

Heavy flavor production in high-energy proton-proton and heavy-ion collisions in EPOS4 framework

Jiaxing Zhao

12/19/2024

Outline

Introduction of the heavy flavor probes

- Heavy flavor production in heavy-ion collisions in EPOS4
- Heavy flavor production in p-p collisions in EPOS4
- System size dependence of energy loss and correlations
- * Summary

 $m_c \sim 1.5 \text{GeV}, m_b \sim 4.7 \text{GeV}$

 $\star \tau_c \sim 1/m_c, \tau_b \sim 1/m_b < \tau_0 \sim 1 fm/c$, "see" full system evolution. $\star \tau_c, \tau_b < \tau_B \approx R/\gamma \sim 0.1 fm/c$, feel strong electromagnetic fields in HICs. $\star m_c, m_b \gg \Lambda_{OCD}$, produced by hard scattering, pQCD. $\star m \gg T \sim q$, can be treated as a Brownian particle. \bullet Small \mathscr{D}_{s} . strongly coupled to the QGP.

- $A m_c, m_b \gg T$, number is conserved during the evolution (thermal production can be neglected).

In the theoretical side, there are many models to describe heavy flavor energy loss & hadronization:

Catania (coalescence+fragmentation; pp and AA), **CUJET** (fragmentation; only AA) Duke (coalescence+fragmentation; only AA), EPOS₄ (coalescence+fragmentation: pp and AA), LBT (coalescence+fragmentation; only AA), Nantes (coalescence+fragmentation; only AA), **PHSD** (coalescence+fragmentation; pp and AA), **POWLANG** (local color neutralization; pp and AA), **PYTHIA** (fragmentation/color reconnection; only pp), Qufu (equal-velocity combination; only AA), TAMU (pp-fragmentation; AA-resonance recombination+fragmentation; pp and AA), Tsinghua (coalescence; only AA).

. . . .

They give a more or less good description of the expermential data.

State of art

Heavy flavor energy loss, hadronization model comparison

e-Print	Extraction R. Rapp (Tex Andronic (D	n of Hear kas A-M ar armstadt,	vy-Flavo nd Texas A EMMI and	r Transport Coefficients in QCD Mat -M, Cyclotron Inst.)(ed.), P.B. Gossiaux (SUB Munster U.)(ed.), R. Averbeck (Darmstadt, El						
	EMMI)(ed.) et al. (Mar 10, 2018) Published in									
		Shansha Inst. Teo 2018) Publish	n Cao (Wayne State U., Detroit), Gabriele Coci (Catar h. Goa and Catania U.), Weiyao Ke (Duke U.), Shuai Y Resolving discrepancies in the estimation relativistic heavy-ion collisions Yingru Xu (Duke U.), Steffen A. Bass (Duke U.), Pier U.), Marlene Nahrgang (SUBATECH, Nantes) et al. (
			Publishe	PHY Jiaxing Zhao ^(a) , ¹ Jörg Aichelin, ¹ Pol Vincenzo Minissale ^(a) , ^{6,7} Taesoo S						

SICAL REVIEW C 109, 054912 (2024)

Hadronization of heavy quarks

ol Bernard Gossiaux,¹ Andrea Beraudo¹,² Shanshan Cao,³ Wenkai Fan,⁴ Min He,⁵ Song¹,⁸ Ivan Vitev¹,⁹ Ralf Rapp,¹⁰ Steffen Bass¹,⁴ Elena Bratkovskaya,^{8,11,12} Vincenzo Greco¹,^{6,7} and Salvatore Plumari^{6,7}

Bulid a unified framework

To combine the light with heavy, open heavy flavor with quarkonium!

- - -

EPOS4

collisions, central and peripheral collisions, RHIC and LHC energies!

gives a good description of both charm and bottom hadrons production in pp & heavy ion

Will be released soon! Jz, J.Aichelin, P.B. Gossiaux, K.Werner, Phys.Rev.D 109 (2024) 5, 054011; Phys.Rev.C 110 (2024) 2, 024909; arxiv: 2407.20919. 6

EPOS4: A Monte Carlo tool for simulating high-energy scatterings $VENUS(1990) \rightarrow NEXUS(2000) \rightarrow EPOS1(2002) \rightarrow EPOS2(2010) \rightarrow EPOS3(2013) \rightarrow EPOS4(2020)$ An abbreviatation of Energy conserving quantum mechanical multiple scattering approach, based on Parton (parton ladders), Off-shell remnants, and Saturation of parton ladders.

e.g. three parallel scatterings

S-matrix theory (to deal with parallel scatterings happens in high energy collisions) For each one we have a parton evolution according to the DGLAP. Consistently accommodate these four crucial concepts is realized in the EPOS4!

