Sign-problem-free Nuclear
Quantum Monte Carlo Simulation

Bing-Nan Lu
=Pt

Graduate School of China Academy of Engineering Physics

P ETEYIERRBET R ER

HENPIC online seminar
Dec 30, 2025




Fundamental forces In the universe

Fundamental Forces

Atoms
Dark
. 4.6% Energy
Strength Range (m) Particle Dark 71.4%
Force which Ma
Stron . ®,— holds nucleus 107! 5 gluons. 243{';”
@ @togeher (diameter of a r(nucleons)
medium sized nucieus)
Strength Range (m) Particle
EleCt)‘O- 4‘@ @-’ 1 _ photon
) 137 Infinite mass = 0
magnetic O <@ spin = 1
Strength Range (m) Particle
\ = y -6 -18 Intermediate Particle .
Weak ‘W‘@ :> ‘@ 10 N 10 . vector bosons Proton Neutron = Mass (MeV/c)
S s WhW 2, 938 MeV 940 MeV ym

Induces beta decay

spin =1 up u 23+07 +05
Strength Range (m) Particle d 48 +05 + 03
A ’. ) graviton ? + + OWn d 405 0.
Gravity @’@ 6 x 10°° Infinite mass = 0 T P

spin = 2 140 MeV 770 MeV



Chart of nuclide

24 >3000 nuclides v .-|-'- * Mass, Radii

& >250 stable nuclides e g * Magnetic moment
3 * Reaction rate

g £ =32 .o

2 . * EM transition

N =126 * Weak decay
* Strangeness
* Temperature

Can everything in nuclear
physics be derived from
N (Number of neutrons) fundamental laws?
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Hierarchy of strongly interacting systems
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QCD Quark Confinement

* Quarks are confined In nucleons

* Nuclear forces among nucleons
are emergent phenomena




What I1s nuclear ab /n/tio calculations?

Neutron Proton N U C I ea I‘ fO I‘CE S

Quantum
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Virtual

Nuclear Few-
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Chiral Effective-Field Theory




Typical nuclear forces

complicated operator structures
emerging from QCD

AVESINTERACTION Nuclear chiral EFT

2N force 3 3N force : 4N force
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Complexity of nuclear many-body problem

NP-Hard

NP-Complete

NP

Hardest

Hard

Medium

Easy

 P:  Solvable within polynomial time
* NP: Verifiable within polynomial time
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Exponentially increasing Hilbert space
mm) Find ground state of a general
Hamiltonian is NP-Hard



Quantum many-body problem classification

* Models with strong interactions present great challenges

4. General quantum many-body problem (NP-hard)
Exact diagonalization
Quantum computing

3. Problems perturbatively solvable
QMC with sign problem 3 BRI TIFU

(Nuclear ab initio calculations) M%DE LS

1. Problems analytically solvable
only possible in 1-d systems

BIELE, S H BERIEAND

2. Problems with polynomial algorithms
QMC without sign problem



Nuclear ab /nitio algorithms

* No core shell model: 4 < 20
* Green’s function Monte Carlo: 4 < 20 .

* Coupled cluster: A < 100 (this v'jgrk)
* In-medium similarity renormalization group: 4 < 100
* Nuclear lattice effective field theory: A < 100

Developments of algorithms and hardware

rapidly push the frontiers of 4 s
nuclear ab /nitio calculations S[E "
e =
S 15 S
a (@
mass / temperature / strangeness /- Sl
. . 2" Tw_ ™ 0 28
Rapid growth in last decade by 2 ° Hu et al., Nature Physics,

ons, 3™ Teutrons, N 18, 1196 (2022)



Nuclear Lattice EFT: An efficient nuclear many-body solver

Lattice EFT = Chiral EFT + Lattice + Monte Carlo

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009),

Lahde, MeiBner, “Nuclear Lattice Effective Field Theory”, Springer (2019)

@ Discretized chiral nuclear force

@ Lattice spacing a~ 1 fm = 620 MeV
(~chiral symmetry breaking scale)

@ Protons & neutrons interacting via
short-range, o-like and long-range,
pion-exchange interactions

@ Exact method, polynomial scaling (~ A?)
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Nature * 2, PRL > 20

* Hoyle state
PRL106-192501 (2011)

* «a-a scattering
Nature528-111 (2015)

* Charge distribution
PRL119-222505 (2017)

* Nuclear thermodynamics
PRL125-192502 (2020)

* Ab initio 199Sn
PRL135-222504 (2025)

[a~0.5—2fm

Lattice adapted for nucleus



Lattice EFT: A many-body EFT solver

@ Get interacting g. s. from imaginary time

projection:

We.s.) o lim exp(—TH)|Wa)

with |W,) representing A free nucleons.

