

Strong physics at LHCb: probing nuclear matter effects in small systems

Hengne Li, LHCb collaboration

Hengne Li (South China Normal University) on behalf of the LHCb collaboration

The big picture

Hengne Li, LHCb collaboration

Standard Model of Elementary Particles

Fundamental forces

Interaction	Current theory	Mediators	Relative strength	Long-distance behavior	Range (m)
Strong	Quantum chromodynamics (QCD)	gluons 10 ³⁸ (C		~ r (Color confinement)	10 – ¹⁵
Weak	Electroweak Theory (EWT)	W and Z bosons	10 ²⁵	$1/r \cdot e^{-m_{W,Z} \cdot r}$	10-18
Electro- magnetic	Quantum electrodynamics (QED)	photons	10 ³⁶	1/r ²	∞
Gravitation	General relativity (GR)	gravitons (hypothetical)	1	1/r ²	∞

Hengne Li, LHCb collaboration

The electroweak & Higgs sector

Interaction	Current theory	Mediators	Relative strength	Long-distance behavior	Range (m)
Strong	Quantum chromodynamics (QCD)	gluons	1038	~ r (Color confinement)	10-15
Weak	Electroweak Theory (EWT)	W and Z bosons	1025	1/r ⋅ e-mw,z·r	10 –18
Electro- magnetic	Quantum electrodynamics (QED)	photons	10 ³⁶	1/r ²	∞
In the Elec	tro-weak sec	tor, the SM	shows	s great predic	tive
	power. Two	examples:	(next s	slide)	

Hengne Li, LHCb collaboration

Example 1: prediction of the Higgs boson

Hengne Li, LHCb collaboration

$$V(\phi) = \frac{1}{2}\mu^2 \phi^{\dagger} \phi + \frac{1}{4}\lambda (\phi^{\dagger} \phi)^2$$

Groundstate at
$$|\phi_0| = \sqrt{\frac{-\mu^2}{\lambda}} \equiv v$$

$$\left|\phi\right| = \sqrt{\phi^{\dagger}\phi} = \sqrt{\phi^{\dagger}\phi^{+} + \phi^{0}\phi^{0}}$$

Example 2: Predictive power of the EW parameters

If we use the measured Higgs mass to constrain the W boson mass assuming SM, we get:

$M_W = 80356 MeV \pm 8 MeV$

Predicted

Hengne L1, LHCb collaboration

Comparing with the current world average directly measured value:

> $M_W = 80379 \text{ MeV} \pm 12 \text{ MeV}$ [PDG 2019, Dec. 6, 2019]

Only ~1.5 sigma difference between the two M_w central values, given a precision of 0.12 per-mil!

The strong interaction sector

Interaction	Current theory	Mediators	Relative strength	Long-distance behavior	Range (m)
Strong	Quantum chromodynamics (QCD)	gluons	10 ³⁸	~ r (Color confinement)	10-15
Weak In th confinem Electro- magnetic	e Strong ford ent (non-period more diffic	e sector, be turbative) i ult and con	ecause nature, nplicat	of the color predictions a ed 1/12	
Gravitation	General relativity (GR)	gravitons (hypothetical)	1	1/r ²	00

Hengne Li, LHCb collaboration

The Quantum Chromodynamics (QCD)

LHCb ГНСр

strong force:

* Gluons act as strong force mediators

Hengne Li, LHCb collaboration

- * Color-confinements:
 - * Strong force is described by QCD in SM
 - * QCD coupling strength diverges at small energy scale, but small at large scale

The Quantum Chromodynamics (QCD)

- * Perturbative QCD can solve part of the problems, not all. Lattice-QCD has great predictive power, but need * this:
- * E.g. Z boson p_T modeling:
 - * high p_T part: p-QCD
 - * low p_T part: next-to-next-to-leading logarithm resummation of soft gluons e.g. PRD 56, 5558 (1997)

* A rich program in the strong force sector!