EPOS4

https://klaus.pages.in2p3.fr/epos4/

K. Werner. PRC 108 (2023) 6, 064903 K. Werner, B. Guiot, PRC 108 (2023) 3, 034904 K. Werner, PRC 109 (2024) 1, 014910

EPOS4: core-corona picture

Core: string segment density larger than the critical density and also the transverse momentom of the segment; hydrodynamics (vHLLE);

Corona: hadronic phase (UrQMD)

The energy density is larger than the critical energy density ϵ_0 -> deconfined QCD matter!

EPOS4: light hadrons production

Light hadrons have been described well from pp to AA by EPOS4!

10

EPOS4: heavy quark production

Flavor excitation dominates at low p_T while gluon splitting becomes important at high p_T .

11

Outline

Introduction of the heavy flavor probes

- * Summary

Heavy flavor production in heavy-ion collisions in EPOS4

Heavy flavor production in p-p collisions in EPOS4

System size dependence of energy loss and correlations

EPOS4: heavy quark energy loss

Heavy quark is treated as a Brownian particle and its evolution is described by the **Boltzmann equation** Both collisional and radiative energy loss are included areff

- Extension of Gunion-Bertsch approximation (massless and high energy)
- ➡ LPM effect for moderate gluon energy

P.B. Gossiaux. J. Aichelin. Phys.Rev.C 78 (2008) 014904.

$$\begin{aligned} \frac{d\sigma_{II}^{Qq \to Qgq}}{dx d^2 k_t d^2 \ell_t} &= \frac{d\sigma_{\rm el}}{d^2 \ell_t} P_g(x, \vec{k}_t, \vec{\ell}_t) \Theta(\Delta) \,. \\ P_g(x, \vec{k}_t, \vec{\ell}_t; M) &= \frac{C_A \alpha_s}{\pi^2} \frac{1-x}{x} \left(\frac{\vec{k}_t}{\vec{k}_t^2 + x^2 M^2} - \frac{\vec{k}_t - \vec{\ell}_t}{(\vec{k}_t - \vec{\ell}_t)^2 + x^2 M^2} \right) \end{aligned}$$

J. Aichelin, P. B. Gossiaux, and T. Gousset, Phys. Rev. D 89, 074018 (2014)

13

EPOS4: heavy quark energy loss

Heavy quark is treated as a Brownian particle and its evolution is described by the **Boltzmann equation** Both collisional and radiative energy loss are included

20

10

 D_{s}

 $2\pi T$

- Extension of Gunion-Bertsch approximation (massless and high energy)
- LPM effect for moderate gluon energy

JZ, J.Aichelin, P.B. Gossiaux, V. Ozvenchuk, K.Werner, Phys.Rev.C 110 (2024) 2, 024909

EPOS4: heavy quark hadronization

When the local energy density is lower than the critical value ($T_{\rm FO}$ ~ 165 MeV) Heavy quarks hadronize into heavy flavor hadrons!

• Enhancement Baryon / Meson Ratio • Quark Number Scaling of Elliptic flow

The heavy quark combines with the light quark(s), which are close together in phase space. Low p_T heavy quark hadronizes by recombination while high p_T hadronizes by fragmentation.

EPOS4: heavy quark hadronization

- When the local energy density is lower than the critical value ($T_{\rm FO}$ ~ 165 MeV)
 - Heavy quarks hadronize into heavy flavor hadrons!
 - Heavy quarks hadronize via coalescence + fragmentation in EPOS4!

- → Which fragmentation function?
- How to decide the fragmentation fraction?
- → How to calculate the coalescence probablity?
- How to decide the coalescence fraction?

➡ Which fragmentation function?

Works well for e^+e^- , low energy pp,...

$$\sigma_H \propto f_i^A(x_1, \mu_F) f_j^B(x_2, \mu_F) \otimes \sigma_{ij \to Q\bar{Q} + X} \otimes \mathcal{Q}$$

HeavyQuarkEffectiveTheory-based Fragmentation:

pseudoscalar:

M. Cacciari, P. Nason, and R. Vogt, Phys. Rev. Lett. 95, 122001 (2005), E. Braaten, K.-m. Cheung, S. Fleming, and T. C. Yuan, Phys. Rev. D 51, 4819 (1995).