@ Expectation value of any operator O E
 (Walexp(~TH/2)Oexp(~TH/2)[Wa)
(0) = lim
T—boo (‘UAlexp(—TH)‘WA>
Ti

@ 7 is discretized into time slices:

All possible configurations in T € [t;, 7] are sampled.
Complex structures like nucleon clustering emerges naturally.

L] L) L] ) L] l —
* exact
I Monte Carlo ]
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projection time (MeV~1)



Lattice EFT: A many-body EFT solver

@ Quantum correlations between nucleons are represented by fluctuations of the In lattice EFT, solving a general Hamiltonian

Rewrite expectation value as a path integral

using auxiliary field transformation.

For each field configuration,

calculate the amplitude.

Integrate over the field variables using

Monte Carlo algorithms.

Take the limit T — oo to find the true ground state.

auxiliary fields. consists of 5 steps:
1.
e _atC( Ty)? L /ds e s ++/—a:Cs(y y)
cexp | — = cexp | —— — .
@ Long-range interactions such as OPEP or more complex interactions can be
represented similarly. 3.
@ For fixed aux. fields, product of s.p. states (e.g., Slater determinant) keep the
form of product of s.p. states in propagations. <=No N-/ interaction g

Euclidean time

Take the limit L = oo to eliminate
the finite volume effects.

f(X)




Compare Lattice EFT and Lattice QCD

LQCD LEFT e Lattice EFT share a lot of common features

with Lattice QCD. However,
* Non-rel. = particle number conservation

degree of freedom  quarks & gluons  nucleons and pions

lattice spacing ~0.1 fm ~1 fm . _ _
: . . L L * Quadratic dispersion relation
dispersion relation relativistic non-relativistic : :

S o i el ) - no Fermion doubling problem
renormalizability renormalizable efrective rield theory « EFT contains non-renormalizable terms
continuum limit yes no > no continuum limit

Coulomb difficult easy
accessibility hlgh T / |OW p |OW T / Psat Two-nucleon force Three-nucleon force
sign problem severe for i >0 moderate Lo gﬂéj —
Accessible by 0808 Qual"kS S -
Lattice QCD NLO '_‘i }l [.I [ 1 —
L \ LQcD K E{ |
7 LECs

" My ; usters
’"“,'I::.l’:w A('('(‘;Q‘Nzl(‘ by N0 +.:* +I }-+-1 }’”
Lattice BFT LEFT ECs
res Nucleu )g té +
= IR RS TRV SRR RS

Atom : )
I

T [MeV]

10 = nuclear

10"t

-5
p [fm™] Py




Sign problem in guantum Monte Carlo

Quantum Monte Carlo approaches transform the quantum many-body problems into
high-dimensional integrals that can be evaluated stochastically

* Statistical error ~O(N-/2)

* Sign grob_lem_occ_:urs_when the integrand is NOT positive definite € can not be viewed as
a probability distribution

e Sign problem is severe for fermionic systems due to the anti-symmetrization nature of the
fermion wave functions

. Sigfn-pro_blem-free_QMC exists but confined to toy-models € can be solved with exactly
polynomial complexity
1

Sign problem m_i%ht be tolerable for light nuclei. However, anf/ sign problem increases
exponentially with the particle number € exponential complexity returns!

2. Sign problem might be partially solved by constrained path / perturbation theory.
However, these require systematic expansion and induces systematic biases.

