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Thermalization of a QCD matter 1s crucial for (almost) all current studies

QCD phases: QGP, EoS and critical point.

QCD transport phenomena: eta/s, conductivity, etc.

Topological and EM QCD effect: CME

[STAR collaboration]

* Does a strongly interacting quantum system thermalize? (QGP, cold atom, condensed matter, ...)

* Any direct probes of QCD thermalization in realistic heavy-ion collisions?



The standard modeling of heavy-ion collisions
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* Indirect signature of (transient) thermalization: collective flow in particle spectrum

Hydro response: V,, o k(EoS,n/s,...)&,



Thermalization of a QCD matter: semi-classical theory

« The emergence of hydro attractor: hydrodynamics, kinetic theory ~ [PRL115,072501(2015)]
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Thermalization of a QCD matter: quantum theory

pure state +
unitary interaction

QGP is a high-energy quantum system obeying non-Abelian gauge theory.
QGP thermalization 1s beyond perturbative QCD characterization.
Lattice QCD needs to extend with time evolution.

Quantum computation: Eigenstate Thermalization Hypothesis.
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QCD thermalization: Measurement of QCD speed of sound

System thermalization < > | Equation of State

dP = sdT', de =Tds constant volume

/\ /\
o OP _ dInT _ dInT

C

de Adiabatic dlns Adiabatic dln S Adiabatic

An ideal thought experiment: /
1. A homogeneous QGP system with fixed volume.
2. Injecting energy/entropy without heat transfer. (QM effect) (S ; T ; V)
3. Measure change of temperature according to change of entropy, and take
ratio => c?




Ultra-central nucleus-nucleus collisions (UCC)
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[F. Gardim et al, 1909.11609]
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Size of the system saturates, volume is fixed.

but (quantum) fluctuations still play a role: AS > 0.

Optimized collision events for the thermalization of QGP: largest entropy production.
Ideal for studying the nuclear structure in heavy-ion collisions.
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Measurement of QCD speed of sound in UCC

dP = sdT', de ="Tds constant volume

/\ /\
o OP _ dInT ~ dInT

C S — —
de Adiabatic dlns Adiabatic dln S Adiabatic

Realistic QGP in Heavy-1on collisions:
1. Volume saturates in UCC.
2.  Entropy increases due to QM fluctuations (e.g., nucleon scatttering).

3. Non-homogeneous QGP with fixed volume? How to measure temperature
and entropy from particles ? Effect of quantum fluctuations?

T < {p1) S o< dN¢y, /dn

[F. Gardim et al, 1908.09728, Nature Physics] 9



c,2 from UCC experiments in mid-rapidity
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QCD speed of sound 1implies a linear response relation: thermodynamic and deterministic.

{Ap}tr o {AN}r

 Extract ¢, from sub-bin measurements: = Cj
(pT)o No

, with [ labels sub-bin in central events
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UCC 1n Small systems: pPb
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Small systems: pPb

Trento 3D and mid-rapidity
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System size saturates (determined by proton size), while entropy always increases towards UCC.

 Significant contributions from quantum fluctuations ==> contaminate the extraction of speed of sound.

* No clear evidence of QGP thermalization for all centralities, e.g., 10%?
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Realistic measurement involving fluctuations
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Event-by-event hybrid hydro modeling, and HIJING and PYTHIA

Tharmal model -- Hybrid hydro modeling:
* We run standard hybrid hydro by fixing mean pT and Nc¢ with respect to experiment UCC:

Trento3D + (3+1D MUSIC + LEOS) + UrQMD
—_— | g——

[.C. quantum noise  thermalized QCD system  non-thermal system

* We focus on mid-rapidity and mean pT cut as in experiments.

Non-thermal model -- HIJING and PYTHIA
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When fluctuations are included: two-dimensional joint probability P(A,, Ax)
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* Hydro: thermodynamic response and quantum noise
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When fluctuations are included: two-dimensional joint probability P(A,, Ax)
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When fluctuations are included: two-dimensional joint probability P(A,, Ax)
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When fluctuations are included: two-dimensional joint probability P(A,, Ax)
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* Hydro: thermodynamic response and quantum noise

A, ,An+0
p— CS
(pT)0 No

* Non-thermal models: Quantum response relation (e.g., multi-parton scatterings) and quantum noise

«<——> thermodynamic resp. + quantum noise
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<«<——> quantum resp. + quantum noise
15



Two questions

* How would one know if the system is thermalized?

« How to extract the speed of sound in the presence of fluctuations, given P(A,, Ax), Pp(4,) and Py (An)?