 $\mathcal{D}_{c \to P} \propto \frac{rz(1-z)^2}{[1-(1-r)z]^6} \Big[6 - 18(1-2r)z + (21-74r+68r^2)z^2 - 2(1-r)(6-19r+18r^2)z^3 + 3(1-r)^2(1-2r+2r^2)z^4 \Big]$

vector meson:

How to decide the fragmentation fraction?

The fragmentation fraction has given by e^+e^-

 $\mathcal{D}_{Q \to H}$

EPOS4: heavy quark hadronization

When the local energy density is lower than the critical value ($T_{\rm FO}$ ~ 165 MeV) Charmed hadrons from PDG and RQM.

\mathbf{Meson}	M(MeV)	J^P	Meson	M(MeV)	J^P	
D^{\pm}	1869.66 ± 0.05	0-	D_s^{\pm}	1968.35 ± 0.07	0-	
D^0	1864.84 ± 0.05	0-	$D_s^{*\pm}$	2112.2 ± 0.4	1-	
$D^{*0}(2007)$	2006.85 ± 0.05	1-	$D_{s0}^{*\pm}(2317)$	2317.8 ± 0.5	0+	
$D^{*\pm}(2010)$	2010.26 ± 0.05	1-	$D_{s1}^{\pm}(2460)$	2459.5 ± 0.6	1+	
$D_0^*(2300)$	2343 ± 10	0+	$D_{s1}^{\pm}(2536)$	2535.11 ± 0.06	1+	
$D_1(2420)$	2422.1 ± 0.6	1+	$D_{s2}^{*}(2573)$	2569.1 ± 0.8	2+	
$D_1^0(2430)$	2412 ± 9	1+	$D_{s0}^+(2590)$	2591 ± 6	0-	
$D_2^*(2460)$	2461.1 ± 0.8	2^+	$D_{s1}^{*\pm}(2700)$	2714 ± 5	1-	
$D_0^0(2550)$	2549 ± 19	0-	$D_{s1}^{*\pm}(2860)$	2859 ± 12	1-	
$D_1^{*0}(2600)$	2627 ± 10	1-	$D_{s3}^{*\pm}(2860)$	2860.5 ± 0.6	3-	
$D^{*\pm}(2640)$	2637 ± 2	?	$D_{sJ}^{\pm}(3040)$	3044 ± 8	?	
$D_2^0(2740)$	2747 ± 6	2-				
$D_{3}^{*}(2750)$	2763.1 ± 3.2	3-				
$D_1^{*0}(2760)$	2781 ± 18	1-				
$D_0(3000)$	3214 ± 29	?				

D

Baryon	M(MeV)	J^P	Meson	M(MeV)	J^P	
Λ_c^+	2286.46 ± 0.14	$1S(1/2)^+$	Λ_c	3747	$4D(3/2)^+$	
$\Lambda_c^+(2765)$	2766.6 ± 2.4	$2S(1/2)^+$	$\Lambda_c^+(2880)$	2881.63 ± 0.24	$1D(5/2)^+$	
Λ_c	3130	$3S(1/2)^+$	Λ_c	3209	$2D(5/2)^+$	
Λ_c	3437	$4S(1/2)^+$	Λ_c	3500	$3D(5/2)^+$	
Λ_c	3715	$5S(1/2)^+$	Λ_c	3767	$4D(5/2)^+$	
Λ_c	3973	$6S(1/2)^+$	Λ_c	3097	$1F(5/2)^{-1}$	
$\Lambda_c^+(2595)$	2592.25 ± 0.28	$1P(1/2)^{-}$	Λ_c	3375	$2F(5/2)^{-}$	
$\Lambda_c^+(2910)$	2913.8 ± 5.6	$?2P(1/2)^{-}$	Λ_c	3646	$3F(5/2)^{-}$	
Λ_c	3303	$3P(1/2)^-$	Λ_c	3900	$4F(5/2)^{-}$	
Λ_c	3588	$4P(1/2)^{-}$	Λ_c	3078	$1F(7/2)^{-1}$	
Λ_c	3852	$5P(1/2)^{-}$	Λ_c	3393	$2F(7/2)^{-}$	
$\Lambda_c^+(2625)$	2628.00 ± 0.15	$1P(3/2)^{-}$	Λ_c	3667	$3F(7/2)^{-1}$	
$\Lambda_c^+(2940)$	2939.6 ± 1.4	$2P(3/2)^{-}$	Λ_c	3922	$4F(7/2)^{-}$	
Λ_c	3322	$3P(3/2)^{-}$	Λ_c	3270	$1G(7/2)^+$	
Λ_c	3606	$4P(3/2)^{-}$	Λ_c	3546	$2G(7/2)^+$	
Λ_{c}	3869	$5P(3/2)^{-}$	Λ_c	3284	$1G(9/2)^+$	
$\Lambda_c^+(2860)$	2856.1 ± 2.0	$1D(3/2)^+$	Λ_c	3564	$2G(9/2)^+$	
Λ_c	3189	$2D(3/2)^+$	Λ_c	3444	$1H(9/2)^{-1}$	
Λ_c	3480	$3D(3/2)^+$	Λ_c	3460	$1H(11/2)^{-1}$	

