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Jets In high energy physics

Sau Lan Wu, Discovery of the Gluon
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............... Siawa § mwawd sy R o & G R A The properties of hadronic jets in e*e” annihilation are examined in quantum chromo-
' . dynamics, without using the assumptions of the parton model. We find that two-jet events
' : : dominate the cross section at high energy, and have the experimentally observed angular
: \ . y distribution. Estimates are given for the jet angular radius and its energy dependence.
: \ ) ' We argue that the detailed results of perturbation theory for production of arbitrary num-
bers of quarks and gluons can be reinterpreted in quantum chromodynamics as predic-
tions for the production of jets.
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TASSO @ Infrared-safe jet definitions cancel mass singularities,
making pQCD predictions reliable at high energies.

@ Three-jet event: discovery of the Gluon  © Jets: new and powerful tools to study QCD physics.



https://indico.cern.ch/event/704471/contributions/3012502/attachments/1670841/2680256/Wu.pdf
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Relativistic heavy-ion collisions: the little bang

final detected Dynam ical SyStem

Relativistic Heavy-Ion Collisions particle distributions

made by Chun Shen ; Kinetic
reeze-out

Property Dynamics

Initial energy

density EM probes: Medium response to

EM interaction
Direct photon, Dilepton ...

Soft probes: Bulk properties of
medium

Collective flow, Particle spectra

Hard probes: Medium response

pre- :
to strong interaction 5

equilibrium . |
namics viscous hydrodynamics

free streaming
s

collision evolution
t~0fm/c T ~1fm/c Tt ~ 10 fm/c T ~ 1012 fm/c

Jet quenching, Heavy flavor...



Jets In heavy-ion collisions

| Jet: a collimated spray of particles
Nucleus _ . NIINd produced by a high momentum

@ quark or gluon at initial stage.
% @ Measure final state particles with jet

/
Quark SOUp W, .;I reconstruction.

@ High energetic parton cannot be
measured directly.

-

‘_ 3 Jet quenching:
o _/ .
& In medium parton energy loss

.

.
-

Nucleus
Key signature of QGP

BNL news



Jet quenching as a signature of QGP

Parton energy loss: leads to jet yield suppression

in A+A system In comparison to p+p.

Yield

AE
QCD vacuum

ot -
Yield gl
e Quark soup W -‘; -

suppression ‘SER %’;;’f.

QCD Medium
Energy

Where does the quenched energy go?

Medium response: medium-induced jet
modification.

Modification of jet
‘> substructure.

Quark soup w. #,

Deflection of the jet induced
by multiple scatterings or
single hard scatterings with
QGP quasi-particles?



Jet quenching at RHIC

X. N. Wang and M. Gyulassy, Phys. Rev. Lett. 68 (1992) 1480-1483

Nuclear modification factor n | X. N. Wang, Phys. Rev. C 58 (1998) 2321
sinel 42N ./ dp.dn TS R,4 > 1 (enhancement)
pp AA T .
R,, = —_———— ~—— ! R,, =1 (no medium effect)
ALTN L d26, [dpd . .
coll pp T Ry, <1 (suppression)

STAR Collaboration, Phys. Rev. Lett. 91 (2003) 072304
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Clear suppression at high pr in central Au+Au 200 GeV.



Stopping power
q/T

Extraction of the medium properties

JET Collaboration, Phys. Rev. C 90 (2014) 1, 014909

»ee MARTINT  — McGill-AMY"
== HT-BW gk --- GLV-CUIET-
wes HT-M g :
?
?(Al /T31(DIS ’ <Au+Au at RHIC=
2 Z et ‘ + T<Pb+Pb alt LHCI ‘-
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T (GeV)

q

Extract jet transport coefficient from parton
energy loss via theory/data comparison

_Jr2=x03 . T =370 MeV, RHIC
=~ V1.9+07 GV IMA T _ 470 Mev, LHC

Constrain QGP stopping power.

g in hot QCD is approximately two orders of
maghnitude larger than in cold QCD.