Today's main course

- * New results from LHCb at Quark Matter 2019:
 - * **Probing the nuclear matter effects:**
 - * Study of the prompt D0 meson production in pPb at 8.16 TeV
 - * [LHCb-CONF-2019-004]
 - * Measurement of the Z production cross-section in proton-lead collisions at 8.16 TeV
 - * [LHCb-CONF-2019-003]
 - * Understanding the nature of the X(3872) state:
 - * [LHCb-CONF-2019-005]

* Let's first have a look at the LHCb detector

Hengne Li, LHCb collaboration

* Multiplicity-dependent modification of $\chi_{c1}(3872)$ and $\psi(2S)$ production in pp collisions at 8 TeV

IHCO HCO

LHCb provides physics studies.

Event 351483885 Run 187340 Fri, 02 Dec 2016 20:56:29

Event display from the proton-lead collisions in 2016

LHCb provides unique datasets for Heavy Ion

[JINST 3 (2008) S08005] [IJMPA 30 (2015) 1530022]

- * LHCb is the only detector (at LHC) fully instrumented in forward region
- * Unique kinematic coverage $2 < \eta < 5$
- * A high precision device, down to very low-p_T, excellent particle ID, precision vertex reconstruction and tracking.

Vertex Detector reconstruct vertices decay time resolution: 45 fs **Impact Parameter** resolution: 20 µm

> Dipole Magnet bending power: 4 Tm

Hengne Li, LHCb collaboration

The LHCb detector is special

Calorimeters

energy measurement e/γ identification $\Delta E / E = 1 \% \oplus 10 \% / \sqrt{E} (GeV)$

RICH detectors $K/\pi/p$ separation ε(K→K) ~ 95 %, mis-ID $\varepsilon(\pi \rightarrow K) \sim 5\%$

> Tracking system momentum resolution $\Delta p / p = 0.5\% - 1.0\%$ $(5 \, \text{GeV}/\text{c} - 100 \, \text{GeV}/\text{c})$

Muon system µ identification ε(µ→µ) ~ 97 %,

LHCb running modes and kinematic coverage

Both the collider mode and fixed-target mode running at the same time:

Hengne Li, LHCb collaboration

HENPIC Seminar, 19 March 2020

13

* Colliding beam mode (pPb and PbPb):

	2013		20	16	2015	2017	2
$\sqrt{s_{NN}}$	5.02	TeV	8.16	TeV	$5.02 { m TeV}$	$5.02 { m TeV}$	5.02
	pPb	Pbp	pPb	Pbp	PbPb	XeXe	P
L	1.1 nb^{-1}	0.5 nb^{-1}	13.6 nb^{-1}	20.8 nb^{-1}	$10 \ \mu {\rm b}^{-1}$	$0.4 \ \mu { m b}^{-1}$	~ 21

Data samples

* Fixed Target mode (SMOG):

2018 $2 {
m TeV}$ **b**Pb $10 \ \mu b^{-1}$

Setups for proton-ion collisions

- frame coverage 2.0 < *y* < 4.5
- * Common range for the measurements: $2.5 < |y^*| < 4.0$

Hengne Li, LHCb collaboration

- ***** Forward production:
 - * Center of mass rapidity coverage: $1.5 < y^* < 4.0$
- * Backward production:

* Center of mass rapidity coverage: $-5.0 < y^* < -2.5$

* Rapidity coverage in center of mass frame considers a rapidity shift of about 0.47 w.r.t. the lab

Probing the nuclear matter effects

Hengne Li, LHCb collaboration

The nuclear matter effects

- * Ultra-relativistic heavy ion collisions can help us to:
 - * Explore phase diagram of nuclear matter
 - * Large systems (AA):
 - * Study QCD matter under extreme conditions (hot nuclear matter effects)
 - * E.g. formation of Quark Gluon Plasma (QGP) at high temperature and/or energy density.
 - * Small systems (pp, pA, ..):
 - * Nucleon structure, intrinsic charm, reflected in the nuclear modifications (cold nuclear matter effects)
 - * also QGP?
 - * Many other things: QED at extreme field strengths, diffractive processes...

Hengne Li, LHCb collaboration

Soft probes, hard probes, EW probes

- * Soft probes:
- * study the QGP medium itself: global characteristics such as multiplicities, correlations, azimuthal asymmetries, etc.. Quarkonium,
- * Hard and electroweak probes:
- * using hard scatterings (pQCD controlled) created before the QGP medium formation, which propagated through the medium, to "probe" (study) the nuclear matter effects of the medium.
- * Heavy flavor hadrons, quarkonium, jets, etc., interact with QGP medium,
- * photon and W/Z bosons, decay before QGP formation, leptonic final states w/o impact by the medium ==> reference for hard probes.

