

Technical University in Prague

Understanding two- and three-body hadronic interactions using femtoscopy

Raffaele Del Grande

Czech Technical University in Prague raffaele.del.grande@fjfi.cvut.cz

5 June 2025 HENPIC Seminar

Hadronic interactions

Understand how QCD evolves from high-energy to low-energy regime

Hadronic interactions

Understand how QCD evolves from high-energy to low-energy regime

How do hadrons interact?

Two-body interactions

Three-body interactions

Three-body dynamics

Dynamics of baryons involves formation of hadronic excitations

H.-W. Hammer, S. König, U. van Kolck RMP 92 (2020)

Short-range dynamics

Three-body forces in Effective Field Theories

E. Epelbaum, H.-W. Hammer, U.-G. Meißner, RMP 81, 1773 (2009)

*g*_{*i*} constants to be fixed by the experimental data

3BFs contribute 10-20% to the binding energies.

3BFs contribute 10-20% to the binding energies.

Raffaele Del Grande

Stronger impact on dense nuclear matter?

D. Lonardoni et al. PRL 114, 092301 (2015)

Femtoscopy technique at the Large Hadron Collider

Hadronic interaction

Femtoscopy technique at the Large Hadron Collider

ALICE at the LHC

Hadronic interaction

Femtoscopy technique at the Large Hadron Collider

Measuring $C(k^*)$, fixing the source $S(\vec{r})$, study the interaction

• Emitting source function anchored to p-p correlation function

$$C(k^*) = \int S(\vec{r}) |\psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$$

measured known interaction

• Gaussian parametrization

$$S(r) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^2}{4r_{core}^2}\right) \times \frac{\text{Effect of short lived}}{\text{resonances (ct ~ 1 fm)}}$$

ALICE Coll., PLB, 811 (2020), 135849

Effect of short lived

ALICE Coll., PLB, 811 (2020), 135849

resonances ($c\tau \sim 1 \text{ fm}$)

• Emitting source function anchored to p-p correlation function

 $C(k^*) = \int S(\vec{r}) \left| \psi(\vec{k}^*, \vec{r}) \right|^2 d^3 \vec{r}$

measured

known interaction

• Gaussian parametrization

 $S(r) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^2}{4r_{core}^2}\right) \times$

- One universal source for all hadrons (cross-check with K⁺-p, π-π, p-Λ, p-π)
- Small particle-emitting source created in pp collisions at the LHC

ALICE Coll., PLB, 811 (2020), 135849; ALICE Coll., EPJ C 85 (2025) 2, 198

Effect of short lived

ALICE Coll., PLB, 811 (2020), 135849

resonances ($c\tau \sim 1 \text{ fm}$)

• Emitting source function anchored to p-p correlation function

 $C(k^*) = \int S(\vec{r}) |\psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$ measured known interaction

• Gaussian parametrization

 $S(r) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^2}{4r_{core}^2}\right) \times$

- One universal source for all hadrons (cross-check with K⁺-p, π-π, p-Λ, p-π)
- Small particle-emitting source created in pp collisions at the LHC

ALICE Coll., PLB, 811 (2020), 135849; ALICE Coll., EPJ C 85 (2025) 2, 198; ALICE Coll., arXiv:2502.20200 (2025)

ALICE Coll., PLB, 811 (2020), 135849; ALICE Coll., EPJ C 85 (2025) 2, 198; ALICE Coll., arXiv:2502.20200 (2025)

Effect of short lived

ALICE Coll., PLB, 811 (2020), 135849

• Emitting source function anchored to p-p correlation function

 $C(k^*) = \int S(\vec{r}) \left| \psi(\vec{k}^*, \vec{r}) \right|^2 d^3 \vec{r}$ measured known interaction

Gaussian parametrization

 $S(r) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^2}{4r_{core}^2}\right) \times \frac{\text{Effect of snort livea}}{\text{resonances (ct ~ 1 fm)}}$

 Small particle-emitting source created in pp collisions at the LHC

ALICE Coll., PLB, 811 (2020), 135849; ALICE Coll., EPJ C 85 (2025) 2, 198; ALICE Coll., arXiv:2502.20200 (2025)

ALICE Coll., PLB, 811 (2020), 135849; ALICE Coll., EPJ C 85 (2025) 2, 198; ALICE Coll., arXiv:2502.20200 (2025)

Femtoscopy measurements at the LHC

ALICE Collaboration:

PRC 99 (2019) 2, 024001 PLB 797 (2019) 134822 PRL 123 (2019) 112002 PRL 124 (2020) 09230 PLB 805 (2020) 135419 PLB 811 (2020) 135849 Nature 588 (2020) 232-238 PRL 127 (2021), 172301 PLB 822 (2021), 136708 PRC 103 (2021) 5, 055201 PLB 833 (2022), 137272 PLB 829 (2022), 137060 PRD 106 (2022), 5, 05201 PL B 844 (2023) 137223 EPJA 59 (2023) 145 EPJC 83 (2023) 4, 340 PLB 845 (2023) 138145 EPJA (2023) 59:298 PRD 110 (2024) 3, 032004 PRX 14 (2024) 3, 031051 PLB 856 (2024) 138915 PRC 109, 024915 (2024) EPJC 85 (2025) 2, 198 arXiv:2502.20200 [nucl-ex] arXiv:2504.02333 [nucl-ex]

Hyperons in neutron stars

• Exact composition strongly depends on constituent interactions and couplings!

The pA interaction before femtoscopy

The $p\Lambda$ interaction in the femtoscopy era

The $p\Lambda$ interaction in the femtoscopy era

The $p\Lambda$ interaction in the femtoscopy era

The $p\Sigma^+$ interaction

• Data sensitive to the triplet channel

- Fit with Gaussian + Coulomb
- Shallow repulsion in triplet channel

B. Heybeck in collaboration with Y. Kamiya

The p^{±-} interaction

• Evidence of the attractive strong interaction

ALICE Coll., Nature 588 (2020) 232

The p^{±-} interaction

• Evidence of the attractive strong interaction

٠

Towards a realistic equation of state of neutron stars

• State-of-the-art interactions for NN, NNN, YN (S=-1 and S=-2) and YY fail to reproduce observed heavy neutron stars

I. Vidaña, V. Mantovani Sarti, J. Haidenbauer, D. Mihaylov, L. Fabbietti, arXiv: 2412.12729 (2024)

Towards a realistic equation of state of neutron stars

• State-of-the-art interactions for NN, NNN, YN (S=-1 and S=-2) and YY fail to reproduce observed heavy neutron stars

I. Vidaña, V. Mantovani Sarti, J. Haidenbauer, D. Mihaylov, L. Fabbietti, arXiv: 2412.12729 (2024)

 Next step → inclusion of three body interaction involving hyperons

Lednický, R. Phys. Part. Nuclei 40, 307–352 (2009) Only s-wave interaction

• Source radius evaluated using the universal m_{τ} scaling

Coulomb + strong interaction using Lednický model

W. T. H. Van Oers et al., NPA 561 (1967);

J. Arvieux et al., NPA 221 (1973); E. Huttel et al., NPA 406 (1983); A. Kievsky et al., PLB 406 (1997); T. C. Black et al., PLB 471 (1999);

• Point-like particle models anchored to scattering experiments

Point-like particle description doesn't work for p-d

NNN using proton-deuteron correlations

• The p-d correlation function, assuming that p-p-n forms p-d

$$C_{pd}(k) = \frac{1}{A_d} \frac{1}{6} \sum_{m_1, m_2} \int d^3 r_1 d^3 r_2 d^3 r_3 S_1(r_1) S_1(r_2) S_1(r_3) \left| \Psi_{m_1, m_2} \right|^2$$

where $S_1(r)$ is a single-particle Gaussian source and A_d is the formation probability of a deuteron

• The **three-body wavefunction** of the p–d System

$$\Psi_{m_{2},m_{1}}(x,y) = \Psi_{m_{2},m_{1}}^{free} + \sum_{LSJ}^{J \leq \overline{J}} \sqrt{4\pi} i^{L} \sqrt{2L+1} e^{i\sigma_{L}} \left(1m_{2} \frac{1}{2}m_{1} \middle| SJ_{z} \right) (LOSJ_{z} | JJ_{z}) \widetilde{\Psi}_{LSJJ_{z}}$$
Asymptotic solution Three-body dynamics

 Hadron-nuclei correlations at the LHC can be used to study many-body dynamics

ALICE Coll. Phys. Rev. X 14, 031051 (2024) M. Viviani et al, Phys.Rev.C 108 (2023) 6, 064002

b

NNN using proton-deuteron correlations

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Hadron-nuclei correlations at the LHC can be used to study manybody dynamics

ALICE Coll. Phys. Rev. X 14, 031051 (2024) M. Viviani et al, Phys.Rev.C 108 (2023) 6, 064002

400

NNN using proton-deuteron correlations

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Hadron-nuclei correlations at the LHC can be used to study manybody dynamics
- Sensitivity to three-body forces up to 5%