Sign-problem-free QMC allows us to solve the nuclear many-body problem 4, Sign problem

from light to heavy nuclei with remarkably high numerical precision. exact
unconstrained

Yet its potential has not been fully exploited.

energy

ground




Examples of sign-problem-free QMC

Lattice QCD with two identical quark species
7= f DYDID[U)e= 56V det[DIU]],  det[D[U]] = det[Dy[U]] det[Dy[U] = det[Dy[U]]% > 0

Nuclear Lattice EFT with Wigner-SU(4) interactions (even-even nuclel)
7 = /Dse_SZ/Q det[Z(s)], det[Z(s)] = det[Z;(s)] det[Z) (s)] = det[Z4+(5)]* > 0

Repulsive Fermi-Hubbard model at half-filling
Kane-Mele-Hubbard model
Half-filled Kondo lattice model

Positivity of the fermionic determinant is protected by the time-reversal symmetry

Sufficient condition for absence of the sign problem in the fermionic quantum Monte Carlo algorithm, C.-]. Wu and
S.-C. Zhang, PRB71, 155115 (2005)

Sign-problem-free fermionic quantum Monte Carlo: Developments and Applications, Z.-X. Li and H. Yao, Annu. Rev.
Condens. Matter Phys. 10, 337 (2019)



Nuclear binding near a qguantum phase transition

1 ) -
HSU4 = Hfree + 502 Z p(n)2 E,—E A/4
n

p(n)=pn)+s. > p(n)

In'—n|=1

p(n) =T (n)T(n)

U(n)=U(n)+sne » U(n)

In’—n|=1 o
Alpha gas Nuclear liquid

* The nuclear force can be either local (position-dependent)
or non-local (velocity-dependent).
* Locality is an essential element for nuclear binding.

Challenge: Minimal nuclear force
That reproduce the binding pattern

. . i ils!
Simple Wigner-sU(4) central force fails! ¢ by icari et al., PRL 117, 132051 (2016)



Binding energy (MeV)

Nuclear force with a Wigner-sSU(4) symmetry
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All density operators are smeared
Lu et al., PLB 797, 134863 (2019)
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Applications of V\/igner—SU(4) INnteraction

* Ab initio calculations of the isotopic 1.5 [ [dimer
dependence of nuclear clustering, S. 1.0 '-T 5 MeV \ O\I{
Elhatisari et al., PRL 119, 222505 g; -
(2017) 3 — '

* Emergent geometry and duality in g 22 .'
the carbon nucleus, S. Shen et al., = OO0 O/H‘ f7Toe
EPJA 57, 276 (2021); S. Shen et al., § 00 oo o f o
Nat. Comm. 14, 2777 (2023); 0.6 [ [alpha) 0_>A/2

* Ab initio study of nuclear clustering R g
in hot dilute nuclear matter, Z. Ren et 00 on ldealgf_f (C)_“-:
al., PLB 850, 138463 (2024) 2 N

* Ab initio calculation of the alpha- TOtaln“CleonnumberA

particle Monopole transition form

——SU4+Coulomb |
4 Kegel et al.

factor, Ulf-G. MeiRner et al, PRL 132,  §° | rosch ot 1

Walcher

062501 (2024)

* Ab initio study of the beryllium
isotopes 'Be to 12Be, S. Shen et al.,
PRL 134, 162503 (2025)




Improved Wigner-SU(4) interaction

* Wigner-SU(4) symmetry is an approximate symmetry )

15

-Lack correct shell structure =2 Spin-orbit coupling = 9%
* We introduce a spin-orbit coupling S

1 1 1
'|' 0 20 40 60 80
—_— = | 5= T \ 7
p = 1 ﬂ.j Neutron Number N

vIvie Oy, C5_.
H = — 7+ —5° + C.pp. _ r 3 _
Zn.: [ 2M * 9 P + 6 prEC pp,,] Ps = g €ijk Vi {t‘lf(vj — vj)ﬁkﬂ}

ijk

Wigner-SU(4) symmetry does not mix spin-up and spin-down particles

- Fermion determinant factorized into two identical partsidet(Z) = det(Z;)* > 0)
-> Fermionic sign problem avoided!

* Spin-orbit term act equivalently for spin-up and spin-down particles

- Fermion determinant keeps positive definite

Z.-W. Niu and BL, PRL135-222504 (2025)



Proof for the positivity of the determinant

(0) = lim (@ka_fﬂmog_mm‘@’*”) — lim <‘1’T|ML"XQOLA‘IL"/2|‘1’T> * The nucleons evolve independently
roeo (PplemTH| ) Lo (Op|MEt|®r) under the auxiliary fields.
g JDeexp(= 30 e /2)(@r|M (er,) - M(cp,j201)OM (cr,z2) - M(e1)|®1) + Time-reversal pairs are NOT broken
bimee | Deexp(— 32, 2/2) (‘I‘T\M(PL, - M(cy)|®r) by the spin-orbit coupling
vi(n)V2: ,¥(n Co_ : .
M(c) = exp [Z ar o1 Z Vv —a:Cxc(n ( 202/)3(11))] * Matrix elements of the fermionic

o - correlation matrix respect a special
(¢) [ @1) (1| M(c)|g2) -+ (¢1|Mlc)|da) symmetry