PDG and D. Ebert, R. Faustov, and V. Galkin, Phys.Rev.D 84 (2011) 014025.

18

EPOS4: heavy quark hadronization

When the local energy density is lower than the critical value ($T_{\rm FO}$ ~ 165 MeV) Charmed hadrons from PDG and RQM.

Σ_{c}						Ξ_c												Ω_c					
Baryon	M(MeV)	J^P	Meson	M(MeV)	J^P	Baryon	M(MeV)	J^{P}	Meson	M(MeV)	J^P	Baryon	M(MeV)	J^P	Meson	M(MeV)	J^P	Baryon	M(MeV)	J^P	Meson	M(MeV)	J^P
Σ_{v}^{+}	2443.97 ± 0.14	$1S(1/2)^+$	Σ_{c}	3161	$2P(5/2)^{-}$	Ξ_c'	2578.2 ± 0.5	$1S(1/2)^+$	Ξ	3303	$2P(5/2)^-$	$\Xi_{\rm e}$	2467.71 ± 0.23	$1S(1/2)^+$	Ξ	3945	$4D(3/2)^+$	Ω_c^0	2695.2 ± 1.7	$1S(1/2)^+$	Ω_c	3427	$2P(5/2)^{-}$
Σ_{c}	2901	$2S(1/2)^+$	Σ_{c}	3475	$3P(5/2)^{-}$	$\Xi_c(2970)$	2964.3 ± 1.5	$2S(1/2)^+$	Ξ	3619	$3P(5/2)^-$	Ξ_c	2959	$2S(1/2)^+$	Ξ	3076	$1D(5/2)^+$	$\Omega_c^0(2770)$	3088	$2S(1/2)^+$	$\Omega_{c}^{+}(2880)$	3744	$3P(5/2)^{-}$
Σ_c	3271	$3S(1/2)^+$	Σ_c	3757	$4P(5/2)^{-}$	$\Xi_{\rm e}$	3377	$3S(1/2)^+$	Ξ	3902	$4P(5/2)^{-}$	Ξ_c	3323	$3S(1/2)^+$	Ξ_c	3407	$2D(5/2)^+$	Ω_{c}	3489	$3S(1/2)^+$	Ω_{c}	4028	$4P(5/2)^-$
Σ_c	3581	$4S(1/2)^+$	Σ_c	3041	$1D(1/2)^+$	Ξ_c	3695	$4S(1/2)^+$	Ξ_c	3163	$1D(1/2)^+$	Ξ_c	3632	$4S(1/2)^+$	Ξ¢	3699	$3D(5/2)^+$	Ω_c	3814	$4S(1/2)^+$	Ω_c	3287	$1D(1/2)^+$
Σ_c	3861	$5S(1/2)^+$	Σ_c	3370	$2D(1/2)^+$	Ξ_c	3978	$5S(1/2)^+$	Ξ_c	3505	$2D(1/2)^+$	Ξ_c	3909	$5S(1/2)^+$	Ξ.	3965	$4D(5/2)^+$	Ω_c	4102	$5S(1/2)^+$	Ω_c	3623	$2D(1/2)^+$
$\Sigma_c(2520)$	2518.41 ± 0.22	$1S(3/2)^+$	Σ_c	3043	$1D(3/2)^+$	$\Xi_{\rm c}(2645)$	2645.10 ± 0.3	$1S(3/2)^+$	Ξ	3167	$1D(3/2)^+$	Ξ_c	4166	$6S(1/2)^+$	Ξ	3278	$1F(5/2)^{-}$	$\Omega_c^0(2770)$	2765.9 ± 2	$1S(3/2)^+$	Ω_c	3298	$1D(3/2)^+$
Σ_{c}	2936	$2S(3/2)^+$	Σ_{c}	3366	$2D(3/2)^+$	$\Xi_{\rm c}$	3026	$2S(3/2)^+$	Ξ	3506	$2D(3/2)^+$	$\Xi_{c}^{+}(2790)$	2791.9 ± 0.5	$1P(1/2)^-$	Ξ	3575	$2F(5/2)^{-}$	$\Omega_{\rm c}$	3123	$2S(3/2)^+$	Ω_{c}	3627	$2D(3/2)^+$