ALICE Coll. Phys. Rev. X 14, 031051 (2024) M. Viviani et al, Phys.Rev.C 108 (2023) 6, 064002

NNN using proton-deuteron correlations

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Hadron-nuclei correlations at the LHC can be used to study manybody dynamics
- Sensitivity to three-body forces up to 5%

NNN using proton-deuteron correlations

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Results from Run 3 are promising!
- In Run 3 expected uncertainty of 1%

M. Viviani et al, Phys.Rev.C 108 (2023) 6, 064002

Three-body femtoscopy in pp collisions

Correlation function:

$$C(Q_3) = \int S(\rho) |\psi(Q_3, \rho)|^2 \rho^5 d\rho$$

Three-body scattering wave function

Hyper-momentum:

$$Q_3 = 2\sqrt{k_{12}^2 + k_{23}^2 + k_{31}^2}$$

R. Del Grande et al. EPJC 82 (2022) 244 ALICE Coll., EPJ A 59, 145 (2023) Hyper-radius:

$$\rho = 2\sqrt{r_{12}^2 + r_{23}^2 + r_{31}^2}$$

L. E. Marcucci et al., Front. in Phys. 8, 69 (2020).

Extension to three-particle system

- First measurement of the free scattering of three hadrons
- Deviation from unity in p-p-p and p-p- Λ correlation functions

p-p-p correlation function

• First ever full three-body correlation function calculations

three-proton wave function $C(Q_3) = \int \rho^5 d\rho \, S(\rho, \rho_0) |\Psi(\rho, Q_3)|^2$ hyperradius

• Wave function in hyperspherical harmonics

 $\Psi(\rho, Q_3) = \sum_K R_K(\rho) Y_K(\Omega)$

- Interactions:
 - \circ pp strong interaction (AV18)
 - \circ Coulomb
 - \odot No three-body forces

A. Kievsky, et al., Phys.Rev.C 109 (2024) 3, 034006

 p-p-p correlation function: superposition of many partial waves

Comparison Run-2 data

Comparison with the ALICE Run-2 measurement:

- calculations can describe the shape observed in the data
- tension at large values of Q₃

Comparison Run-2 data

Comparison with the ALICE Run-2 measurement:

- calculations can describe the shape observed in the data
- interaction at higher partial waves (K<= 7) must be included in the calculations
- missing data in the low-energy region

Negligible three-body interactions in p-p-p.

p-p-p correlation function in Run-3

$p-p-\Lambda$ correlation function

• Three-body force constrained to the hypertriton binding energy

	NLO19				N2LO			D arm
$\operatorname{cutoff}(\operatorname{MeV})$	500	550	600	650	500	550	600	Exp.
$B(^3_{\Lambda}{ m H})({ m MeV})$	2.792	2.839	2.904	3.255	2.819	2.799	2.878	2.39
			1					1

p-p-Λ correlation function

- NLO19 (600) is used to describe the pΛ interaction D. Mihaylov, J. Haidenbauer and V. Mantovani Sarti, PLB 850 (2024) 138550
- Three-body force constrained to the hypertriton binding energy
- 40% effect of three-body interactions
- Run-2 data: one data point in the region of the maximum

$p-p-\Lambda$ correlation function

p-p-Λ correlation function

By the end of Run 3: 100 times larger statistical triplets sample expected compared to Run 2 due to developed software triggers!

The future of hadron physics

Two-body forces from femtoscopy
 + scattering data

D. Mihaylov, J. Haidenbauer and V. Mantovani Sarti, PLB 850 (2024) 138550

2) Three-body femtoscopy to constrain three-body forces

E. Garrido et al., Phys. Rev. C 110 (2024) 5, 054004

3) Four-body systems to construct realistic potentials

- 4) Heavier nuclei
- 5) Neutron stars

Conclusions and Outlook

- Exciting results from femtoscopy
 → Important experimental input to understand the many facets of QCD in strange sector
 - Most precise p-A data at low momenta
 - First extraction of the p-Λ scattering parameters using femtoscopy and scattering data
 - Shallow repulsion in the $p-\Sigma^+$ interaction in the triplet channel
 - Evidence of the attractive $p-\Xi^{-}$ strong interaction
 - Opening of the $p\Xi^{-} \rightarrow \Lambda\Sigma^{0}$ channel
 - First measurements of three-particle correlation functions
 - NNN interaction: up to 5% in p-d and negligible in the p-p-p measurement
 - NNΛ interaction: 40% effect in the correlation function
- On-going Run 3 and future Run 4
 - Access to precise data on three-particle interactions
 - Sensitivity to the effect of three-body forces in the correlation functions