QHot ~ 100 g Cold

Latest results see: JETSCAPE, Phys. Rev. C 111, 054913 (2025)



“Ridge” from large to small systems

Credit: J. Schukraft, NBI 2017
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CMS, PLB 718, 795 (2013) CMS, PRL116, 172302 (2016) CMS. EPJC 72, 2012 (2012)

CMS Pb+Pb
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Do we also observed jet quenching in small systems?



Current status of jet quenching studies
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Studying the Phase

(jet quenching)

Matter at RHI(

Critical energy for jet quenching?
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Challenges in jet quenching studies in small systems (1)

STAR, Phys. Rev. C 110, 044908 (2024)

EA and O anti-correlation
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Assume two event with same tracks, one =18 0.6 F—
has a forward dijet and one has a mid- 0.5 ' '
rapidity dijet. 0.4 £ anti-k;R=0.4jets ' # ?
0.3 & E{°>4GeV
Forward dijet eventis = Mid-rapidity dijet event 02 & In_|<06
more likely to tag with  is more likely to tag with 01 ™
- O ] | ] ! ] ! ] ! ! ! ] | ] L ) ] ] ! ! N )
high EA events, and_ low EA even_ts, _and can 15 20 or 30 35 40
cannot reconstruct jet reconstruct jet in mid- jet
C . - - P~ [GeV/c]
In mid-rapidity. rapidity. T

suppression due to EA selection bias

@ Hard scattering yields are overestimated at high EA and underestimated at low EA.

@ EA selection bias?
11



Challenges in jet quenching studies in small systems (2)

Rl )/ Rl Ydir)

PHENIX, Phys. Rev. Lett. 134, 022302 (2025)
D. Perepelitsa. Phvs. Rev. C 110. LO11901 (2024)
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PHENIX measures the double ratio

Ria (DR s (74:) in small systems

“typical” proton rare high-xp proton

PEIR IR, ¥ X O 60 om®
| s 3s ) )
M. Alvioli et al
PRD 98 (2018) 071502(R)

* One compelling explanation: proton
color fluctuations

@ High Bjorken-x proton configurations “shrink”, weakening interactions and reducing
hard scattering yields.

@ Color fluctuation (initial state) vs. jet quenching (final state)?

12



Search for jet quenching Iin
Intermediate-sized collision systems

96 96 16 16
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------------------------
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Search for jet quenching in
Intermediate-sized collision systems
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Studying the Phase
Diagram of QCD
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Solenoidal Tracker at RHIC

Credit: Ting Lin (SDU)

V /4 ‘
Time Projection Chamber |77| < 1(1.5) Event Plane Detector 2.1 < |77| < 5.1
charged hadron Event plane & Event centrality
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An example of jet event in Au+Au 200GeV

Run: 17109002, Event: 2871224, EvtTime: Mon Apr 18 2016 14:01:23 GMT+0800 (China Standard Time)

STAR

S e A B — - @ @

i  E—




Jet quenching observables

High pr hadron

--------------------------------------------------------------------
~

Inclusive hadron Raa, Rcp:

High pT charged particles as
proxy of jet, leading order of jet,
sensitive to parton energy loss.

NN 2 . .
R leading particle

--------------------------------------------------------------------

--------------------------------------------------------------------
~

Di-hadron correlation lcp:

Not only high-pt hadrons
yield but also back-to-back
correlations are suppressed.

Ratio of associated yield per
trigger, probes path-length
dependence.

.
--------------------------------------------------------------------

Rpp =

Rep =

nuclear modification factor
I (1/Ny)d*N**/dndp; Gold standard

evt

L{ N )™ (1/NAAYGENAA 1dndp,

cent cent
1/{ Ncoll>l”’ei (1/NAA)d>Nreri/ dndpy

STAR, Phys. Rev. Lett. 91, 072304 (2003 )

A¢ DISTRIBUTION

Disappearance of the

away-side peak: A
symbolic signhature of
jet quenching.