Σ_{c}^{+}	3293	$3S(3/2)^+$	Σ_c	3040	$1D(3/2)^+$	Ξ_c	3396	$3S(3/2)^+$	Ξ	3160	$1D(3/2)^+$	Ξ_c	3179	$2P(1/2)^-$	Ξ	3845	$3F(5/2)^{-}$	Ω_{c}	3510	$3S(3/2)^+$	Ω_c	3282	$1D(3/2)^+$
Σ_c	3598	$4S(3/2)^+$	Σ_c	3364	$2D(3/2)^+$	Ξ_c	3709	$4S(3/2)^+$	Ξ_c	3497	$2D(3/2)^+$	Ξ	3500	$3P(1/2)^{-}$	Ξ	4098	$4F(5/2)^{-}$	Ω_c	3830	$4S(3/2)^+$	Ω_c	3613	$2D(3/2)^+$
Σ_c	3873	$5S(3/2)^+$	Σ_c	3038	$1D(5/2)^+$	Ξ_{e}	3989	$5S(3/2)^+$	Ξ_{c}	3166	$1D(5/2)^+$	$\Xi_{\rm c}$	3785	$4P(1/2)^-$	Ξ.	3292	$1F(7/2)^{-}$	Ω_c	4114	$5S(3/2)^+$	Ω_c	3297	$1D(5/2)^+$
$\Sigma_{c}(2800)$	2801 ± 5	$1P(1/2)^{-}$	Σ_{e}	3365	$2D(5/2)^+$	Ξ.	2936	$1P(1/2)^{-}$	Ξc	3504	$2D(5/2)^+$	Ξ_c	4048	$5P(1/2)^-$	Ξ_c	3592	$2F(7/2)^{-}$	$\Omega_c^0(3000)$	3000.46 ± 0.25	$?1P(1/2)^{-}$	Ω_c	3626	$2D(5/2)^+$
Σ_c	3172	$2P(1/2)^{-}$	Σc	3023	$1D(5/2)^+$	Ξ.	3313	$2P(1/2)^-$	Ξ	3153	$1D(5/2)^+$	$\Xi_c(2815)$	2816.51 ± 0.25	$1P(3/2)^-$	Ξ_c	3865	$3F(7/2)^{-}$	Ω_c	3435	$2P(1/2)^{-}$	Ω_c	3283	$1D(5/2)^+$
Σ_c	3488	$3P(1/2)^{-}$	Σ_c	3349	$2D(5/2)^+$	Ξε	3630	$3P(1/2)^-$	Ξ	3493	$2D(5/2)^+$	Ξ_c	3201	$2P(3/2)^{}$	Ξ_c	4120	$4F(7/2)^{-}$	Ω_{c}	3754	$3P(1/2)^{-}$	Ω_c	3614	$2D(5/2)^+$
Σ_c	3770	$4P(1/2)^{-}$	Σ_{c}	3013	$1D(7/2)^+$	Ξ_c	3912	$4P(1/2)^{-}$	Ξ	3147	$1D(7/2)^+$	Ξ_c	3519	$3P(3/2)^{-}$	Ξ,	3469	$1G(7/2)^+$	Ω_c	4037	$4P(1/2)^{-}$	Ω_c	3283	$1D(7/2)^+$
Σ_c	2713	$1P(1/2)^{-}$	Σ_{e}	3342	$2D(7/2)^+$	Ξ,	2854	$1P(1/2)^{-}$	Ξ_c	3486	$2D(7/2)^+$	$\Xi_{\rm c}$	3804	$4P(3/2)^-$	Ξ	3745	$2G(7/2)^+$	Ω_c	2966	$1P(1/2)^{-}$	Ω_c	3611	$2D(7/2)^+$
Σ_c	3125	$2P(1/2)^{-}$	Σ_c	3288	$1F(3/2)^{-}$	Ξe	3267	$2P(1/2)^{-}$	Ξ_{c}	3418	$1F(3/2)^{-}$	Ξ_c	4066	$5P(3/2)^-$	Ξc	3483	$1G(9/2)^+$	Ω_c	3384	$2P(1/2)^{-}$	Ω_c	3533	$1F(3/2)^{-}$
