Recent highlights on study of the QGP matter at the LHC Central China Normal University With Personal bias

The 100th e-Forum on High Energy Nuclear Physics in China **16 April 2020**

Charged partic Partic Philiplicity Bjorken estimate:

CMS JHEP 1801 (2018) 045

5% most Pb–Pb at 5.02 TeV: $dN/d\eta \sim 2000$

- Energy density ε ~ 18 GeV/fm³
- Above deconfinement transition (~1 GeV/fm³)

Anisotropic flow

ATLAS Eur. Phys. J. C78 (2018) 997

Flow harmonics

- Max v₂ observed in semi-central collisions
- $V_{n+1} < V_n$, except for central collisions

ALICE JHEP 1809 (2018) 006

ALI-PUB-151731

Identified particle flow

- Low p_T , mass ordering
- High p_T , quark content grouping

Anisotropic flow

- Differential measurements are required

• Flow — initial fluctuations + hydrodynamic evolution (+ hadronic scatterings)

Non-Linear response of harmonics

- $V_5 = V_{5L} + \chi_{523}V_2V_3$
- $V_7 = V_{7L} + \chi_{725}V_2V_{5L} + \chi_{734}V_3V_{4L} + \chi_{7223}(V_2)^2V_3$

- conditions and medium transport coefficient

• Higher order v_n (n>3), arise from some order² anisotropy or that² of lower orders

• Nonlinear response coefficient measured up⁰ to $n = \frac{1}{20}$, sequentiate both initial Centrality (%) Centrality (%)

Flow fluctuations

 $v_n{4} = v_n{6} = v_n{8}$ only if $P(v_n)$ follows Bessel-Gaussian

$$F(v_n) = \sigma(v_n) / \langle v_n \rangle$$

• $\sigma(v_n) \approx \sqrt{(v_n \{2\}^2 - v_n \{4\}^2)/2}$
• $\langle v_n \rangle \approx \sqrt{(v_n \{2\}^2 + v_n \{4\}^2)/2}$

- p_T dependence inference from the final state (?)
- Particle species dependence in models is not observed in data

Longitudinal flow decorrelations

Phys. Rev. C90 (2014) 034905 $\Phi_{2|}$

η direction

Characterized by $r_n(\eta)$

• F_n — slop parameter of $r_n(\eta)$ • $r_n(\eta) = 1$ — no de-correlation

ATLAS-CONF-2019-055

(a)

- F_n XeXe / F_n PbPb $\propto r_n$ XeXe / r_n PbPb

Important constraints on

- Longitudinal structure of
 - the initial-state geometry
- Dynamics of v_n in the

longitudinal direction

60	40	20	0
		Centralit	y [%]

High pt suppression

CMS JHEP 1704 (2017) 039

- R_{AA} of high- p_T hadrons reaches to unity
- Strong suppression on jet production up to TeV

ATLAS Phys. Lett. B790 (2019) 108

Large radius jets

Petergy go?

- Low- $p_T(z)$ enhancement at large Δr
- More collimated at high- $p_T(z)$ (?)

- Consistent with radial profile results
- Tensions on model predictions

Jet quenching at the LHC

arXiv:1502.02730

R_{CP}[D(ξ)] 100 < p_fet < 300 GeV/c S R_{AA}[D(ξ)] (2 ξ = ln(1/z)

No Suppression of high-p_T particles

Small enhancement of low-p_T particles

significant large angle radiation

Vacuum Jet

- In-cone: more collimated hard core
- Out-of-cone: large energy redistribution

LHC Run 2

More precise, more differential studies

Challenge

- Mapping energy (re)distribution
- Low-p_T large and radius jets

Toward low-p_T and large radius jets

ALI-PREL-334456

Semi-inclusive measurements

• Dependent on knowing of FF

ML-based studies

Sensitive to models

Heavy quark transport

• **LHC Run 1** hint of R_{AA} hierarchy, R_{AA} and v_2 puzzle

• LHC Run 2 more players on the table, higher precision, more complemented

Charm quark transport

- Improved discrimination power for models

• Recombination and elastic energy loss are important to describe data at low p_{T}

Beauty quark transport

- Double ratio of $R_{AA}(D \leftarrow B) / R_{AA}(D)$
- Further constraint on beauty transport
 Effect less pronounced than charm

Beauty quarks are flowing

Heavy quark hadronization in bulk

ALI-PREL-323761

- Hint of Λ_c enhancement in Pb–Pb
- Tensions on fragmentation

CMS Phys. Lett. B796 (2019) 168

28 pb⁻¹ (pp) + 351 μ b⁻¹ (PbPb) 5.02 TeV

- Hint of enhanced $B_{s} R_{AA}$
- Challenge on predictions

Heavy-flavour jets

Bottomonium

Conclusion

Charged particle multiplicity

• Energy density reaches $\varepsilon \sim 18$ GeV/fm³, collision geometry is important

Anisotropy flow

More differential studies, new constraints on initial state, n/s, EOS...

Jet production

• Energy redistribution, quark- / gluon-jets, toward low- p_T large radius jets

Heavy flavors

- **Open HF** Collisional vs. radiative energy loss, recombination, hadronization
- **Bottomonium** Dissociation vs. regeneration

More topics

Identified particle production Bulk properties, thermodynamics

System size dependence Collision geometry, path-length dependence

Magnetic effects Fundamental symmetry restoration

UPC and photoproduction nPDF down to low Bjorken-x

Hadron interactions and light nuclei

Small systems

ALICE Preliminary

- ♦ pp √s = 7 TeV o p-Pb √*s*_№ = 5.02 TeV
- □ Pb-Pb √s, = 5.02 Te\ 라 Xe-Xe √s_{NN} = 5.44 TeV

ALICE

- pp √s = 2.76 TeV
- $\oint pp \sqrt{s} = 7 \text{ TeV}$
- × p-Pb **√***s*_№ = 5.02 TeV Pb-Pb \[\sqrt{s_{NN}} = 2.76 \] TeV

STAR

★ pp √s = 200 GeV

- EPOS3

-- EPOS3 (UrQMD OFF)

☆ Au-Au √*S*_{NN} = 200 GeV

Identified particle production Bulk properties, thermodynamics

System size dependence Collision geometry, path-length dependence

Magnetic effects Eundamental symmetry restoration **UPC** and pho

Hadron interactions and light nuclei

Small systems

+--+

Backup

Exceeded photon production

ALICE Phys. Lett. B754 (2016) 235

• Low- p_T : 2.6 σ excess w. r. t. models in 0–20% central — thermal contribution • $T_{\rm eff} = 304 \pm 11$ (stat.) ± 40 (syst.) MeV in central collisions — way above $T_c \sim 170$ MeV

Identified particle production

CMS Phys. Lett. B768 (2017) 103

CMS PbPb

ALI-PREL-319778

• T_{kin} decreases with increasing $<\beta_T>$ from peripheral to central Pb–Pb collisions

Charged particle multiplicity

ALICE Phys. Lett. B790 (2019) 35

- N_{part} scaling violation: known since long time ago
- Confirmed by new Xe–Xe data
- Neither explained by participant quark scaling nor fully reproduced by models
- Collision geometry plays an important role on particle production