% Au-Au central
e d-Au STAR

A(;IMUTHAL AN S();‘r(:;LAR DIFFERE1318\IO(OJE Ao
central _ _
7. — Y Yield of associated hadrons
CP — yperipheral quantify jet quenching.

(N,ou) (1/NZE)d2NPr[dndpy  ©f jet quenching

17



Jet quenching observables

Inclusive/semi-inclusive jets

--------------------------------------------------------------------
~

Inclusive charged jet Rcp:

Access to kinematics of

partons scattered in initial . LN ) ™ (LINAAYGENAA Jdndp,
\ stages of the collision. : CP — rei ri
Quark soup Wi 2, 3 9 1/ < Ncoll>p ei (I/N;;‘ef?,i)d2Npe i/ dndp;
T ST . ¥ mixed event Combinatorial jet background:
Semi-inclusive hadron-jet Icp: 3 Correction for background
fluctuations and instrumental

effects

Jets recoiling from a high-pT : mdtgamy

4 trigger trigger hadron E /
hadron :
Expected “surface bias”™ **

\

Allowing measurements to be
extended to large jet R and

™

real events low jet pr.
per-trigger normalized jet AA
.‘ yield, do not depend on Ncoi | Y
Mo of AA Ypp

18



Isobar collision system

leading particle

19



Inclusive hadron Raa In iIsobar collisions
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STAR Preliminary

- Isobar \s,,=200 GeV

—
—
—
—_
—
—

pp uncertainty -@ 0%-10%

Tong Liu QM2022

P, (GeV/c)

__ h + h /2 __ '.' 100/0-20°/o — 20°/o-40°/o

I (h™+h) I %= 40%-60% ~— 60%-80%

B 1 1 | I | 1 1 I 1 1 1 I 1 1 1 | 1 1 1 I B | | | I | | | I | | | I | | | I | | | I
2 4 6 10 2 4 6 8 10
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@ Significant high pt suppression for central events.
® Ru+Ru & Zr+Zr show similar suppression.
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20Zr +40 Zr | 2°Ru +,3 Ru@200GeV
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RaA VS. Npart

+

Data
—= Ru+Ru —+— p+Au
—8— Zr+Zr —— Au+Au
pp uncertainty —=— d+Au .-
—— Cu+Cu & ém
+ b
l 15
.=!===i=.* g
ol *IE—A
~i.}% Hard partons experience more
'8y quenching as (Npar) increase.
-4 - Trajectum Ru+Ru S
STAR Preliminary 7

(S =200 GeV
(hl”-|-|h'|)/2 p,>5.1 GueV/cI

- - Trajectum Zr+Zr

10 10°
Tong Liu QM2022 < Npart >

@ Raa mostly depends on energy density rather than geometry.

21



RaA VS. Npart

20Zr 40 Zr | 2°Ru +,3 Ru@200GeV

2
_— Q2 N S Data HG-PYTHIA C. Loizides, A. Morsch, PLB 773 (2017) 408-411
C L of N i i
g coll 1-8:_ —- Ru+Ru —+— p+AuU —w— Ru+RuN___ Nhard — Zi:iﬂl Nﬁard (bll\IN)
1.6— —O— Zr+/r —# AutAu b= Zr+Zr Nyyg = 102 =
n pp uncertainty —=— d+Au . = i =
1.4— —— Cu+Cu =8 <" 0981 E
P C 2 0.96— =
nucleon-nucleon (NN) collisions - T £:} 1 004 =
are NOT created equal 12 i e E
- _ 0.8 =
n B 0.86 =
B == Ssy 0.84:—....|....|....|....|....|....|....|....|—:
O . 8 __ 0 10 20 30 40 50 60 7OCentra|Ei;t3 )
N, scaling is NOT precise 0.6
enough to calculate peripheral 0af
P g - - 4 - Trajectum Ru+Ru B2
collisions. - STAR Preliminary v
0.2~ ‘/ST\N:ZOO GeV -#- Trajectum Zr+Zr
— (h++h|)/2 p,>5.1 GeV/c |
O ] ] | 1 ] ] ] ] ] ] | 1 ] ]
_ 10 _ 10°
N, ,4: number of hard scattering Tong Liu QM2022 < Npart )

