Three-dimensional Polarized Quark Distributions in the Nucleon

HENPIC Roundtable Discussions May 8th, 2025

Tianbo Liu (対天博)

Key Laboratory of Particle Physics and Particle Irradiation (MOE) Institute of Frontier and Interdisciplinary Science, Shandong University Southern Center for Nuclear-Science Theory, IMP, CAS

In collaboration with: Hongxin Dong, Bo-Qiang Ma, Peng Sun, Ke Yang, Chunhua Zeng, Yuxiang Zhao

How much do we understand our world?

Proton Spin Structure in Naïve Quark Model

Quark model:

M. Gell-Mann, Phys. Lett. 8, 214 (1964); G. Zweig, CERN Report No. TH-401 (1964).

ordinary baryons: $|qqq\rangle$, mesons: $|q\bar{q}\rangle$

Spin-flavor wave function of the proton:

$$\begin{split} \left| p_{\uparrow} \right\rangle &= \frac{1}{\sqrt{18}} \Big[2 \left| u_{\uparrow} d_{\downarrow} u_{\uparrow} \right\rangle + 2 \left| u_{\uparrow} u_{\uparrow} d_{\downarrow} \right\rangle + 2 \left| d_{\downarrow} u_{\uparrow} u_{\uparrow} \right\rangle - \left| u_{\uparrow} u_{\downarrow} d_{\uparrow} \right\rangle \\ &- \left| u_{\uparrow} d_{\uparrow} u_{\downarrow} \right\rangle - \left| u_{\downarrow} d_{\uparrow} u_{\uparrow} \right\rangle - \left| d_{\uparrow} u_{\downarrow} u_{\uparrow} \right\rangle - \left| d_{\uparrow} u_{\uparrow} u_{\downarrow} \right\rangle - \left| u_{\downarrow} u_{\uparrow} d_{\uparrow} \right\rangle \Big] \,. \\ \Delta u &= u_{\uparrow} - u_{\downarrow} = \frac{4}{3} \qquad \Delta d = d_{\uparrow} - d_{\downarrow} = -\frac{1}{3} \end{split}$$

The sum of quark spins gives the proton spin.

Lepton-Hadron Deep Inelastic Scattering

Inclusive DIS at a large momentum transfer: $Q \gg \Lambda_{\text{OCD}}$

- dominated by the scattering of the lepton off an active quark/parton
- not sensitive to the dynamics at a hadronic scale ~ 1/fm
- collinear factorization:

 $\sigma \propto H(Q) \otimes f_{i/P}(x,\mu^2)$

- overall corrections suppressed by $1/Q^n$
- indirectly "see" quarks, gluons and their dynamics
- predictive power relies on
- precision of the probe
- universality of $f_{i/P}(x, \mu^2)$

Modern "Rutherford" experiment.

Lepton-Hadron Deep Inelastic Scattering

H. Abramowicz et al., EPJC 78, 580 (2015).

A. Accardi et al., PRD 93, 114017 (2016).

Lepton-Hadron Deep Inelastic Scattering

H. Abramowicz et al., EPJC 78, 580 (2015). A. Accardi et

A. Accardi et al., PRD 93, 114017 (2016).

レネズス(青岛)

A successful story of QCD, factorization and evolution!

Nucleon Spin Structure

Proton spin puzzle

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s \sim 0.3$$

Spin decomposition

$$J = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

JAM17: $\Delta\Sigma=0.36\pm0.09$

JAM Collaboration, PRL 119, 132001 (2017).

Quark spin only contributes a small fraction to the nucleon spin.

J. Ashman et al., PLB 206, 364 (1988); NP B328, 1 (1989).

Gluon spin from LQCD: $S_g = 0.251(47)(16)$

50% of total proton spin Y.-B. Yang *et al.* (χQCD Collaboration), PRL 118, 102001 (2017).