(¢1 ¢1 |
(f‘) | 61) (92 Iﬂ_(f) | ¢52) - (P2 | M(c) | pa)

o1 | M
(02| M

— A
Z(c) = [(¢1 | M(e) | )] 7 _, = . . | ,
(04 | 71(0) | 61) (64 | () | 63) - (cﬁm | M(c) | ¢a)
For even-even nuclei, we prepare the single nucleon wave functions as paired by the time-reversal operation:

|Pa/24+k) = T|ok), =02 412 (

where 7 = io,K is the time-reversal operator and K denotes complex conjugation. The matrix M (c) commutes with 7°
Using the properties of 7 and Eq. (22), we obtain the relations:

(Da/24ilM(C)basars) = (THilM(c)|T¢;) = (6l M(c)| T T¢5)* = (dil M(c)|¢;)",
(Da24ilM(c)lbj) = (ThilM(c)lds) = (ds[M()|T p5)* = —(dil M ()P asas;)"



Proof for the positivity of the determinant

The correlation matrix then has the structure:

Uu -v*
4 = : (24)
vV U*
where U and V are A/2 x A/2 complex matrices.
We define a spin-flipping matrix:
. 0 Ias
2 = ’LO'y(X)IA/Q = ; (25)
—Ip;, O

where 1,/ is the A/2 x A/2 identity matrix. Direct verification shows that
ZY = X7Z". (26)
For any eigenvalue A € C with corresponding eigenvector v satisfying Z v = A v, we have
Z(Zy™) =XZy" =3(X"v") = X" (2"}, (27)

implying that A* is also an eigenvalue with eigenvector w = Yv™*. Thus, complex eigenvalues of Z always appear in conjugate
pairs. If A is real, we find

(w|w)=v'Ev* =@ Zv)* =0, (28)

indicating that v and w are orthogonal eigenvectors corresponding to the same real eigenvalue. In this case, the real eigenvalue
appears twice in the diagonalized form of Z. Consequently, the determinant det(Z), being the product of all eigenvalues, is
always nonnegative.



Gradient Descent method

* We fit to binding energies of *He, 0, #*Mg, 8Si, 325, 4°Ca
using a derivative-based optimization method

=Y [E(A);(i;xp(fl)r

T 5. =0.0808 (Li—): -138.30 (20) |

A

|
-
]
o

— E(w)+Ce™ -
T 5.=0.0818 (Li»w=): -140.12 (9)
—--- E(w)+Ce"t

* The derivatives are calculated using the
Feynman-Hellmann theorem,

—130F O\

|
-
'S
o

Energy without COU (MeV)
-
(=]

OE(A)/0x = (®|H(x + 6) — H(x)|P) /6.

* Typically converge within 10 iterations g Pe e s
< precise and unbiased } } i [ SR 7
I " . : : 2 25k 2 e
derivative computation Is essential! L3 }, _____ } ..... % ..... ooy B B SO
Cy=—4.410x1077" MeV~2, C3 = 1.561 x 10715 MeV =5, Oy = 8.590 x 10712 _3'5;' - Extrapolated (Li-): -2.63 cg)'; g I m
MeV™4, s, = 0.081, sxp, =045« AT_OPT1” ~40F  Erorpropagation {1 Zogm
45550 Ts0 200250300 350 12 3 4 5 6

Le lteration
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o
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Charge density pcn (e fm™3)
o o
o =
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Results from LAT-OPT1: Charge densities

1 1 1 l 1 I 1 I 1 1 I '
— ¥ LAT-OPT1
\

-- Empirical (GS)
—— Empirical (FB)

4§ LAT-OPT1 with Coulomb _|

Radius (fm)

Charge densities calculated
using pinhole algorithm
Elhatisari et al., PRL119, 222505 (2017)

Pinhole algorithm induce mild sign
problem, not available for A>=40.
See partial pinhole algorithm for

a solution

Zheng-Xue Ren et al.,
PRL135-152502 (2025)



Results from LAT-OPT1: Heavy nuclel

* Sign-problem-free QMC scales polynomially towards heavy nuclel

—830k——

Extract binding energy of 199Sn with ~1 MeV precision
using ~30000 CPU hours
(10 days on AMD EPYC 9554@3.1GHz, 128 CPU cores)

1OOSn

T T T T T

]
ke

- EXP

a; = (1000 MeV)~! |
a; = (1200 MeV)~1

0z

03

—o04

Projection time T (MeV™1!)