Σ_c	3455	$3P(1/2)^{-}$	Σ_c	3283	$1F(5/2)^{-}$	Ξ.	3598	$3P(1/2)^{-}$	$\Xi_{\rm c}$	3408	$1F(5/2)^{-}$	Ξ_c	3059	$1D(3/2)^+$	Ξ_c	3763	$2G(9/2)^+$	$\Omega_{\rm c}$	3717	$3P(1/2)^{-}$	Ω_{c}	3522	$1F(5/2)^{-}$
Σ_c	3743	$4P(1/2)^{-}$	Σ_c	3254	$1F(5/2)^{-}$	Ξ_c	3887	$4P(1/2)^{-}$	Ξ	3394	$1F(5/2)^{-}$	Ξ	3388	$2D(3/2)^+$	Ξ	3643	$1H(9/2)^{-}$	Ω_c	4009	$4P(1/2)^{-}$	Ω_{c}	3515	$1F(5/2)^{-}$
Σ_c	2798	$1P(3/2)^-$	Σ_c	3253	$1F(7/2)^{-}$	Ξ.	2935	$1P(3/2)^{-}$	Ξ	3393	$1F(7/2)^{-}$	Ξ	3678	$3D(3/2)^+$	Ξ.	3658	$1H(11/2)^{-}$	Ω_{c}	3054	$1P(3/2)^{-}$	Ω_c	3514	$1F(7/2)^{-}$
Σ_c	3172	$2P(3/2)^{-}$	Σ_c	3227	$1F(7/2)^{-}$	Ξε	3311	$2P(3/2)^{-}$	Ξε	3373	$1F(7/2)^{-}$	_						Ω_c	3433	$2P(3/2)^{-}$	Ω_c	3498	$1F(7/2)^{-}$
Σ_{c}	3486	$3P(3/2)^{-}$	Σ_{c}	3209	$1F(9/2)^{-}$	Ξ_c	3628	$3P(3/2)^{-}$	Ξ_c	3357	$1F(9/2)^{-}$	_						Ω_{c}	3752	$3P(3/2)^{-}$	Ω_c	3485	$1F(9/2)^{-}$
Σ_c	3768	$4P(3/2)^{-}$	Σ_e	3495	$1G(5/2)^+$	Ξ_c	3911	$4P(3/2)^-$	Ξ_c	3623	$1G(5/2)^+$	_						Ω_c	4036	$4P(3/2)^{-}$	Ω_c	3739	$1G(5/2)^+$
Σ_c	2773	$1P(3/2)^{-}$	Σ_c	3483	$1G(7/2)^+$	$\Xi_{\rm e}$	2912	$1P(3/2)^{-}$	Ξ_c	3608	$1G(7/2)^+$	_						Ω_{c}	3029	$1P(3/2)^{-}$	Ω_c	3721	$1G(7/2)^+$
Σ_{e}	3151	$2P(3/2)^{-}$	Σ_c	3444	$1G(7/2)^+$	Ξ.	3293	$2P(3/2)^{-}$	Ξ	3584	$1G(7/2)^+$	_						Ω_c	3415	$2P(3/2)^{-}$	Ω_{c}	3707	$1G(7/2)^+$
Σ_c	3469	$3P(3/2)^{-}$	Σ_c	3442	$1G(9/2)^+$	Ξ_c	3613	$3P(3/2)^{-}$	Ξ	3582	$1G(9/2)^+$	_						Ω_c	3737	$3P(3/2)^{-}$	$\Omega_{\rm c}$	3705	$1G(9/2)^+$
Σ_c	3753	$4P(3/2)^{-}$	Σ_c	3410	$1G(9/2)^+$	Ξ_{c}	3898	$4P(3/2)^{-}$	Ξ_c	3558	$1G(9/2)^+$	_						Ω_c	4023	$4P(3/2)^{-}$	Ω_c	3685	$1G(9/2)^+$
Σ_{c}	2789	$1P(5/2)^{-}$	Συ	3386	$1G(11/2)^+$	Ξe	2929	$1P(5/2)^{-}$	$\Xi_{\rm c}$	3536	$1G(11/2)^+$							Ω_c	3051	$1P(5/2)^{-}$	Ω_c	3665	$1G(11/2)^+$

