Supported in part by:

Probing the Quark-Gluon Plasmas droplet though Anisotropic flow in small Symmetric and Asymmetric systems

Shengli Huang

Origin of Collective in small system: Initial State or Final State

Initial State

Short-range correlation
Weakly depend on initial spatial geometry

Long-range correlation
Strong depend on initial spatial geometry

Final State $\neq Hdrodynamics Expasion$

 $v_n^{Measure} \propto \varepsilon_n^{Init.}$ is one of the key evidences for the hydro expansion

Both $v_n^{Measure}$ and $\varepsilon_n^{Init.}$ need to be well controlled in order to test this linear relation s. Hugng

4

System Evolution in Small-Size System Collision

S. Huang

System Evolution in Small-Size System Collisions

ε_n^{Init} : (sub)nucleon fluctuation

System Evolution in Small-Size System Collisions

ε_n^{Init} : (sub)nucleon fluctuation

 $v_n^{Measure}$:(nonflow + preflow + de-correlation)

Longitudinal Decorrelation

System Evolution in Small-Size System Collisions

 ε_n^{Init} : (sub)nucleon fluctuation

Nucleon Fluctuation Nucleon & Subnucleon Fluctuation $v_n^{Measure}$: (nonflow + preflow + de-correlation)

Longitudinal Decorrelation

Testing linear relation ($v_n^{Measure} \propto \varepsilon_n^{Init}$) is challenge!

beam direction

 $\frac{1}{3} v_3(^3\text{He+Au}) \approx v_3(\text{d+Au}) \approx v_3(\text{p+Au})(PHENIX)$

Nature Physics 15, 214-220 (2019)

9/18/2025

QGP Droplet? Geometry Scan at RHIC

p+Au(2015) d+Au(2016) ³He+Au(2014)

STAR:PRC 110, 064902 (2024)

	Nucleon	Nucleon	Subnucleon
	Glauber $[30, 31]$	Glauber [14, 29]	Glauber $[32]$
	b < 2 fm	0-5% centrality	0–5% centrality
	$\langle arepsilon_2 angle \ \langle arepsilon_3 angle$	$\sqrt{\langle arepsilon_2^2 angle} \ \sqrt{\langle arepsilon_3^2 angle}$	$\sqrt{\langle arepsilon_2^2 angle} \ \sqrt{\langle arepsilon_3^2 angle}$
³ He+Au	$0.50 \ 0.28$	$0.53 \ 0.33$	$0.54 \ 0.38$
$d{+}\mathrm{Au}$	$0.54 \ 0.18$	$0.59 \ 0.28$	$0.55 \ 0.35$
p+Au	0.23 0.16	0.28 0.23	0.41 0.34

PHENIX: $\frac{2}{3} \varepsilon_3$ (3 He+Au) $\approx \varepsilon_3$ (dAu) $\approx \varepsilon_3$ (pAu)

However, such calculation is too simply:

- 1) Centrality can not be defined from b
- 2) Eccentricity should be $\sqrt{\langle \varepsilon_n^2 \rangle}$

 $\frac{1}{3}$ v₃(³He+Au) \approx v₃(d+Au) \approx v₃(p+Au)(*PHENIX*)

Nature Physics 15, 214-220 (2019)

9/18/2025

QGP Droplet? Geometry Scan at RHIC

d+Au(2008) ³He+Au(2014) p+Au(2015)

STAR:arXiv:2312.07464

	Nucleon	Nucleon	Subnucleon
	Glauber [30, 31]	Glauber [14, 29]	Glauber [32]
	b < 2 fm	0-5% centrality	0–5% centrality
	$\langle \varepsilon_2 \rangle \ \langle \varepsilon_3 \rangle$	$\sqrt{\langle arepsilon_2^2 angle} \ \sqrt{\langle arepsilon_3^2 angle}$	$\sqrt{\langle arepsilon_2^2 angle} \ \sqrt{\langle arepsilon_3^2 angle}$
³ He+Au	$0.50 \ 0.28$	$0.53 \ 0.33$	$0.54 \ 0.38$
$d{+}\mathrm{Au}$	$0.54 \ 0.18$	$0.59\ \ 0.28$	$0.55 \ 0.35$
p+Au	$0.23 \ 0.16$	$0.28 \ 0.23$	$0.41 \ 0.34$

$$\varepsilon_3$$
(3HeAu)> ε_3 (dAu)> ε_3 (pAu)

1)Centrality from NBD⊗Npart

2)Eccentricity from
$$\sqrt{\langle \varepsilon_n^2 \rangle}$$

Differ only by 20% even with Nucleon Glauber

Sub-Nucleon Fluctuation in small system

STAR: PRC 110, 064902 (2024)