Wigner Rotation Effect

Melosh-Wigner rotation

quark spin in a rest proton \neq quark spin in a moving proton

If applying a *kinetic boost*, one may relate the spin states in *proton rest frame* to the spin states in *infinite momentum frame*

$$\chi_T^{\uparrow} = w \left[\left(k^+ + m \right) \chi_F^{\uparrow} - \left(k^1 + ik^2 \right) \chi_F^{\downarrow} \right] \qquad \qquad k^+ = k^0 + k^3$$
$$\chi_T^{\downarrow} = w \left[\left(k^+ + m \right) \chi_F^{\downarrow} + \left(k^1 - ik^2 \right) \chi_F^{\uparrow} \right] \qquad \qquad w = \left[2k^+ \left(k^0 + m \right) \right]^{-1/2}$$

E.P. Wigner, Ann. Math 40 (1939) 149; H.J. Melosh, Phys. Rev. D 9 (1974) 1095.

The effect on quark polarization

$$\Delta q = \int \mathrm{d}^3 \mathbf{k} \mathscr{M} \left[q^{\uparrow}(k) - q^{\downarrow}(k) \right] \qquad \qquad \mathscr{M} = \frac{(k^+ + m)^2 - k_T^2}{2k^+(k^0 + m)}$$

B.-Q. Ma, J. Phys. G 17 (1991) L53-L58; B.-Q. Ma, Q.-R. Zhang, Z. Phys. C 58 (1993) 479.

It predicts decreasing polarization with k_T , which should be tested by data. This interpretation is based on a kinetic boost, but a complete boost including QCD dynamics is challenging.

Semi-inclusive Deep Inelastic Scattering

Semi-inclusive DIS: a final state hadron (P_h) is identified

- enable us to explore the emergence of color neutral hadrons from colored quarks/gluons
- flavor dependence by selecting different types of observed hadrons: pions, kaons, ...
- a large momentum transfer *Q* provides a shortdistance probe
- an additional and adjustable momentum scale P_{hT}
- multidimensional imaging of the nucleon

SIDIS Kinematic Regions

Sketch of kinematic regions of the produced hadron

Tianbo Liu

レネスス(青岛)

Structure Functions of SIDIS

Leading Twist TMDs

Leading Twist TMDs

Longitudinal Double Spin Asymmetry

Longitudinal DSA in SIDIS

$$A_{LL} \equiv \frac{\sigma_{++} - \sigma_{+-} + \sigma_{--} - \sigma_{-+}}{\sigma_{++} + \sigma_{+-} + \sigma_{--} + \sigma_{-+}} = \frac{\sqrt{1 - \varepsilon^2} F_{LL} \left(x, z, P_{hT}^2, Q^2 \right)}{F_{UU} \left(x, z, P_{hT}^2, Q^2 \right)}$$

In TMD region:
$$F_{LL}\left(x, z, P_{hT}^2, Q^2\right) \sim g_{1L}(x, k_T^2) \otimes D_1(z, p_T^2)$$
$$F_{UU}\left(x, z, P_{hT}^2, Q^2\right) \sim f_1(x, k_T^2) \otimes D_1(z, p_T^2)$$

One needs P_{hT} -dependent DSA measurements to determine TMD helicity distributions.

 P_{hT} dependent DSA measurements

HERMES: proton (H_2) and deuteron (D_2) targets

HERMES Collaboration, Phys. Rev. D 99 (2019) 112001.

JLab CLAS: proton (NH₃) target

CLAS Collaboration, Phys. Lett. B 782 (2018) 662.

