e-Forum on High-energy Nuclear Physics in China 中国高能核物理网络论坛

Measurement of Open Heavy Flavor Production in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV in STAR

Guannan *XIE*(谢冠男) Lawrence Berkeley National Laboratory

Sept. 19, 2019

Quark-Gluon Plasma

- Lattice QCD predicts a state of QCD matter at high temperature/density
 quark-gluon plasma (quarks and gluons are deconfined)
- Expected to exist in early universe: $t \sim 10^{-6}$ s

STAR

QGP in Laboratory

High Energy Nucleus-Nucleus Collisions

Elliptic flow $(v_2) = 2nd$ Fourier coefficient Sensitive to the early stage properties

Guannan Xie

QGP in Laboratory

Formation of strongly-coupled Quark Gluon Plasma (sQGP)!

Probes QGP with Heavy Quarks : Uniqueness

- Heavy quarks: $m_{c/b} \gg \Lambda_{QCD}$, $T_{QGP(RHIC)}$
 - Calculable in perturbative QCD
 - Produced early in heavy-ion collisions through hard scatterings
 - \rightarrow good probe of medium properties

Physics Goals and Contents

- Mass dependence of parton energy loss -
- Quantify QGP transport parameter

 $\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b$ HQ spatial diffusion coefficient, D_s

- In medium energy loss D⁰ R_{AA}, R_{CP}
- Hadronization
 - $\Lambda_{\rm c}, {\rm D}_{\rm s}$
- Charm conservation
 Total charm cross-section
- Mass dependence of energy loss $B \rightarrow (J/\psi, D^0, e)$
- Transport coefficients
 D⁰ v₂

Guannan Xie

Experimental Methods

Hadron	Abundance	c τ (μm)	
D ^o	56%	123	
D+	24%	312	
D _s	10%	150	
Λ_{c}	10%	60	
B+	40%	491	
Bo	40%	456	

Precision silicon vertex tracker is crucial, especially in HIC.

Direct - Secondary vertex reconstruction $eg. D^0 \rightarrow K\pi, B \rightarrow J/\psi K$

- full charmed hadron kinematics
- hard to trigger, smaller branching ratios

Indirect - Inclusive impact parameter method

- eg. $D/B \rightarrow e, B \rightarrow D, B \rightarrow J/\psi$
- easy to trigger, high statistics
- background sources, kinematic smeared

7

STAR Detector

Time Of Flight detector: Time Projection Chamber: Tracking, PID (dE/dx), $|\eta| < 1$, $0 < \phi < 2\pi$ PID (1/ β), $|\eta| < 1$, $0 < \phi < 2\pi$

Barrel ElectroMagnetic Calorimeter: Trigger on and identify high-p_T electrons $|\eta| < 1, 0 < \phi < 2\pi$ Vertex Position Detector: Trigger on minimum bias events $4.2 < |\eta| < 5.0$

Guannan Xie

Heavy Flavor Tracker

Guannan Xie

Example of D⁰ Reconstruction

- Direct reconstruction secondary vertex
- Topological variables optimized by TMVA
- A factor of >15 improvement in terms of significance compare to tpc results

10

D⁰ p_T Spectra

- D⁰ measurement was much improved with the help of HFT
- p_T -integrated D⁰ cross-section is nearly independent of centrality, and smaller than in p+p collisions. However, for $p_T > 4$ GeV/c it increases towards peripheral collisions.

$D^0 R_{AA}$

- $R_{AA} < 1$ in the 0-10% centrality interval for all p_T
- Suppression at high p_T increases towards more central collisions
- Similar suppression trend as D-mesons at LHC and high- p_T pions at RHIC

Guannan Xie

STAR:Phys

b

655

2007) 104, Phys. Rev. C 99, (2019) 034908

ЪT

Phys.