-			
	Nucleon	Nucleon	Subnucleon
	Glauber [30, 31]	Glauber [14, 29]	Glauber [32]
	b < 2 fm	0–5% centrality	0-5% centrality
	$\langle arepsilon_2 angle \ \langle arepsilon_3 angle$	$\sqrt{\langle arepsilon_2^2 angle} \ \sqrt{\langle arepsilon_3^2 angle}$	$\sqrt{\langle \varepsilon_2^2 \rangle} \ \sqrt{\langle \varepsilon_3^2 \rangle}$
³ He+Au	$0.50 \ 0.28$	$0.53 \ 0.33$	$0.54 \ 0.38$
$d{+}\mathrm{Au}$	$0.54 \ 0.18$	$0.59 \ 0.28$	$0.55 \ \ 0.35$
$p{+}\mathrm{Au}$	$0.23 \ 0.16$	$0.28 \ 0.23$	$0.41\ 0.34$

$$\varepsilon_3$$
(³He+Au) $\approx \varepsilon_3$ (d+Au) $\approx \varepsilon_3$ (p+Au)

PRC 94, 024919 (2016)

Eccentricity difference between p+Au, d+Au and ³He+Au is substantially mitigated by the sub-nucleon fluctuation

S. Huang

Measurements From STAR

STAR: *PRL 130, 242301(2023) PRC 110, 064902 (2024)*PHENIX: Nature Phys. 15, 214 (2019)

3D-Glauber: Chun & Wenbin, PRC 107, 014904 (2023)
Sub-nucleon + longitudinal fluctuation

Large $v_3(p_T)$ discrepancy between STAR and PHENIX Large longitudinal de-correlation in PHENIX measurements as 3D-Glauber indicates!? 3D-Glauber still under-estimates STAR v_3 in p+Au and d+Au

S. Huang

Pre-flow Effect: Sonic vs. superSONIC Model

- (super)SONIC: initial geometry eccentricity without sub-nuclear fluctuations
- \gt SONIC model :without preflow, underpredicts v_3 in all systems
- ➤ superSONIC model: SONIC+preflow can reproduce the v₃ even without sub-nucleon fluctuations

The system dependence between p/d/³He+Au

$$v_2(^3He+Au) \approx v_2(d+Au) > v_2(p+Au)$$

 $v_3(^3He+Au) \approx v_3(d+Au) \approx v_3(p+Au)$

Sub-nucleon fluctuation or pre-flow or both?

Can we perform a real test of the linear response to initial eccentricity in small systems?

STAR:arXiv:2312.07464

Lessons the from Asymmetric Systems Scan

- •Maximise the difference in initial geometry between systems.
- Minimise uncertainties in the initial geometry.
- •Reduce contamination of flow observables from preflow, decorrelation, and nonflow.

O+O(Symmetric) vs d+Au(Asymmetric) collisions

Nucleon-Glauber

$$arepsilon_2^{d ext{Au}} > arepsilon_2^{ ext{OO}} \ arepsilon_3^{d ext{Au}} < arepsilon_3^{ ext{OO}}$$

$$arepsilon_2^{
m nucl} \gtrsim arepsilon_2^{
m quark} \ arepsilon_3^{
m nucl} < arepsilon_3^{
m quark}$$

$$\varepsilon_n^{\rm nucl} \approx \varepsilon_n^{\rm quark}$$

 $d + ^{197}Au$

Quark-Glauber

$$arepsilon_2^{d{
m Au}} > arepsilon_2^{{
m OO}} \ arepsilon_3^{d{
m Au}} pprox arepsilon_3^{{
m OO}}$$

$$^{16}O + ^{16}O$$

- •Elongated deuteron vs. nearly round oxygen nuclei
- Vastly different initial geometries
- → ideal test of geometry–flow response

Eccentricity between d+Au and O+O (I)

$$\varepsilon_2(O+O) < \varepsilon_2(d+Au)$$

Significant difference(~40%)

Regardless nucleon or sub-nucleon fluctuation S. Huang

Different ab initio Models

The ε_2 (O+O) from different ab initio initial-state models agrees within ~10%

Middle-middle correlation from new Run21: v_n with different $\Delta\eta$ cut

After nonflow subtraction, v_n are independent of the $|\Delta\eta|$ selection

De-correlation is small in middle-middle correlation

A Golden Comparative Measurement

- •Maximise the difference in initial geometry between systems. 40% difference with $\varepsilon_2(O+O) < \varepsilon_2(d+Au)$
- •Minimise uncertainties in the initial geometry. ϵ_2 in O+O and d+Au is insensitive to sub-nucleon fluctuation and different ab initio models
- •Reduce contamination of flow observables from pre-flow, decorrelation, and nonflow.
- Minimum contamination from nonflow, preflow and de-correlations for $\mathbf{v_2}$