TMD Evolution

Evolution equations

$$\mu^{2} \frac{dF(x,b;\mu^{2},\zeta)}{d\mu^{2}} = \frac{\gamma_{F}(\mu,\zeta)}{2} F(x,b;\mu^{2},\zeta) \qquad -\zeta \frac{d\gamma_{F}(\mu,\zeta)}{d\zeta} = \mu \frac{d\mathscr{D}(\mu,b)}{d\mu} = \Gamma_{\text{cusp}}(\mu)$$

$$\zeta \frac{dF(x,b;\mu^{2},\zeta)}{d\zeta} = -\mathscr{D}(\mu,b)F(x,b;\mu^{2},\zeta) \qquad \gamma_{F}(\mu,\zeta) = \Gamma_{\text{cusp}}(\mu) \ln \frac{\mu^{2}}{\zeta} - \gamma_{V}(\mu)$$

$$F\left(x,b;\mu_{f},\zeta_{f}\right) = \exp\left[\int_{P}\left(\gamma_{F}(\mu,\zeta)\frac{d\mu}{\mu} - \mathscr{D}(\mu,b)\frac{d\zeta}{\zeta}\right)\right] F\left(x,b;\mu_{i},\zeta_{i}\right)$$

 ζ -prescription

equipotential lines: $\frac{d \ln \zeta_{\mu}(\mu, b)}{d \ln \mu^{2}} = \frac{\gamma_{F}\left(\mu, \zeta_{\mu}(\mu, b)\right)}{2\mathscr{D}(\mu, b)}$ $\mathscr{D}\left(\mu_{0}, b\right) = 0, \quad \gamma_{F}\left(\mu_{0}, \zeta_{\mu}\left(\mu_{0}, b\right)\right) = 0$ $F\left(x, b; Q, Q^{2}\right) = \left(\frac{Q^{2}}{\zeta_{Q}(b)}\right)^{-\mathscr{D}(Q,b)} F(x, b), \quad \mu_{f}^{2} = \zeta_{f} = Q^{2}$

Tianbo Liu

Parametrization

Parametrization of TMD helicity distributions

we parametrize the distributions in b space at the saddle point

$$g_{1L}(x,b) = \sum_{f'} \int_{x}^{1} \frac{d\xi}{\xi} \Delta C_{f \leftarrow f'}\left(\xi, b, \mu_{\text{OPE}}\right) g_{1L}^{f'}\left(\frac{x}{\xi}\right) g_{\text{NP}}(x,b),$$

$$g_{1L}^{f}(x) = N_{f} \frac{(1-x)^{\alpha_{f}} x^{\beta_{f}} \left(1+\epsilon_{f} x\right)}{n\left(\alpha_{f}, \beta_{f}, \epsilon_{f}\right)} g_{1}^{f}\left(x, \mu_{\text{OPE}}\right)$$

 $n(\alpha_f, \beta_f, \epsilon_f)$ is introduced to reduce the correlation between normalization and the shape.

$$g_{\rm NP}(x,b) = \exp\left[-\frac{\lambda_1(1-x) + \lambda_2 x + \lambda_5 x(1-x)}{\sqrt{1 + \lambda_3 x^{\lambda_4} b^2}}b^2\right]$$

the same form as adopted in the unpolarized distributions.

The *x*-dependent factor allows a variation from the collinear distribution. Such an *x*-shape modification can be removed by setting $\alpha_f = \beta_f = \epsilon_f = 0$.

First Extraction of TMD Helicity

NLO+NNLL analysis results

Nonzero signals for *u* and *d* quarks, while sea quarks and gluons are loosely constrained.

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, Phys. Rev. Lett. 134 (2025) 121902.

ふまたる(青岛)

Estimation of Uncertainties

Tianbo Liu

レネズズ(青岛)

Estimation of Uncertainties

In each single fit:

minimize
$$\chi^2 = \sum_{\text{sets}} \sum_{i,j} (t_i - a_i) V_{ij}^{-1} (t_j - a_j)$$
 V_{ij} : covariant matrix

Dominant correlated uncertainties:

Experiment	Process	Beam and target polarization	Dilution
HERMES	$e^{\pm}p \to e^{\pm}hX$	6.6%	0
HERMES	$e^{\pm}d \to e^{\pm}hX$	5.7%	1.7%
CLAS	$e^-p \to e^-\pi^0 X$	4.5%	5.8%

In this study, 1000 replicas are generated according to data uncertainties and their correlations.