@ Raa mostly depends on energy density rather than geometry.
@ N, ., correction qualitatively describes the drop of Raa in peripheral collisions.
22



WZr +a9 Zr | 9Ru +55 Ru@200GeV
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STAR Preliminary

"7.0< ptTrig < 25.0 GeV/c
anti-k;, R,_=0.2

t_Zr+Zr and Ru+Ru
~ sy = 200 GeV
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| I | 1 | 1 |

| J

| L I LA D l M N T I sl = ) | | Y [ R

| | l | — U MRS MER

5 10 15 20 25
pi"jet (GeV/c)

30

2.5

Icp vs. pr

R=0.5

L]
L]
I

Yang He QM2025

I L ] 1 b 3 =) ] B AR l E sl 1z &l I | DL B |

STAR Preliminary

(7.0<p,°<25.0 GeV/c
_anti-k, R Jet=O.5

- Zr+Zr and Ru+Ru +
~ sy = 200 GeV

‘ —

| S Y l 1 1 1 | l LB ) uj I | e I (S I | 1 1 1

S 10 15 20 25
pf‘jet (GeV/c)

® lcp <1, which indicate clear jet quenching signal.

® lcp INncrease with pr increasing, and can above unit?

30

- trigger
hadron

recoil
jet

X

AE

Yield
suppression

same energy loss, less yield
suppression for less steep
falling spectra
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LBT simulation

Energy loss for trigger hadron

in vacuum y tri gger
3 .= Surface bias: are triggers all produced at the surface? | —=—
Q::c:/:z?oanmics in me|dium Yang He HP2024 »
L,;T ___triggerpartide‘ JIIIIIIIIIIIIII!IIIIIIIIIIIIII _§1O—2 IIIIIIIIIIIIIIlIIIIlIIIIIIIIIIIIIIIIIII
jet-medium interaction 0-10% @ AU+AU, 200 GeV d i E 1? — 0-10% @ AU"‘AU, 200 Gev_g
L 9<p. . <11GeVic )3 - 3 » = —9<p_ <11GeVic -
B T,trlg I — 10 10 = - g _:
- . = | | '11<meg<ZOGeV/c .
- ,
=, o — 20<p.  <50GeVic |
= 10 _I_ T,trig =
= N
© | o) tu:
0 1073k L ] 30% triggers
S '—L lose energy
10t — = ] over 1GeV/c
- L
: ; b T
- (X)=2.235 + 0.046 fm . 195k (D) - —;
i — I 10 : |1||1||1|1||1|1|1|1|||1|1T|||||||E
= +0063fm = W'Y 0 bl leinbevnlicn bevn locn BT
a ) | 0'08? - O'O§63 fml | 5 0 5 10 15 20 25 30 35
15 10 5 0 5 10 1 p A - pL L (GeVic)
X (fm) Y. He, MWN., S. Cao, R. Ma, L. i, H. Canies, Phys. Lett. B 854 (2024) 138739

@ Not all triggers produced at the edge of the system, sizable energy loss
for these trigger particles.
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https://indico.cern.ch/event/1339555/contributions/6040816/attachments/2932775/5151439/HP2024.pdf

