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Origin of Collective in small system:
Initial State or Final State
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Initial State Final State

Short-range correlation
Weakly depend on initial spatial geometry

Long-range correlation
Strong depend on initial spatial geometry 

𝒗𝒏
𝑴𝒆𝒂𝒔𝒖𝒓𝒆 ∝ 𝛆𝒏

𝑰𝒏𝒊𝒕. 𝒊𝒔 𝒐𝒏𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒌𝒆𝒚 𝒆𝒗𝒊𝒅𝒆𝒏𝒄𝒆𝒔 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒉𝒚𝒅𝒓𝒐 𝒆𝒙𝒑𝒂𝒏𝒔𝒊𝒐𝒏

Final State ≠ 𝐻𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 𝐸𝑥𝑝𝑎𝑠𝑖𝑜𝑛

Both 𝒗𝒏
𝑴𝒆𝒂𝒔𝒖𝒓𝒆 𝒂𝒏𝒅 𝛆𝒏

𝑰𝒏𝒊𝒕. need to be well controlled in order to test this linear relation



System Evolution in Small-Size System Collision

Initial state

Pre-equilibrium

QGP Droplet?

Hadronization

Freeze out

Initial momentum 
correlation:

Pre-flow

Hydro Flow:

Initial eccentricity: 𝜺𝒏
𝑰𝒏𝒊𝒕

𝜏=0+fm/c 0.5fm/c A few fm/c

Measured Flow:
𝜺𝒏

𝑯𝒚𝒅𝒓𝒐.

𝒗𝒏
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𝑴𝒆𝒂𝒔𝒖𝒓𝒆

𝛆𝐩

Eccentricity as Hydro. starts: 
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𝜺𝒏
𝑰𝒏𝒊𝒕: (sub)nucleon fluctuation
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de-correlation)
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𝜺𝒏
𝑰𝒏𝒊𝒕: (sub)nucleon fluctuation

𝒗𝒏
𝑴𝒆𝒂𝒔𝒖𝒓𝒆:(nonflow + preflow + 

de-correlation)

𝑻𝒆𝒔𝒕𝒊𝒏𝒈 linear relation (𝒗𝒏
𝑴𝒆𝒂𝒔𝒖𝒓𝒆 ∝ 𝛆𝒏

𝑰𝒏𝒊𝒕) is challenge!

6



QGP Droplet? Geometry Scan at RHIC

9/18/2025

p+Au(2015) d+Au(2016) 3He+Au(2014)

Initial State

Final State

𝑃𝐻𝐸𝑁𝐼𝑋:
2

3
 𝜀3(3He+Au) ≈ 𝜀3(dAu) ≈ 𝜀3(pAu) 

However, such calculation is too simply:
1) Centrality can not be defined from b
2) Eccentricity should be 

STAR:PRC 110, 064902 (2024)

S. Huang

1

3
 v3(3He+Au) ≈ v3(d+Au) ≈ v3(p+Au)(PHENIX) 
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https://www.nature.com/articles/s41567-018-0360-0


QGP Droplet? Geometry Scan at RHIC

9/18/2025

p+Au(2015) d+Au(2008) 3He+Au(2014)

Initial State

Final State

𝜀3(3HeAu)>𝜀3(dAu)>𝜀3(pAu) 

1)Centrality from NBD⨂Npart 
2)Eccentricity from 

STAR:arXiv:2312.07464

S. Huang

1

3
 v3(3He+Au) ≈ v3(d+Au) ≈ v3(p+Au)(PHENIX) 
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Differ only by 20% even with Nucleon 
Glauber

https://www.nature.com/articles/s41567-018-0360-0


Sub-Nucleon Fluctuation in small system
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Disk-like Gaussion-like Quark-like

PRC 94, 024919 (2016) 

Eccentricity difference between p+Au, d+Au and 3He+Au is substantially mitigated by 
the sub-nucleon fluctuation

STAR: PRC 110, 064902 (2024)

𝜀3(3He+Au) ≈ 𝜀3(d+Au)≈𝜀3(p+Au) 

S. Huang



Measurements From STAR
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STAR: PRL 130, 242301(2023)       

           PRC 110, 064902 (2024) 

PHENIX: Nature Phys. 15, 214 (2019) 

3D-Glauber: Chun & Wenbin, PRC 107, 

014904 (2023)

Sub-nucleon + longitudinal 
fluctuation 

Large v3(pT) discrepancy between STAR and PHENIX
Large longitudinal de-correlation in PHENIX measurements as 3D-Glauber indicates!?
3D-Glauber still under-estimates STAR v3 in p+Au and d+Au 

S. Huang



➢ (super)SONIC:  initial geometry 
eccentricity without sub-nuclear 
fluctuations

➢ SONIC model :without preflow, under-
predicts v3 in all systems        

➢ superSONIC model:  SONIC+preflow 
can reproduce the v3 even without 
sub-nucleon fluctuations

SONIC: P. Romatschke  Eur. Phys.J.C 75, 305 (2015)
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Pre-flow Effect:
Sonic vs. superSONIC Model
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https://link.springer.com/article/10.1140/epjc/s10052-015-3509-3#auth-P_-Romatschke
https://link.springer.com/journal/10052


9/18/2025

The system dependence between p/d/3He+Au

12S. Huang

STAR:arXiv:2312.07464

v2(3He+Au) ≈ v2(d+Au) > v2(p+Au)
v3(3He+Au) ≈ v3(d+Au) ≈ v3(p+Au)

Sub-nucleon fluctuation or 
pre-flow or both? 
                           
Can we perform a real test of 
the linear response to initial 
eccentricity in small systems?



Lessons the from Asymmetric Systems Scan
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•Maximise the difference in initial geometry between 

systems.

•Minimise uncertainties in the initial geometry.