Hengne Li, LHCb collaboration

Proton-nucleus collisions

- * Open Heavy flavors /Quarkonia / WZ boson productions as tools to study cold nuclear matter effect (CNM)
 - * Necessary reference to disentangle QGP effects from CMT effects in AA collisions
 - * Initial state effects
 - * Nuclear shadowing, gluon shadowing at LHC [JHEP 0904 (2009) 065]
 - * Parton saturation / CGC [Nucl. Phys. A770 (2006) 40]
 - * Radiative energy loss [PRL 68 (1992) 1834]
 - * Cronin effects [PRD 11:3105, 1975]

Hengne Li, LHCb collaboration

- * Final state effects
 - * Nuclear absorption [Nucl. Phys. A700 (2002) 539], expected to be small at LHC [JHEP 0902.014, 2009]
 - * Radiative energy loss [PRC61 (2000) 035203]
 - * **Comovers** [arXiv:1411.0549v2]
- Neither initial nor final *
 - * Coherent energy loss [PRL 109 (2012) 122301]

D⁰ production

- * Heavy quarks produced early in heavy-ion collisions are excellent probes of the cold and hot nuclear matter effects in pPb and PbPb collisions.
- * Cold nuclear matter effects, including modification of PDFs in nuclei and other initial/final state effects, might be dominant in pPb collisions.
- * The LHCb detector is excellent in pPb collisions for heavy quark production.
- * Charm production can be used to probe nuclear modifications at very small Q² and very small Bjorken-x ($x < 10^{-4}$ and $5 \times 10^{-3} < x < 5 \times 10^{-2}$) in pPb collisions at $\sqrt{s} = 5.02$ TeV were published recently.
- * High statistics data of *p*Pb collisions at $\sqrt{s} = 8.16$ TeV are expected to provide high accuracy measurements of prompt open charm hadrons.

Hengne Li, LHCb collaboration

J. Eskola, et al., EPJC 77 (2017) 163

20

Definition

*** Double differential cross-section:**

Integrated lumin

* Nuclear modification factor :

 $R_{pPb}\left(p_{\mathrm{T}},y^{*}\right)$

* Forward-backward production ratio: $R_{FB}(p_T, y^*)$

* Baryon to meson ratio:

 $R_{\Lambda_c^+/D^0}(p_{\mathrm{T}},y)$

Hengne Li, LHCb collaboration

of observables
Prompt signal yields

$$= \frac{N}{N}$$

$$= \frac{P}{P \times \epsilon_{tot} \times \mathcal{B} \times \Delta p_{T} \times \Delta y^{*}}$$
Total efficiency

$$= \frac{1}{A} \frac{d^{2}\sigma_{pPb} (p_{T}, y^{*})/dp_{T} dy^{*}}{d^{2}\sigma_{pp} (p_{T}, y^{*})/dp_{T} dy^{*}}$$

$$= \frac{d^{2}\sigma_{pPb} (p_{T}, + |y|^{*})/dp_{T} dy^{*}}{d^{2}\sigma_{pPb} (p_{T}, - |y|^{*})/dp_{T} dy^{*}}$$

$$= \frac{d^{2}\sigma_{\Lambda_{c}^{+}} (p_{T}, y^{*})/dp_{T} dy^{*}}{d^{2}\sigma_{D^{0}} (p_{T}, y^{*})/dp_{T} dy^{*}}$$

* **D**⁰ yields extracted from $K^{\mp}\pi^{\pm}$ mass fits

- * Total efficiency calculated using simulation and calibration data samples:
 - * Forward: from 0.8% to 14%
 - * Backward: from 0.7% to 13%