Decipher |,,> 1 observed experimentally

Yang He HP2024

| I rm T 1 1 I rm 1 1 1 I r 1 1 1 I r 1 1 1 I e b=l ] I rm 1 1 1 I rm 1 1 1 I r 1 1 1 I r 1 1 1 I e
6l 0-10% @ Au+Au, 200 GeV  (C) {| 0-10% @ Au+Au, 200 GeV  (d) -
5:_ 9< pT,trig <11 GeV/c, R=0.2 | 9< pT,trig <11 GeV/c, R=0.5 : baseline need to
" 5 baseline (parton) 7 7 i
- RRLoT parion 1t __ reflect the trigger
Af 1 STAR data (0-15%) : 1 energy loss
= af o :
of i :
ff=--------—csm——=— - bt - - -4---------=c=
O : IIIIIII I | I L 1l I I - 1 1 I | I I . | I | I I I | I | I I I | I | I I I | I I-
(10 20 30 40 50 10 20 30 40 50
o o (GeV/c) pT,jet (GeV/c)

Y. He, MWN, S. Cao, R. Ma, L. Yi, H. Canies, Phys. Lett. B 854 (2024) 138739
® Energy loss of trigger particles leads to the true Iaa baseline above unity for recoil

jets, which increases with jet pr.

@ laa> 1does not rule out jet quenching; this observable provides stricter constraints

on theoretical models.

@ Similar effect also observed in ALICE measurements. , . Phys. Rev. C 110, 014906 (2024)

ALICE, Phys. Rev. Lett. 133, 022301 (2024)
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https://indico.cern.ch/event/1339555/contributions/6040816/attachments/2932775/5151439/HP2024.pdf

0.2/R=0.5)

.n(R

Intra-jet broadening: recoil yield vs. R

2 | | | | | | | | | | | | | | | | | | | | | | | |
I STAR Preliminary
7.0 < ptT”gJ < 25.0 GeV/c
1.5 -
W
I
i -
L]
_ L + o
0.5 -
. Zr+Zr and Ru+Ru
" /sy = 200 GeV _
I | | | | I | | | | I | | | | I | | | | I | | | |
. o) 10 15 20 25 3(

ch
PL (GeV/c)

1 N
| olo

0.1

STAR, Phys. Rev. C 111, 064907 (2025)

I IIIIII|

I

IIIIII|

0, At trig
no+jet: 9 < It-Zri,!_J

h+jet: 9 < P < 30 GeV/c [PRC 96, 924905 (2017)]
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® Stronger suppression for R = 0.2; less suppression for R = 0.5.
@ Clear signal for intrajet broadening, same as Au+Au.
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O+0 Collisions

Hadrons
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Bias factor on Per-trigger Yield

D. Perepelitsa

@ EPD distributions are independent of the choice of trigger pr.

® EA-Q2 anti-correlation effects are negligible.

EA and Q2 correlation in O+0
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3 Dihadron correlation

16 16 . .
3 O +8 O @200GeV SiJie Zhang Light lon Workshop 2025
1.6
- STAR Preliminary

0.5 . O+0 sy, =200 GeV o

- STAR Preliminary ® 0-10% 1.4 h-nh _ %

- O+0 sy =200 GeV ~40-60% [ 7<p"® <30 GeVic d N g

. __h-h B dssoc all Z

e E 0.4 ; ; ; 22
1 r1gg ' - 7<p.°<30 GeVic 5 m ; 1 2 3 < Pr s 7 GeVie & I:—) <
5 [ 3<pi 7 GeVie | 5 o+ -
et A B by ¥ ' " 8 T ' ] N %
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- —@— recoil ~|recoll
0.4
20-40% 10-20% 0-10% MB |5,

EA interval

@ On the Associated side, a significant suppression is observed for high EA (0—10%) events
compared to low EA (40-60%).

@ lcp results reveal consistency with unity on the trigger side, but a significant deviation on the
Associated side.

