002 (2024)

EicC can significantly improve the precision of transversity distributions, especially for sea quarks

Results on Tensor Charge

 $g_T = \delta u - \delta d$

C. Zeng, H. Dong, T. B. Liu, P. Sun, and Y. X. Zhao, Phys. Rev. D 109 (5), 056002 (2024)

More words on TMDs study

Collins effect observable

Sivers effect observable

For TMDs study: We need a moderate-energy EIC but with high luminosity

J/Psi production at EicC

For W=10-20 GeV,

- Photoproduction: $\sigma(\gamma p \to J/\psi p) \sim O(10 \text{ nb})$, (no resonant enhancement considered), $\sigma(\gamma p \to c\bar{c}X) \sim 50\sigma(\gamma p \to J/\psi p)$
- Leptoproduction: cross sections are roughly two orders of magnitude (α) smaller
- For an integrated luminosity of 50 fb⁻¹, no. of J/ψ is ~ $O(10^7 10^8)$; many more opencharm hadrons D and Λ_c

Upsilon production at EicC

For W=15-20 GeV,

• Photoproduction: $\sigma(\gamma p \to \Upsilon p) \sim O(10 \text{ pb})$ (no resonant enhancement considered),

 $\sigma(\gamma p \rightarrow b \overline{b} X)$ is about two orders higher

- Electroproduction: roughly two orders of magnitude (α) smaller, ~ O(0.1 pb)
- For an integrated luminosity of 50 fb⁻¹, no. of Υ is ~ $O(10^4)$;

Search for exotic states at EicC

• Cross section estimates for exclusive reactions assuming VMD (highly model-dependent)

Estimated events for EicC (50 /fb)

Exotic states	$\begin{array}{c} {\rm Production/decay} \\ {\rm processes} \end{array}$	Detection efficiency	Expected events
$P_c(4312)$	$ep \rightarrow eP_c(4312)$ $P_c(4312) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim 30\%$	15 - 1450
$P_c(4440)$	$ep \rightarrow eP_c(4440)$ $P_c(4440) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim\!\!30\%$	20-2200
$P_{c}(4457)$	$ep \rightarrow eP_c(4457)$ $P_c(4457) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim\!\!30\%$	10-650
$P_b(\text{narrow})$	$\begin{split} ep &\to eP_b(\text{narrow}) \\ P_b(\text{narrow}) &\to p\Upsilon \\ &\Upsilon &\to l^+l^- \end{split}$	$\sim\!\!30\%$	0-20
$P_b(\text{wide})$	$ep \rightarrow eP_b(\text{wide})$ $P_b(\text{wide}) \rightarrow p\Upsilon$ $\Upsilon \rightarrow l^+ l^-$	$\sim\!\!30\%$	0-200
$\chi_{c1}(3872)$	$ep \rightarrow e\chi_{c1}(3872)p$ $\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim 50\%$	0-90
$Z_c(3900)^+$	$ep \rightarrow eZ_c(3900)^+ n$ $Z_c^+(3900) \rightarrow \pi^+ J/\psi$ $J/\psi \rightarrow l^+ l^-$	~60%	90-9300

Outline

- Introduction
- Selected physics highlights at EicC
- Detector conceptual design
- China Hyperon-Nuclear Spectrometer (CHNS)
- Summary

Tracking: Silicon + MPGD

EicC detector design

				Material Budget	
R(cm)	Length(c	m) Pixe	el Pitch(µm)	(X/X0 %)	Tech
3.30	28.0		20	0.05	MIC7
4.35	28.0		20	0.05	MIC7
5.40	28.0		20	0.05	MIC7
34.85	90.61		25	0.85	MIC6
38.15	90.61		25	0.85	MIC6
05.20	174.00	150		0.40	MADOD
65.50	174.88	150	$(\Gamma \phi)$ X15U(Z)	0.40	IVIPGD
67.50	174.88	150	$(r\phi)$ x150(z)	0.40	MPGD
In R(cm)	Out R(cm)	Z(cm)	Pixel Pitch	μm) Material Budg (μm) (X/X0 %)	et Tech
3.18	18.62	25	25	0.42	MIC6
3.18	36.50	49	25	0.42	MIC6
3.47 5.08	55.00	102.65	25	0.42	MIC6
6.58	67.50	134.33	25	0.42	MIC6
8.16	150.00	165.00	50(rd)x25	0(r) 0.26	MPGD
In R(cm)	Out R(cm)	Z(cm)	Pixel Pitch	(μm) Material Budg (X/X0 %)	et Tech
3.18	18.62	-25	25	0.42	MIC6
3.18	36.50	-49	25	0.42	MIC6
3.18	55.00	-73	25	0.42	MIC6
3.95	67.50	-109.0	25	0.42	MIC6
5.26	67 50	-145.0	25	0.42	MIC6

PID: ToF + (DIRC + RICH)

PID: ToF + (DIRC + RICH)

PID: ToF + (DIRC + RICH)

Outline

- Introduction
- Selected physics highlights at EicC
- Detector conceptual design
- China Hyperon-Nuclear Spectrometer (CHNS)
- Summary

A new domain: from nucleon to hyperon

 Λ^0 serves as its own spin analyzer through the decay $\Lambda^0 \rightarrow p + \pi^-$

First observation of Λ^0 polarization in the 1970's

>Hyperons can be produced polarized in collisions of elementary particles

Discovered at Fermilab in the 1970's in p + Be collisions: 300 GeV protons on Beryllium

Λ^0 polarization observed in both high and low energy collisions

COSY-TOF Collaboration, Eur. Phys. J. A 52, 337 (2016)

HIAF kinematics coverage

Allow for a multi-dimensional mapping of the Λ^0 polarization and production

China Hyperon-Nuclear Spectrometer (CHNS)

I. Physics:

- \checkmark A production and polarization (p+p)
 - Medium effect (p+A)
 - Global polarization of Λ hyperon (A+A)
- Hadron physics via p+p

II. Community:

- Supports both communities of hadron structure and heavy-ion physics
- Your involvements are very welcome!

III. Detector R&D

- Many parts are similar for CHNS, EicC, STCF and CEPC. Save resources.
- CHNS: a detector R&D platform for EicC, ½ EicC

Timeline

Summary

- EicC is briefly introduced
 - EicC focuses on sea-quark/gluon related study at moderate/large-x region
 - EicC complements EIC physics program at higher energy
 - ≻EicC CDR will be released soon
- HIAF will deliver the first ion beam in 2025
 - > CHNS: Exploring the potential of HIAF for fundamental physics and pave the way for EicC in terms of physics and detector
 - > EicC is part of the upgrade plan in HIAF-U, likely within 2030-2040

• Your interests/involvements are very welcome! Contact me: yxzhao@impcas.ac.cn

Backups

EicC Accelerator complex layout

sTGC detector

Detector R&Ds

Clean rooms of ISO6 and ISO7 (in total of 200 m²) for detector assembling

ALICE style ITS2 MAPS pixel detector

- 25cm x 25 cm Micromegas mass production
- R&D on 0.4m x 0.4m

1m x 0.5 m GEM (self-stretching)

Shashlyk and W-powder+ScFi EMCal

DIRC prototype