 60×10^{3} Her

Results from 5.02 TeV pPb collisions

- * R_{pPb} suppressed in forward region (~30%), no suppression in backward region, hint of small excess at large backward rapidity (y*<-4)
 - **Baryon-to-meson**, forward rapidity:
 - discrepancies at high-p_T between data and

prompt D⁰ LHCb
prompt
$$J/\psi$$
 $\sqrt{s_{NN}} = 5 \text{ TeV}$
C-EPS09LO $p_{-} < 10 \text{ GeV}/c$

ninar, 19 March 2020

* Double-differential cross-section $d^2\sigma/dp_T dy^*$

Differential cross-sections

 (vs. p_T) and (vs. y^{*}) for
 forward and backward
 separately

Hengne Li, LHCb collaboration

Forward-backward ratio at 8.16 TeV

- * Improved statistics by factor 20 compared to previous LHCb results.
- * Tension between data and nPDFs predictions. Additional effects required.

Hengne Li, LHCb collaboration

J.-P. Lansberg and H.-S.Shao, EPJC 77 (2017) S10052.
A. Kusina, et al., PRL 121 (2018) 052004.
H.-S. Shao, CPC 184 (2013) 2562-2570.
H.-S. Shao, CPC 198 (2016) 238-259.

Z boson production in pPb

- * Electroweak bosons are unmodified by the hot and dense medium created in heavy ion collisions,
- * Their leptonic decays pass through the medium without being affected by the strong interaction.
- * Therefore, electroweak boson productions well "conserved" the initial conditions of the collisions, can be:
 - * used to probe (cold) nuclear effects and constraint nPDFs for Bjorken-x from ~ 10^{-4} to 1 at Q² ~ 10^{4} GeV²
 - * and can be used as a calibration of the nuclear modification of other processes such as heavy quark production

Hengne Li, LHCb collaboration

* Cross-sections measured in fiducial volume for both pPb and Pbp: $\sigma_{Z \to \mu^+ \mu^-} = \frac{N_{\text{sig.}}}{\mathscr{L} \cdot \epsilon_{\text{tot}}}$

 $R_{\rm FB}^{2.5 < |y^*| < 4.0} = \frac{\sigma_{Z \to \mu^+ \mu^-, p \, \rm Pb}}{\sigma_{Z \to \mu^+ \mu^-, Pb \, p}} \Big|_{2.5 < |y^*| < 4.0}$

* Fiducial volume: $60 < m_{\mu\mu} < 120 \,\text{GeV}$ $2.0 < \eta^{\mu} < 4.5, \ p_T^{\mu} > 20 \,\text{GeV}$

Hengne Li, LHCb collaboration

Z boson production in pPb

* Forward-backward ratio measured in fiducial volume + common rapidity coverage:

Z boson production in pPb at 5 TeV

* Yields: forward (11 events) / backward (4 events)

Hengne Li, LHCb collaboration

* Integrated luminosity: forward $(1.099 \pm 0.021 \text{ nb}^{-1})$ / backward $(0.521 \pm 0.011 \text{ nb}^{-1})$

[JHEP09(2014)030]

Z boson production in pPb at 5 TeV

- * Fiducial cross-section results:
 - * Forward:

 $\sigma_{Z \to \mu^+ \mu^-}$ (fwd) = $13.5^{+5.4}_{-4.0}$ (stat.) ± 1.2 (syst.) nb

* Backward: $\sigma_{Z \to \mu^+ \mu^-}$ (bwd) = 10.7^{+8.4}_{-5.1} (stat.) ± 1.0(syst.) nb

- * Compatible with theoretical predictions using FEWZ(NNLO pQCD+NLO pEW) with:
 - * MSTW08(PDF) for both p and Pb
 - * MSTW08(PDF) for p and EPS09(nPDF) for Pb

Hengne Li, LHCb collaboration

Z boson production in pPb at 8 TeV

- * Integrated luminosity: forward $(12.2 \pm 0.3 \text{ nb}^{-1})$ / backward $(18.6 \pm 0.5 \text{ nb}^{-1})$
- * Yields: forward (268 events) / backward (167 events)

Hengne Li, LHCb collaboration

[LHCb-CONF-2019-003]

pPb Zboso

- * Integrated luminosity: forward ($12.2 \pm 0.3 \text{ nb}^{-1}$) backward($18.6 \pm 0.5 \text{ nb}^{-1}$)
- Yields: forward (268 events)
 backward (167 events)
- * MC normalized to data yields