19

How to calculate the coalescence probablity?

Ground states Wigner density:

$$W(r,p) = \int d^{4}y e^{-ipy} \psi(r + \frac{y}{2}) \psi(r - \frac{y}{2}) \quad \text{Wavefunction}$$

$$W(p_{r}) = (2\sqrt{\pi}\sigma)^{3} e^{-\sigma^{2}p_{r}^{2}} \quad \text{Width is given by the potential model} \quad \langle r^{2} \rangle = \frac{3}{2} \frac{m_{c}^{2} + m_{q}^{2}}{(m_{c} + m_{q})^{2}}$$

$$\frac{dN}{d^{3}\mathbf{P}} = g_{H} \sum_{N_{Q}} \int \prod_{i=1}^{k} \frac{d^{3}p_{i}}{(2\pi)^{3}} f(\mathbf{p}_{i}) W_{H}(\mathbf{p}_{1}, \dots, \mathbf{p}_{i}) \, \delta^{(3)} \left(\mathbf{P} - \sum_{i=1}^{N} \mathbf{p}_{i}\right), \quad \text{thermal light quark distribution}$$

Excited states are involed via the thermal ratio:

$$n_{i} = \frac{g_{i}}{2\pi^{2}} T_{\rm FO} m_{i}^{2} K_{2} \left(\frac{m_{i}}{T_{\rm FO}}\right)$$
$$R^{i} = n_{\rm excited}^{i} / n_{\rm ground} \qquad P^{i}(p) = R^{i} \times P_{\rm ground}(p)$$

→ How to decide the coalescence fraction?

Sample a random number and choose the hadron to coalescence based on their coalescence probability.

We include almost all hadrons (missing baryons predicted by the potential model; except the rare HF hadrons)

 $1 - P_{\text{coal.}}$ for fragmentation

After hadronization, evolution in hadronic phase -> UrQMD

EPOS4: @ Large system (AA)

JZ, J.Aichelin, P.B. Gossiaux, V. Ozvenchuk, K.Werner, Phys.Rev.C 110 (2024) 2, 024909

RHIC energy

Bottom sector

JZ, J.Aichelin, P.B. Gossiaux, V. Ozvenchuk, K.Werner, Phys.Rev.C 110 (2024) 2, 024909

p_T (GeV/c) *JZ,* J.Aichelin, P.B. Gossiaux, V. Ozvenchuk, K.Werner, Phys.Rev.C 110 (2024) 2, 024909

CMS 2023 ALICE 2021 EPOS4HQ

CMS 2023 EPOS4HQ

CMS 2023 ALICE 2021 EPOS4HQ

15

20

EPOS4: @ Large system (AA)

Yield ratios

JZ, J.Aichelin, P.B. Gossiaux, V. Ozvenchuk, K.Werner, Phys.Rev.C 110 (2024) 2, 024909

$$v_2 = < \cos[2(\phi - \Psi_2)] >$$

or $v_2\{2\}, v_2\{4\}$

EPOS4: @ Large system (AA)

JZ, J.Aichelin, P.B. Gossiaux, V. Ozvenchuk, K.Werner, Phys.Rev.C 110 (2024) 2, 024909

Outline

- Introduction of the heavy flavor probes
- Heavy flavor production in heavy-ion collisions in EPOS4
- System size dependence of energy loss and correlations
- * Summary

Heavy flavor production in p-p collisions in EPOS4

proton-proton vs. heavy ion collisions

- 1. Quarkonium suppression
- 2. Quark number scaling law of the elliptical flow
- 3. Jet quenching

. . .

proton-proton vs. heavy ion collisions

1. Long-range two-particle correlation

Long-range correlations (near-side "ridge") in high-multiplicity pp collisions. -> collectivity in small systems

2. Strangeness enhancement

Smooth transition with multiplicity from small to large system.

3. Baryon / meson ratio ($\Lambda/K, p/\pi$,..)

Hadronization mechanism may be changed in high-multiplicity pp collisions and same as the AA collsions.

- 1. Quarkonium suppression
- 2. Quark number scaling law of the elliptical flow
- 3. Jet quenching

. . .