Parameter Values and Uncertainties

Parameter	Value	Parameter	Value
N_u	$0.0223^{+0.0029}_{-0.0024}$	$N_{ar{u}}$	$-0.008^{+0.092}_{-0.035}$
N_d	$0.0353\substack{+0.0051\\-0.0088}$	$N_{ar{d}}$	$0.006^{+0.032}_{-0.011}$
N_s	$-0.022^{+0.043}_{-0.043}$	N_g	$0.0220\substack{+0.0081\\-0.0706}$
α_u	$2.78^{+0.45}_{-0.72}$	$lpha_d$	$4.28^{+0.38}_{-0.76}$
β_u	$0.145^{+0.041}_{-0.194}$	β_d	$1.16_{-0.40}^{+0.14}$
ϵ_u	$7.4^{+2.3}_{-4.5}$	ϵ_d	$-0.59^{+0.18}_{-0.20}$
λ_1	$0.240^{+0.062}_{-0.134}$	λ_2	$0.39^{+0.13}_{-0.33}$
λ_3	$0.92^{+12.17}_{-0.92}$	λ_4	$7.50^{+2.29}_{-0.78}$
λ_5	$-1.11_{-0.50}^{+0.87}$		

Correlation Matrix of the Parameters

Compare with HERMES data

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, Phys. Rev. Lett. 134 (2025) 121902.

ふまたる(青岛)

Compare with HERMES data

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, Phys. Rev. Lett. 134 (2025) 121902.

レネズス(青岛)

Compare with HERMES data

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, Phys. Rev. Lett. 134 (2025) 121902.

0.5 < z < 0.8

Ō

₫

 $e^{\pm}p \rightarrow e^{\pm}\pi^{+}X$

0.14 < x < 0.2

 $e^{\pm}p \rightarrow e^{\pm}\pi^{-}X$

 $e^{\pm}d \to e^{\pm}\pi^+X$

 $e^{\pm}d \rightarrow e^{\pm}\pi^{-}X$

 $e^{\pm}d \to e^{\pm}K^+X$

 $e^{\pm}d \rightarrow e^{\pm}K^{-}X$

₹

0.2 0.5 0.8 1.1

ふまたる(青岛)

 P_{hT} (GeV)

δ

Compare with HERMES data

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, Phys. Rev. Lett. 134 (2025) 121902.

レネスス(青岛)

Compare with HERMES data

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, Phys. Rev. Lett. 134 (2025) 121902.

レネスス(青岛)

Compare with CLAS data

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, Phys. Rev. Lett. 134 (2025) 121902.

しまたる(青岛)

Transverse Momentum Dependent Polarization

 $g_{1L}(x, k_T^2) = q_{\uparrow}(x, k_T^2) - q_{\downarrow}(x, k_T^2)$ measures the absolute number density difference between spin-parallel and spinantiparallel quarks in a polarized proton.

 $\frac{g_{1L}(x,k_T^2)}{f_1(x,k_T^2)} = \frac{q_{\uparrow}(x,k_T^2) - q_{\downarrow}(x,k_T^2)}{q_{\uparrow}(x,k_T^2) + q_{\downarrow}(x,k_T^2)}$ measures the polarization rate of quarks.

 At large x, where valence components dominate, the polarization decreases with increasing k_T
 Qualitatively consistent with kinetic Wigner rotation effects

Transverse Momentum Dependent Polarization

 $g_{1L}(x, k_T^2) = q_{\uparrow}(x, k_T^2) - q_{\downarrow}(x, k_T^2)$ measures the absolute number density difference between spin-parallel and spinantiparallel quarks in a polarized proton.

 $\frac{g_{1L}(x,k_T^2)}{f_1(x,k_T^2)} = \frac{q_{\uparrow}(x,k_T^2) - q_{\downarrow}(x,k_T^2)}{q_{\uparrow}(x,k_T^2) + q_{\downarrow}(x,k_T^2)}$ measures the polarization rate of quarks.