[LHCb-CONF-2019-003]

Hengne Li, LHCb collaboration

HENPIC Seminar, 19 March 2020

31

pPb Z boson production at 8 TeV

[nb]

* Fiducial cross-section results:

- $\sigma_{Z \to \mu^+ \mu^-, pPb}$ (forward) $= 28.5 \pm 1.7(\text{stat.}) \pm 1.2(\text{syst.}) \pm 0.7(\text{lumi.}) \text{ nb}$ $\sigma_{Z \to \mu^+ \mu^-, Pbp}$ (backward) $= 13.4 \pm 1.0$ (stat.) ± 1.4 (syst.) ± 0.3 (lumi.) nb
- * Compatible with theoretical predictions using FEWZ(NNLO pQCD+NLO pEW) with NNPDF3.1(PDF) for p and

* NNPDF3.1(PDF)

* EPPS16 (nPDF)

* nCTEQ15 (nPDF)

Hengne Li, LHCb collaboration

for Pb

much higher precision [LHCb-CONF-2019-003] 50 45 LHCb Preliminary FEWZ NNPDF31 nn⊧ 40 FEWZ NNPDF31 + EPPS16 $\sigma_{Z^{-}}$ $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ 35 FEWZ NNPDF31 + nCTEQ15 30 Data 25 20 15 10 backward forward pPb Pbp $1.53 < y^{*}(Z) < 4.03$ $-4.97 < y^{*}(Z) < -2.47$ HENPIC Seminar, 19 March 2020 32

Compare with results at 5 TeV [LHCb-CONF-2019-003]

- Results are compatible with previous 5 TeV results from various experiments
- The 20 times higher statistics
 bring higher precision in the
 measurements

Data/Theor

10

* only exp. uncert. shown on data/theory ratio, theo. PDF uncert. shown separately on the line at one.

Hengne Li, LHCb collaboration

LHCb Preliminary pPb, $\sigma(Z \rightarrow 1^+ 1^-)$ μ LHCb 8.16 TeV ($p_T^{\mu} > 20 \text{ GeV}, 2 < \eta^{\mu} < 4.5$) μ LHCb 5.02 TeV ($p_T^{\mu} > 20 \text{ GeV}, 2 < \eta^{\mu} < 4.5$) μ ALICE 5.02 TeV ($p_T^{\mu} > 20 \text{ GeV}, 2.5 < \eta^{\mu} < 4$) μ CMS 5.02 TeV ($p_T^{\mu} > 20 \text{ GeV}, 1\eta^{\mu} < 2.4$) μ ATLAS 5.02 TeV (full lepton phase space)

 $\sigma_{Z \to \mu^+ \mu^-, pPb}^{2.5 < |y^*| < 4.0} = 17.1 \pm 1.4 (\text{stat.}) \pm 0.7 (\text{syst.}) \pm 0.4 (\text{lumi.}) \text{ nb},$ $\sigma_{Z \to \mu^{+} \mu^{-}, Pb\,n}^{2.5 < |y^{*}| < 4.0} = 13.3 \pm 1.0 (\text{stat.}) \pm 1.4 (\text{syst.}) \pm 0.3 (\text{lumi.}) \text{ nb},$

Measured forward-backward ratio $R_{\text{FR}}^{2.5 < |y^| < 4.0} = 1.28 \pm 0.14 (\text{stat.}) \pm 0.14 (\text{syst.}) \pm 0.05 (\text{lumi.}).$

* Compatible with theoretical predictions: $R_{\rm FB,NNPDF3.1}^{2.5 < |y^*| < 4.0} = 1.59 \pm 0.10$ (theo.) ± 0.01 (num.) ± 0.05 (PDF), $R_{\rm FB,NNPDF3.1+EPPS16}^{2.5 < |y^*| < 4.0} = 1.45 \pm 0.10 (\text{theo.}) \pm 0.01 (\text{num.}) \pm 0.27 (\text{PDF}),$ $R_{\rm FB,NNPDF3.1+nCTEQ15}^{2.5 < |y^*| < 4.0}$ $= 1.44 \pm 0.10$ (theo.) ± 0.01 (num.) ± 0.20 (PDF).