_ = CS = KR
(pT)o No (pT)o No

— p(8]c3)
16



Disentangle quantum fluctuations from thermodynamic response

A, AN+

* Thermalized QGP: «——> thermodynamic resp. + quantum noise

—c
(pT)o Ny

* Quantum noise 1s independent from the thermodynamic response: Gaussian (CLT)
[PRC 109, L051902 (2024)]

* Expectation: 2) {Gaussian, if system is thermalized and ¢? takes physical value

non-Gaussian, otherwise |
7



Verify Gaussianity condition of quantum fluctuations

p(6]c2)
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1. Gaussianity leads to the zero skewness condition: solve c¢? as the root of equation
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Exp. measurables: mixed skewness of transverse momentum and charged multiplicity

Note that mean of quantum fluctuations vanishes by construction: {9} =

eve
event 1

> 6i=0
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Verify Gaussianity condition of quantum fluctuations
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2. Solve the probability distribution with respect to c2: (0 \Cz)

3. Compare it to gaussian distribution.

4. Atest of convergence: repeat with respect to 5Sth order cumulant:

{67} = {07} — 10{6"}{d"} = 0

1

5. Statistical corrections: ~ —
Ng 19



Quantum fluctuations are correlated with N, (or mean pT)
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* Simple extraction from the linear fit gets contamination (correction) from quantum fluctuations

{Aptr  o{AN}T +{0}1
Yo N, {0}r < {AN}T
[2407.05570]

* One should be careful when extracting cs2 from the slope, unless correction can be well accounted.
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Extract QCD speed of sound

2 sub-bin slope  |{6°}. = 0 [6°}, =0 LEOS
PbPb (Hydro, 5.02TeV) [¢/123\+ 0.035 |0.217 + 0.032]0.216 + 0.041|0.222-0.242
pPb (Hydro, 8.16 TeV) /0.176 0.004 |0.292 4+ 0.013]0.287 + 0.0120.282-0.309
pPb (Hydro, 5.02 TeV) [0.197 4 0.004 |0.318 & 0.0110.313 + 0.008|0.269-0.304
pPb (PYTHIA, 5.02 TeV)|—0.039 4 0.002 @.006 1.352 4 0.0TH0.227-0.278
pPb (HIJING, 5.02 TeV) \Q.o?g 0.003 |1NQ4 +0.019]1.171 + wg)o.zoa-o.zﬂ
i dat S

» Simple extraction from the slope does not correspond to physical values.

* LEOS relis on evaluations of effective temperature, which is somehow model dependent.

* The “speed of sound” extracted from non-thermal models violates causality.

¢ > causality bound ~ {

%: pw=7~0
0.781 :

p 70

[PRD, 80:06

6003(2009)]

[PLB 860 (2025) 139184]
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Extract QCD speed of sound
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Probe of QCD thermalization in realistic heavy-1on collisions

* The realistic system created in heavy-ion collisions is partially thermalized, depending on collision
energy, system size, centrality, etc.

* The realistic observables from heavy-ion collisions are from thermal contributions (hydro) + non-
thermal contributions (e.g., initial hard scatterings, jet, hadron scatterings).

* Probe of QCD thermalization: Simultaneous measurement of ¢ 2 and o

E.g., standardized kurtosis of 0,

_ {9%

(0 : absolute thermalization

K4 = o2 3: q [0,1] : partial thermalization
| > 1: non-thermal
5 0, causality bound] : thermalization
2 -
i > causality bound: non-thermal
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Quantify realistic QCD thermalization: hydro vs. non-hydro
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* Even from hydro modeling, the system only
achieves partial thermalization, due to, e.g., hadron
scatterings.

* From larger (PbPb) to small (pp) systems, the
system becomes less thermalized.

* HIJING and PYTIHA do NOT generate
thermalized system, as expected.
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Summary and conclusion

* QCD speed of sound is strongly related to QCD thermalization.
* Measurement of QCD speed of sound 1n UCC 1s affected by quantum fluctuations.

* (non-)Gaussianity of the quantum fluctuations indicates QCD thermalization.

25



Dependence on models and kinematic selections in experiment ?

* The slope (extracted cs2) varies in exp. and in model simulations:

[G Nus and W. van der Schee, 2312.04623]
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* Note: speed of sound 1s a physical quantity related to QCD, it should NOT depend on initial state model,
nor on kinematic selections.
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Prescription: effective QCD fireball from freeze out

4 )

(St Tepps Verp)

< 4
s

* Fireball determined from final-state freeze-out hypersurface:

Ef = /ZdO'HT'uO = eeff(Teff)‘/eﬂ" Sf = /Edo-/u,sﬂ — Seff(Teff)‘/eff
. I , . I ,

[F. Gardim et al, 1908.09728, LEOS LEOS
Nature Physics] 27