©c o o ©
© © o =
5 & © ©

o
o
N

CPU hours per config (h)

0.0F

IIIIIIIIIIIIIIII

(c)

@~ Chiral force ]
This work -

11
Relative error

0.000+!

4He 16Io 40(I:a 56INi BUIZr IOOISn—

Nuclei

[number of configurations = 16800]

(d)

4He 16Io 40Ea 56INi BUIZr IOOISn

Relative errors <0.1% for heavy nuclel


mailto:9554@3.1GHz

Energy without COU (MeV)
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Results from LAT-OPT1: Heavy nuclel

—990r -
—-995r
—1000F
—1005F
—1010F

—1015¢

807y

| | | | | |

o O 0] @ [o2] 0]
o o O QO o] o]
wu o u (=] wu o

Extrapolated (Lt - «): -906.02 MeV ]
Uncertainty in Extrapolation: 0.79

N0Zr

Extrapolated (Lt— «): -1012.62 MeV

Uncertainty in Extrapolation: 0.50

Energy without COU (MeV)

Nucleus FEuinga MeV) Eg (MeV) Eq/FEvina EXP (MeV)

‘He —29.0(2) —0.3 0.010 —28.3
12¢ —91.3(1) —13.3 0.146 —92.2
e —104.6(1) —12.7 0.121 —105.3
50 —126.9(2) —5.6 0.044 —127.6
40Ca —343.0(2) —13.6 0.040 —342.1
48Ca —414.5(3) —42.3 0.102 —416.0
%ONi —479.3(6) —74.6 0.156 —484.0
807zr —672.1(8) —23.3 0.035 —669.2
W07y —782.1(5) —64.8 0.083 —1783.9
1008n —824.7(8) —103.0 0.125 —825.2
1328n  —1134.2(27) —110.9 0.098 —1102.8
1OOSn
e A\ P Extrapolated (Lt— »): -117174 MeV | @ ~+>40F
—-1150¢ : Uncertainty in Extrapolation: 0.88 E —1345F
-]
—1155F 8 1350
1160t = —1355¢
.g —-1360
—-1165 = _1365
g >
—1170 E -1370
w —=1375

* Spin-orbit energy enhanced
for new magic numbers
28, 50, 82, etc., indicating
shell structure emergence

* Remarkable generalization
capability < all quantum
correlation included

1205n

134300 — Extrapolated (Lt— »): -1373.17 MeV |
Uncertainty in Extrapolation: 1.08 1




Results from LAT-OPT1: Phase shifts

Ab initio calculations attempt to predict finite nuclei from phase shifts

Conversely, we can also predict phase shifts from finite nuclei

< Binding energies and charge radii can be measured with extremely high precision,
encoding complete information about nuclear forces.

' LB B B S S R |

— -+ LAT-OPT1 S-wave |

$  'SoExp i
35, Exp 1

The nuclear force fitted to binding @ ™7
energies predict a S-wave phase o 150/
shift falling between 150 and 3S1 C 120f

ao = 6.86 (fm) | -
ro=2.10 (fm) | 7

S-wave splitting, S-D mixing,
P-wave phase shifts should be
reproduced at higher orders

Phase shift

O— PR TN TN NN [N TN SO TN TN AN T TN SN SO [N SN SO TR SR I TR S S T | |
50 100 150 200 250

IDrel (MEV)



Results from LAT-OPT1: Nuclear clustering

a Y 856 : Y T T T T T T T T
‘ ! Life: 10" sec [
o o | 100}
o 5%’ R « 68 g ’ [
‘ i 120 N><
a ‘ Hoyle state 7r SOZ
T 1ggp g
- 2P i
2p <= = 2155;!2 [
1f :“mhx 1{3!2 of
7/2
5 B __—5r 7
id o o > I > =
~ ~—~ . 25 Q B :
~~ 1dus AT S S ;
w [ O E(°Be)-2E, 3
= 1pyp — - O E(*2C) - 3E, !
1p 8) 7 —15F 16 | (b) ]
“~ 1py, - 25:_ 4 E(*°0) - 4E, | 2
© @ A E | ]
13 - - - 15-”2 B N
Harmonic o , Spin-orbit —30kF % :';S % ? é;‘_' ’%‘: % =
oscillator coupling 0.0 0.2 04 06 08 1.0 1.2 1.4
C. (8.59 x 10712 MeV™9)