Hengne Li, LHCb collaboration

LHCb-CONF-2019-003

*Forward-backward ratio is derived based on cross-sections measured in the common rapidity range:

Understanding the nature of the X(3872)

Hengne Li, LHCb collaboration

The story started in 2003

- * The first exotic hadron discovered in $J/\psi \pi^+\pi^-$ mass spectrum from B decays by Belle in 2003
- **Properties do not appear to fit the** standard picture of charmonium state
- * More than 20 previously unpredicted charmonium- and bottomonium-like states have been discovered, and the understanding of heavy quarkonium physics is undetermined.

Hengne Li, LHCb collaboration

- * The first exotic hadron discovered in $J/\psi \pi^+\pi^-$ mass spectrum from B decays by Belle in 2003
- * LHCb measured quantum numbers [PRL 110 (2013) 222001] $* J^{PC} = 1^{++}$
- * Mass is consistent with sum of D^0 and \overline{D}^{*0} masses: $M_{\chi_{c1}(3872)} - (M_{D^0} + M_{\overline{D}^{*0}}) = 0.01 \pm 0.27 \text{MeV}$
- PDG 2019 has changed the naming X(3872) to $\chi_{c1}(3872)$

Very small binding energy and

very large radius, ~ 7 fm

Hengne Li, LHCb collaboration

 $D^0\overline{D}^{*0}$ Molecule

Compact tetraquark

Tightly bound via color exchange between diquark Small radius, ~ 1 fm ₃₇ HENPIC Seminar, 19 March 2020

Effects of binding energy learned from pA collision

* Strength of the binding energy could be a key point to understand the nature of the exotic state

state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69
$\Delta E \; [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05

Satz, J. Phys. G 32 (3) 2006

- Suppression of weakly-bound quarkonia states has been studied for decades in pA collisions
 - * Ratios of $[\psi(2S)]/[J/\psi]$ and $[\Upsilon(2S,3S)]/[\Upsilon(1S)]$
- * Suppression is generally explained with final state effects: regions with high particle multiplicities

Hengne Li, LHCb collaboration

ER 2019

							D
state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'	
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69	
$\Delta E [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05	

TTER 2019

ARK MATTER 2019

Probing X(3872) structure in high-multiplicity condition

* **Prompt production (study object):**

- * X(3872) produced at collision vertex can be subject to further interactions with e.g. co-moving particles produced in the event, potentially subject to breakup effects ==> suppression!
- * **Production in b-decays (control sample):**
- * X(3872) is produced outside of the primary collision volume
- * Hadrons containing b travel down the beampipe and decay away from the primary vertex and decay in vacuum
- * X(3872) is not subject to interactions with co-moving particles

Hengne Li, LHCb collaboration

- LHCb pp collisions at 8 TeV *
- * Reconstruct the X(3872) and ψ (2S) from $\mu^+\mu^-\pi^+\pi^$ final states: $X(3872) \to J/\psi \left(\to \mu^+ \mu^- \right) \rho \left(\to \pi^+ \pi^- \right)$ $\psi(2S) \rightarrow J/\psi \left(\rightarrow \mu^+ \mu^- \right) \pi^+ \pi^-$
- * Select J/ψ from dimuons, combine with two identified pions. Kinematic fit constraining J/ψ mass to known value and all four tracks to identical vertex.
- **Direct comparison between conventional charmonium** $\psi(2S)$ and exe and exercises $\sigma_{\chi_{c1}(3872)} = \frac{\sigma_{\chi_{c1}(3872)}}{\sigma_{\psi(2S)}} \times \frac{\mathcal{B}[\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^-]}{\mathcal{B}[\psi(2S) \rightarrow J/\psi \pi^+ \pi^-]}$ $\sigma_{\psi(2S)}$ THE 28TH INTERNATIONAL CONFERENCE ON ULTRARELATIVISTIC NUCLEUS-NUCLEUS COLLI **QUARK MATTER 2019 QUARK MATTER 2019** Wuhan, China 4-9 Novembe Wuhan, China 4-9 Novembe Hengne Li, LHC conaboration

Selection of X(3872)

Prompt / b-decay separation

MeV/6

Entries/(0.5

1200

800

600

400

* Simultaneous fit to invariant mass and pseudo proper time spectrum:

- * Invariant mass to separate resonance vs. background
- * Pseudo proper time to separate prompt and b-decay components

Hengne Li, LHCb collaboration

Prompt fraction

- * Prompt fraction $f_{prompt} = \frac{N_{prompt}}{N_{prompt} + N_{b} - decay}$
- * Significant decrease in prompt fraction of both X(3872) and $\psi(2S)$ as event activity increases
- * Formation of prompt X(3872) and $\psi(2.S)$ may be disrupted at the primary vertex, which cannot affect production via b decays in vacuum.