• At low x, where the valence component is no longer adequate, distributions are highly driven by complex QCD dynamics The polarization is found increasing with k_T

Examine the Positivity Bound

Positivity bound: $|g_{1L}| \le f_1$ based on probability interpretation

It *should not* be imposed during the fit, which will introduce bias to results.

It can be examined. No breaking of the bound is observed according to current uncertainties.

ふまたる(青岛)

Test the Sensitivity to FFs

Input of TMD FFs: $D_1(z, p_T^2)$ SV19-DSS parametrization

The polarization distributions, i.e. the ratio between g_{1L} and f_1 , are not sensitive to the choice of input FFs.

Flexible vs. Fixed x-dependence

Recall the parametrization:

$$g_{1L}^{f}(x) = N_{f} \frac{(1-x)^{\alpha_{f}} x^{\beta_{f}} \left(1 + \epsilon_{f} x\right)}{n\left(\alpha_{f}, \beta_{f}, \epsilon_{f}\right)} g_{1}^{f}\left(x, \mu_{\text{OPE}}\right)$$

By setting $\alpha_f = \beta_f = \epsilon_f = 0$, one can fix it to the collinear distributions.

The results from these two choices are consistent within current uncertainties.

K. Yang, TL, P. Sun, Y. Zhao, B.-Q. Ma, Phys. Rev. Lett. 134 (2025) 121902.

レネスス(青岛)

Comparison between theoretical calculations and HERMES data

Tianbo Liu

Comparison between theoretical calculations and HERMES data

Tianbo Liu

Transverse Nucleon Tomography Collaboration

Transverse Nucleon Tomography Collaboration

Sivers distribution functions:

Chunhua Zeng, Tianbo Liu, Peng Sun, Yuxiang Zhao, Phys. Rev. D 106 (2022) 094039.

Transversity distribution functions and Collins fragmentation functions:

Chunhua Zeng, Hongxin Dong, Tianbo Liu, Peng Sun, Yuxiang Zhao, Phys. Rev. D 109 (2024) 056002. Trans-helicity worm-gear distribution functions:

Ke Yang, Tianbo Liu, Peng Sun, Yuxiang Zhao, Bo-Qiang Ma, Phys. Rev. D 110 (2024) 034036. Transverse momentum dependent helicity distribution functions:

Ke Yang, Tianbo Liu, Peng Sun, Yuxiang Zhao, Bo-Qiang Ma, Phys. Rev. Lett. 134 (2025) 121902.
Sivers, transversity, and Collins functions including DY and new COMPASS data: Chunhua Zeng, Hongxin Dong, Tianbo Liu, Peng Sun, Yuxiang Zhao, Phys. Lett. B (2025).
Helicity distributions and azimuthal modulations in longitudinal DSA: Ke Yang, Tianbo Liu, Peng Sun, Yuxiang Zhao, Bo-Qiang Ma, in preparation.

Summary and Outlook

- Spin always surprises since its discovery 100 years ago
- Nucleon spin structure is still not well understood
- Rich information is contained in multidimensional imagings, TMDs as well as GPDs
- First extraction of TMD helicity distributions is obtained by analyzing transverse momentum dependent SIDIS DSA data

- at large-x region, where valence components dominate, quark polarization decreases with increasing k_T , supporting the kinetic Wigner rotation effects;

- in low-x region, increasing quark polarization in dependence on k_T is observed, indicating the essential role of QCD dynamics;

- sea quarks and gluon distributions are loosely constrained by existing SIDIS data.
- Transverse momentum dependent measurements of W production in polarized pp collisions at RHIC may help constrain sea quark distributions.
- Opportunities from existing experiments at RHIC, JLab12, BESIII, BelleII, and future facilities, EIC, EicC, STCF, to understand nucleon spin structures and fragmentation functions.

Thank you!