•Reduce contamination of flow observables from pre-

flow, decorrelation, and nonflow.



O+O(Symmetric) vs

 d+Au(Asymmetric) collisions

S. Huang 14

•Elongated deuteron vs. nearly 

round oxygen nuclei

•Vastly different initial geometries 

→ ideal test of geometry–flow 
response



Eccentricity between d+Au and O+O (I)

𝛆2(O+O) < 𝛆2(d+Au)

Significant difference(~40%)

Regardless nucleon or sub-nucleon fluctuation
S. Huang 15

Nucleon Glauber Quark Glauber

40%



Different ab initio Models
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The 𝛆2(O+O) from different ab initio initial-state models agrees within ~10%



Middle-middle correlation from new Run21:
vn with different ∆𝜂 cut

After nonflow subtraction, vn 
are independent of the |∆𝜂| 
selection

De-correlation is small in 
middle-middle correlation

17S. Huang

O+O d+Au



A Golden Comparative Measurement
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•Maximise the difference in initial geometry between systems.

40% difference with 𝛆2(O+O) < 𝛆2(d+Au)

 

•Minimise uncertainties in the initial geometry.

𝛆2  in O+O and d+Au is insensitive to sub-nucleon fluctuation and 

different ab initio models

.

•Reduce contamination of flow observables from pre-flow, 

decorrelation, and nonflow.

Minimum contamination from nonflow, preflow and de-correlations 

for v2

A golden probe for the linear response between v2 and 𝛆2!



c2 and c3 in d+Au and O+O

19

A non-monotonic behavior is 
found for c2@d+Au vs. 
multiplicity 

A clear interplay between 
“Flow“ and “Nonflow”

c2(d+Au) > c2(O+O) at HM 
region

c3(d+Au) ≈ c3 (O+O)

S. Huang

𝑐2 = 𝑣2
2;  𝑐3 = 𝑣3

2; 



V2 vs. Multiplicity

20S. Huang

40% 

•v2 differs by ~40% between d+Au and O+O collisions.

•Response coefficient k2=v2{2}/ε2{2} is similar in both systems.

•Scaling improves when including sub-nucleon fluctuations.

•Splitting at high multiplicity provides leverage to discriminate between different 

ab-initio models



Comparing with Hydro v2
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Hydro1
Large sub-nucleon fluctuation
Small 𝜂/𝑠=0.04

Hydro2
Small sub-nucleon fluctuation
Large  𝜂/𝑠=0.09

PGCM+3DHydro 1 PGCM+3DHydro 2

•Both hydrodynamic models reproduce the measured v2.

•Hydro 2 (larger η/s) gives a better description of v2 in low-multiplicity events.



v2{2}/ε2{2} in Hydro
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•By scaling with ε2{2} from hydro, the models reproduce the measured v2{2}/ε2{2}.

•A clear linear response is observed between initial ε2{2} and final v2{2} in d+Au 

and O+O.

•This provides strong evidence for hydrodynamic expansion in small systems.
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V3 vs. Multiplicity

•v3 is similar between d+Au and O+O collisions.

•Scaling works only when sub-nucleon fluctuations are included

•This provides further confirmation of the crucial role of sub-nucleon 

fluctuations in small systems

STAR Preliminary
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Comparing with Hydro v3

Hydro1
Large sub-nucleon fluctuation
Small 𝜂/𝑠=0.04

Hydro2
Small sub-nucleon fluctuation
Large  𝜂/𝑠=0.09

•Only hydrodynamic model with large sub-nucleon fluctuation can reproduce 

the measured v3 in d+Au.



v3{2}/ε3{2} in Hydro

25

•Linear response is observed between initial ε3{2} and final v3{2} in Hydro 2 (large η/s)

•Nonlinear contributions are expected to become more pronounced for smaller η/s
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Initial Geometry Fluctuation: ε2{4}/ε2{2} 

•Central collisions:

•ε2{4}≈ε2{2} in d+Au → 

dominated by dumbbell-shaped 

deuteron geometry.

•ε2{4}<ε2{2} in O+O → 

fluctuation-dominated.

•If v2{4}/v2{2} is controlled 

by ε2{4}/ε2{2} this also provides 

key evidence for hydrodynamic 

expansion.



v2{4}/v2{2} in d+Au and O+O
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STAR Preliminary

•v2 ​{4}/v2 ​{2} strongly depends 

on ε2{4}/ε2{2}

•Hydro model with large η/s=0.09 

reproduces the measurement.

•Hydro with small η/s=0.04 fails to 

generate v2{4} due to large nonlinear 

effects.

•Implication: Strong constraint 

on η/s in small systems.



Ne+Ne vs O+O in LHC

28

•Deformed Ne+Ne collisions generate 

larger ε2{2} than O+O.

•~10% difference observed at the LHC.

•Hydro model predicts ~20% difference.

•Model tends to overestimate the 

deformation parameter β2



Outlook

29

•Different size fluctuations 

between asymmetric (d+Au) and 

symmetric (O+O) small systems.

•⟨pT⟩∼1/R⟨; differences in ⟨pT⟩ 
fluctuations between d+Au and 

O+O provide direct insight into 

radial flow effects in small 

systems.

S.Huang, J.Jia and C. Zhang arXiv:2507.16162



Summary

S. Huang 30

Comparative study: d+Au vs O+O collisions (unprecedented geometric control)

Two Key observations:

1.v2{2} shows linear response to ε2{2} with 40% difference between d+Au and O+O.

2.v2{4}/v2{2}is controlled by ε2{4}/ε2{2}.

→ Both strongly support hydrodynamic expansion in small systems.

It is further confirmed by 3D Glauber + hydro calculations tuned from large systems.

Provides rich constraints for understanding formation criteria and properties of small 

QGP droplets.
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