D. T. Tran et al., Nat. Comm. 9, 1594 (2018)



Exactly solvable phenomenological nuclear force

* Ab initio calculations
* Realistic interactions fitted to few-body data
* Challenging to solve, particularly for heavy nuclel

V(1,2)=1to(1+ xoP° )o(r, — 1)
+10,[8(r, )R +KB(r, — 1)) | + k8 (r, — )k
+iWy(o'V + D)k X 8(r, —ryk,
* Phenomenological methods
* Phenomenological interactions fitted to finite nuclei

* Easy to solve, however lack correlations

V(1,2,3)=1,8(r, —r))d(r,—ry).

LAT-OPT1 has one-to-one correspondence
to Skyme force with 6 parameters except for x

* Sign-problem-free QMC
* Phenomenological interactions fitted to finite nuclel
* Scalable and unbiased, full guantum correlations € spectrum, reaction, clustering, -

Model Parameterization Parameters o (MeV) Nuclei oan (MeV)
Macroscopic-microscopic FRDM [9] > 30 1.15 69 0.56
Relativistic mean field PC-PK1 [10] 11 2.25 60 1.52
Skyrme DFT UNEDFI [11] 12 343 75 1.91
Lattice EFT Wigner-SU(4) [1] 4 10.21 55 —

Lattice EFT LAT-0OPT1 5 2.93 76 —




Go beyond leading order

* Complicated structures of the nuclear forces can be included
using perturbation theory

) .
o XHAHT -

wo B X

R H X

Perturbative
to second-order

ol

Perturbative
to first-order

HnsLo = Hsua + A (HnLo — Hsus)



Advanced perturbative technigues

Perturbation theory can be improved with advanced algorithms

* Perturbative qguantum Monte Carlo method, Bl et al.. PRL 128. 242501 (2022); J. Liu et al.,
FPJA 61, 85 (2025) | | (B Ve )|
Calculate second order corrections directly — Ej» = Y T

0 LEn

n>0

* Wavefunction matching method, S. Elhatisari et al., Nature 630, 59 (2024); PRL 134, 162503
(2025); 2502.18722 | -
Improved first order correction wasformation

o H
s

 Rank-one operator method, Y. Ma et al., PRL 132, 232502 (2024) ;;ﬁ%;'fs{”'
Perturbatively calculate structure factors

* Multi-channel perturbative calculations, T. \Wang et al., 2503.23840 (2025)
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Calculations with N3LO chiral forces:
* Binding energies and radii
S. Elhatisari et al., Nature 630, 59 (2024)
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Structure factors at finite temperature
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Y. Song et al., 2502.18722 (2025)
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Calculations with N3LO chiral forces
(continued):
* Hypernuclel

F. Hildenbrand et al., EPJA 60,215 (2024)
* Triton beta-decay

S. Elhatisari et al., PLB 859, 139086 (2024)
* Structure of silicon isotopes

S. Zhang et al., 2411.17462 (2024)
* Hyper-neutron matter

H. Tong et al., Sci. Bull. 70, 825 (2025)
* DD*K three-hadron system

/. Zhang et al.,, PRD 111, 036002 (2025)
* Correlation in light nuclel

J. Liu et al., EPJA 61, 85 (2025)
* Beta-decay of °He

T. Wang et al., 2503.23840 (2025)



summary and perspective

Sign-problem-free QMC represents a group of guantum many-body problems that can be
solved with exactly polynomial scaling. (Sign problem always induces exponential scaling)

The time-reversal symmetry protect us from the sign problem. However, it also forbids many
essential interactions (e.g. tensor force), limiting the calculations to toy-models.

We firstly implement a sign-problem-free spin-orbit term, fit parameters to nuclear binding
energies. The resulting nuclear force is similar to the original Skyme force, but exactly solvable.

It Is promising to apply the methodology from mean-field and density functional theories to
Improve the interactions. Our results might also provide hints connecting ab initio calculations
and established phenomenological models.

Thank you for your attention!
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