A golden probe for the linear response between v_2 and ε_2 !

c₂ and c₃ in d+Au and O+O

A non-monotonic behavior is found for c_2 @d+Au vs. multiplicity

A clear interplay between "Flow" and "Nonflow"

$$c_2(d+Au) > c_2(O+O)$$
 at HM region

$$c_3(d+Au) \approx c_3(O+O)$$

V₂ vs. Multiplicity

- •v₂ differs by ~40% between d+Au and O+O collisions.
- •Response coefficient $k_2=v_2\{2\}/\epsilon_2\{2\}$ is similar in both systems.
- •Scaling improves when including sub-nucleon fluctuations.
- •Splitting at high multiplicity provides leverage to discriminate between different ab-initio models

S. Huang 20

Comparing with Hydro v₂

- •Both hydrodynamic models reproduce the measured v_2 .
- •Hydro 2 (larger η /s) gives a better description of v_2 in low-multiplicity events.

$v_2{2}/\epsilon_2{2}$ in Hydro

- •By scaling with ε_2 {2} from hydro, the models reproduce the measured v_2 {2}/ ε_2 {2}.
- •A clear linear response is observed between initial ϵ_2 {2} and final ν_2 {2} in d+Au and O+O.
- •This provides strong evidence for hydrodynamic expansion in small systems.

V₃ vs. Multiplicity

- •v₃ is similar between d+Au and O+O collisions.
- Scaling works only when sub-nucleon fluctuations are included
- •This provides further confirmation of the crucial role of sub-nucleon fluctuations in small systems

Comparing with Hydro v₃

Hydro1 Large sub-nucleon fluctuation Small η/s =0.04

Hydro2 Small sub-nucleon fluctuation Large η/s =0.09

•Only hydrodynamic model with large sub-nucleon fluctuation can reproduce the measured v₃ in d+Au.

$v_3{2}/\epsilon_3{2}$ in Hydro

- •Linear response is observed between initial $\varepsilon_3\{2\}$ and final $v_3\{2\}$ in **Hydro 2** (large η/s)
- •Nonlinear contributions are expected to become more pronounced for smaller η /s

Initial Geometry Fluctuation: ε_2 {4}/ ε_2 {2}

•Central collisions:

- • ϵ_2 {4} $\approx \epsilon_2$ {2} in d+Au \rightarrow dominated by dumbbell-shaped deuteron geometry.
- • ϵ_2 {4}< ϵ_2 {2} in O+O \rightarrow fluctuation-dominated.
- •If $v_2\{4\}/v_2\{2\}$ is controlled by $\varepsilon_2\{4\}/\varepsilon_2\{2\}$ this also provides key evidence for hydrodynamic expansion.

$v_2{4}/v_2{2}$ in d+Au and O+O

- • v_2 {4}/ v_2 {2} strongly depends on ε_2 {4}/ ε_2 {2}
- •Hydro model with large η /s=0.09 reproduces the measurement.
- •Hydro with small $\eta/s=0.04$ fails to generate $v_2\{4\}$ due to large nonlinear effects.
- •Implication: Strong constraint on η /s in small systems.

Ne+Ne vs O+O in LHC

Phys. Rev. Lett. 135 (2025) 012302

- •Deformed Ne+Ne collisions generate larger ε_2 {2} than O+O.
- •~10% difference observed at the LHC.
- •Hydro model predicts ~20% difference.
- •Model tends to overestimate the deformation parameter β_2

Outlook

- •Different size fluctuations between asymmetric (d+Au) and symmetric (O+O) small systems.
- (pT)~1/R(; differences in (pT) fluctuations between d+Au and O+O provide direct insight into radial flow effects in small systems.

S.Huang, J.Jia and C. Zhang arXiv:2507.16162

Summary

Comparative study: d+Au vs O+O collisions (unprecedented geometric control)
Two Key observations:

- 1.v₂{2} shows linear response to ε_2 {2} with 40% difference between d+Au and O+O. 2.v₂{4}/v₂{2}is controlled by ε_2 {4}/ ε_2 {2}.
- → Both strongly support hydrodynamic expansion in small systems.

It is further confirmed by 3D Glauber + hydro calculations tuned from large systems.

Provides rich constraints for understanding formation criteria and properties of small QGP droplets.

S. Huang