@ Theoretical calculations (without jet quenching) agree well with the Trigger side results.
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® lcp< 1 indicates a significant suppression of away-side jet yield.
@ Theoretical calculations without jet quenching fail to describe the experimental data.


https://indico.cern.ch/event/1597414/contributions/6780494/attachments/3184304/5665220/SijieZhang_LightIon.pdf
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Summary
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Outlook

® lcp vS. 1aaA? -> relative suppression vs. absolute suppression.
> 3.4B low lumi. MB p+p data can serve as a solid baseline.

@ Do we also expect medium response in these intermediate-sized
collision systems?

> Jet substructure and jet acoplanarity measurements.
@ ¢ in these intermediate-sized collision systems.

> Theoretical inputs are needed.

@ Over 10B Au+Au@200GeV data collected in 2023+2025.
> Precise era of jet physics at STAR.

Contact information:

Maowu Nie: maowu.nie @sdu.edu.cn
Thanks!

Li Yi: li.yi@sdu.edu.cn
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Thanks to my collaborators

Yang He, Sijie Zhang, Tong Liu, Rongrong Ma, Shanshan Cao, Li Yi, and Helen Caines
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“Multiplicity” bias

' ALICE p-Pb |5 =5.02 TeV | Charged particles |n | < 0.3
- CL1 - VOM

I Syst. on( TpA)

Syst. on normalization

* |ncreased event activity in the presence
of a hard-scattering

= overestimate hard scattering yields in
high-multiplicity events, underestimate

them in low-multiplicity events Sobvn c oo e gy

1 .8 :_ 5-10% 60-80%

* This particular bias does not have a

strong process (Y ;. VS. 7°) or kinematic
dependence

= the PHENIX strategy likely eliminates o e
' ' ' evic eV/c
this particular bias 4 Pr P,

ALICE, PRC 91 (2015) 064905
+ much work by PHENIX, Steinberg,
Morsch, Loizides, others
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Ncoll in Glauber Model
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Red axis: theory / model calculations
Blue axis: experimentally measurable

107?

10°

10

10°

d = Neoyp ====== Npar ==== b
1 Model/Theory Theory

» Multiplicity window = centrality class
* Measurable

a
» NS o (dg;h) : Not directly measurable!

- Obtained through Glauber model
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P(x)

X, ranges probed by PHENIX measurement

 MC simulation, matching specific

0_12:_" T T Py 8907 200Gev | _ PHENIX acceptance & kinematics
S — 7%:p_=7.518GeV, Inl <0.35 - _ |
ol <Xx> (%) =047 - « Fordirect photons, typical X, values
L Ly :p =75-18GeV, Iyl <035 -
008 1L sy, ) =0 : probed are x,, ~ p;/Ebeam ~ 0.11
006 | [T -
voal. [ 1 1+ However, neutral pions carry only a
ST ¥ : fraction of the fragmenting parton’s pr
0.02 -
T oot oe ™ <> &~ 0.17, with long tail to large-
Bjorken-x in the deuteron xp values (28% from xp > 02)

= they will incur stronger CFM effects
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® Rcp suppression fully driven by the proton configuration.

e PHENIX results can be explained with color fluctuation model.
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How do quenched triggers impact |,,?

unquenched
LBT simulation

in vacuum

PYTHIAS — —(trigger particle
jet parton production

Hydrodynamics

Construct hybrid sample:
energy loss for trigger partons
no energy loss for recoil jets

in mediumy
QGP evolution

| trace back LBT / N
LBT trigger particle” «<— recoil jet trigger'\ /// :' i PYTHIA
jet-medium interaction ¢4 Az Pi recoil jets
\\\.“"
w/ quenching
{4 14 .
True” baseline
hybrid sample
LBT . PYTHIA
Ibasehne _ /N trig dNjet / dpy Jet Trigger energy loss only

1/N£1§THIACZN et/dprﬁ)ﬂggHIA PYTHIA sample
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Extraction of the medium properties

JETSCAPE, Phys. Rev. C 111, 054913 (2025)
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