Hengne Li, LHCb collaboration

HENPIC Seminar, 19 March 2020

43

* Ratio of cross-sections: $\frac{\sigma_{\chi_{c1}(3872)}}{\sigma_{\psi(2S)}} \times \frac{\mathscr{B}\left[\chi_{c1}(3872) \to J/\psi\pi^{+}\pi^{-}\right]}{\mathscr{B}\left[\psi(2S) \to J/\psi\pi^{+}\pi^{-}\right]} = \frac{N_{\chi_{c1}(3872)}f_{\text{prompt}}^{\chi_{c1}(3872)}f_{\text{prompt}}^{\chi_{c1}(3872)} \times \frac{\varepsilon_{\psi(2S)}}{\varepsilon_{\chi_{c1}(3872)}} + \frac{\varepsilon_{\psi(2S)}}{\varepsilon_{\zeta_{c1}(3872)}} + \frac{\varepsilon_{\psi(2S)}}{\varepsilon_{\chi_{c1}(3872)}} + \frac{\varepsilon_{\psi(2S)}}{\varepsilon_{\chi_{c1}(3872)}} + \frac{\varepsilon_{\psi(2S)}}{\varepsilon_{\zeta_{c1}(3872)}} + \frac{\varepsilon_{\psi(2S)}}{$

* Prompt Component (study object):

- * Increasing suppression of X(3872) production relative to $\psi(2S)$ as event activity increases
- * Syst. uncert. due to eff. is fully correlated bin-by-bin
- * b-decay component (control sample):
 - * No significant change in relative production, as expected for decays in vacuum (compatible with a straight line).
 - * Ratio is set by decay branching fractions of b and X(3872).
- * The average ratio agrees with ATLAS measurement
 - * $R = 0.0395 \pm 0.0032 \pm 0.0008 (p_T > 10 GeV) [JHEP 2017:117 (2017)]$

Hengne Li, LHCb collaboration

HENPIC Seminar, 19 March 2020

44

- * Rich heavy ion program in understanding strong interactions are on going at LHCb.
- * Results of the following analyses are coming soon!
 - * more plots see: https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlotsQM2019

LHCb-FIGURE-2019-020

Hengne Li, LHCb collaboration

2000 E

45

HENPIC Seminar, 19 March 2020

1900

 $m(K^{\pm}\pi^{\mp})[MeV/c^2]$

1850

Open charm in 2018 PbPb

Outlook

Open charm in 2016 pPb

LHCb fixed-target program evolution

- * <u>SMOG 2 (TDR)</u> : Standalone gas storage cell covering z position -500 to -300 mm :
 - * Up to x100 higher gas density with same gas flow of current SMOG.
 - * Gas feed system measures the gas density with few % accuracy.
- * Installation due in December 2019, to be operational from the start of LHC Run 3.

Hengne Li, LHCb collaboration

Conclusion

- * The Standard Model of particle physics has demonstrated its predictive power in the electroweak and **Higgs sectors**
- * Due to the nonperturbative nature of QCD at low energy scales, the predictive power of the SM in the strong sector is more limited. ==> rich program in the strong force sector is still in front of us!
- * The LHCb detector has unique capabilities at the LHC, being the only dedicated forward detector. * Capabilities can also be applied to strong interaction physics.

47

- * Recent results from LHCb:

 - * Probing cold nuclear matter effects using D⁰ and Z boson production have been discussed * The efforts to understand the nature of the X(3872) resonance has been presented.
- * Rich heavy ion program in understanding strong interactions are on going at LHCb.

Hengne Li, LHCb collaboration

Hengne Li, LHCb collaboration