Heavy flavor in small system

The large Λ_c/D^0 , Σ_c/D^0 , Ξ_c/D^0 , Λ_b/B^0 , and v_2 of D indicate a small QGP may be formed.

Evidence of different "Fragmentation" Fractions in pp (pPb) at LHC wrt e^+e^- collisions but similar to HICs !

core-corona picture

The energy density is larger than the critical energy density $\epsilon_0 \rightarrow$ deconfined QCD matter! --> A small QGP is created and its evolution can still be described by the hydrodynamics!

JZ, J.Aichelin, P.B. Gossiaux, K.Werner, Phys.Rev.D 109 (2024) 5, 054011 Coalescence+fragmentation

Only fragmentation

- Small momentum shift in the evolution
- Momentum loss due to hadronization much larger
- Charmed baryons are more sensitive to the QGP
- All measured spectra of charmed hadrons are reproduced

JZ, J.Aichelin, P.B. Gossiaux, K.Werner, Phys.Rev.D 109 (2024) 5, 054011

Multiplicity-dependent enhancement is confirmed by experiment !

JZ, J.Aichelin, P.B. Gossiaux, K.Werner, Phys.Rev.D 109 (2024) 5, 054011

Multiplicity-dependent enhancement is confirmed by experiment !

JZ, J.Aichelin, P.B. Gossiaux, K.Werner, Phys.Rev.D 109 (2024) 5, 054011

JZ, J.Aichelin, P.B. Gossiaux, K.Werner, Phys.Rev.D 109 (2024) 5, 054011

- Light hadrons show a finite v2 created by fluctuations of the energy
- + Initially charm are produced in hard processes -> no finite elliptic flow expected
 - In EPOS4, the interaction with the QGP creats this flow even in pp collisions.
 - Hadronization and hadronic scattering slightly change the v2

33

JZ, J.Aichelin, P.B. Gossiaux, K.Werner, Phys.Rev.D 109 (2024) 5, 054011

33

EPOS4: @ small system (pp)Bottom sector

Outline

- Introduction of the heavy flavor probes
- Heavy flavor production in heavy-ion collisions in EPOS4
- Heavy flavor production in p-p collisions in EPOS4
- System size dependence of energy loss and correlations
- Summary

Heavy quark correlations

Heavy quark correlations

System size dependent energy loss

pp, OO, ArAr, KrKr, PbPb 0-10% ---> to investiga pp, $\sqrt{s_{NN}} = 5.02 \text{TeV}$ $T(\tau_0, x, y, z=0)$ $(\underbrace{\mathbb{E}}_{-5}^{0} \circ \underbrace{0}_{-5}^{-5} \circ \underbrace$

5

-5

0

x (fm)

x (fm)

0

-5

Charm quark at creation, after evolution, after hadronization, after UrQMD.

5

---> to investigate the heavy quark energy loss

Correlations from different process

Small

from the same vertex (correlated)

Large

DD Correlations

Small

The correlation is washed out by the uncorrelated heavy quark pairs in QGP!

Large

DD Correlations

Small

The correlation is washed out by the uncorrelated heavy quark pairs in QGP!

If only consider the correlation from **correlated** heavy quarks: (hard to do in the experiment !!!)

Large

41

$D\bar{D}$ Correlations

Small

The correlation is washed out by the uncorrelated heavy quark pairs in QGP!

correlation (correlated) = correlation (all) - correlation (uncorrelated): (easier to do in the experiment !!!)

It is possible to observe the correlation in the large system by subtracting the DD correlations !

Large

- * Based on the newly developed EPOS4 framework, the yield of all charmed hadrons hadrons are well described in both pp and heavy-ion collisions.
- the existence of a small QGP in high energy pp collisions.

On going:

- pA collisions
- Test the hadronization mechanism by considering the influence of the light quark mass, hadronization temperature, baryon diquark structure, and so on.

Summary

 $(D^0, D^+, D_c, \Lambda_c, \Xi_c, \Omega_c)$, also bottom hadrons), the elliptic flow v₂, and the correlation of heavy flavor

* Our results show that independent of the system size, almost all observables can be well understood in pp collisions assuming that there is system-independent critical energy density for the creation of a QGP ->

✤ It is possible to observe the correlation in the large system by subtracting the DD (uncorrelated) correlations !

EPOS4 is now ready for light and open heavy flavors, and the quarkonium part is coming soon.

Thanks for your attention!