014909 +private comm

$D^0 \operatorname{R}_{\operatorname{CP}}$ and $\overline{D^0}/D^0$ Ratio

- Significant suppression at high p_T.
- Reasonable agreement with theoretical calculations
- $\overline{D^0}/\overline{D^0}$ ratio is larger than 1, possibly due to finite baryon density

Guannan Xie

D⁰ Radial Flow

- Exponential fit to the m_T spectra : collective behavior, T_{eff} slope parameter follows the same trend as multi-strange hadrons
- Blast Wave fits ($p_T < 5 \text{ GeV/c}$) : ٠ $T_{kin}(\boldsymbol{D^0}) \sim T_{kin}(\phi, \Xi) > T_{kin}(\pi, K, p) \text{ and } \beta(\boldsymbol{D^0}) \sim \beta(\phi, \Xi) < \beta(\pi, K, p)$ \rightarrow suggests earlier freeze-out of **D**⁰ compared to light-flavor hadrons.

14

Heavy Quark Hadronization : Λ_c and D_s

- Exclusive reconstruction of charmed hadrons in HIC from STAR: $\Lambda_c^+, D_s^+, D^{\pm}, D^{\pm}, D^0$
- More challenge for three body reconstruction and short life-time particles
- Λ_c^+ Reconstructed first time in A+A collisions

Λ_c/D^0 : p_T Dependence

- Significant enhancement of Λ_c/D^0 compared to PYTHIA/fragmentation baseline and p+p, p+Pb at LHC
- The Λ_c/D^0 ratio is comparable with light flavor baryon-to-meson ratios
- Consistent with charm quark hadronization via coalescence
 -- higher than model predictions, particularly at higher p_T

Λ_c/D^0 : Centrality Dependence

- Trends of Λ_c/D^0 ratio increases from peripheral to central collisions
- Ratio for peripheral Au+Au comparable with p+p value at 7 TeV

D_s/D^0 Enhancement

- Strong D_s/D⁰ enhancement observed in central A+A collisions w.r.t fragmentation baseline
 - Strangeness enhancement and coalescence hadronization
- Enhancement is larger than p+p, PYTHIA predictions

2016) 397 18

Recent Model Predictions

• Recent model predictions developed fast

Total Charm Cross-section

- Total charm cross-section is extracted from the various charm hadron measurements
- -- D⁰ yields are measured down to zero p_T
- -- For D^{+/-} and D_s, Levy function fits to measured spectra are used for extrapolation.
- For Λ_c, fits of three models to data are used and differences are included in systematics

Charm Hadron		Cross Section dơ/dy (µb)
AuAu 200 GeV (10-40%)	D^0	41 ± 1 ± 5
	D^+	18 ± 1 ± 3
	D_s^+	15 ± 1 ± 5
	Λ_c^+	78 ± 13 ± 28 *
	Total	152 ± 13 ± 29
pp 200 GeV	Total	130 ± 30 ± 26

* derived using Λ_c^+ / D^0 ratio in 10-80%

• Total charm cross-section per nucleon-nucleon collision is consistent with p+p value within uncertainties, but redistributed among different charm hadron species

D⁰ Elliptic Flow

- Mass ordering at $p_T < 2$ GeV/c (hydrodynamic behavior)
- $v_2(D^0)$ follows the $(m_T m_0)$ NCQ scaling as light flavor hadrons below 1 GeV/c² \rightarrow Evidence of charm quarks flowing with the medium

2014 data, Phys. Rev. Lett. 118, (2017) 212301

D⁰ Elliptic Flow

- High precision of v_2 data offers stringent constraints to model calculations. Transport models with charm quark diffusion in the medium can describe the data
- Sensitivity to charm diffusion coefficient $2\pi TD_s$ and its temperature dependence. Models describe D⁰ v₂ well with $2\pi TD_s$ in the range of 2 – 5 around T_c

22

Summary - Charm

- Open heavy flavor (charm)
 - $v_2(D) \sim v_2(h)$ vs. $m_T \rightarrow$ charm quark flow like light quarks
 - $R_{AA}(D) \sim R_{AA}(h) (p_T > 5 \text{ GeV}) \rightarrow \text{ charm quark lose significant energy}$
 - D_s/D^0 and Λ_c^+/D^0 enhancement \rightarrow coalescence hadronization

Charm quark strongly coupled with QGP.

${f B} ightarrow J/\psi$

- Background is estimated using event mixing method
- Template fitting the reconstructed (prompt + non-prompt) signals
- Extract non-prompt fraction from pseudo-proper decay length $(I_{J/\psi})$

${f B} ightarrow J/\psi$

- Extract $B \rightarrow J/\psi$ R_{AA} from non-prompt fraction
- Strong suppression is observed for non-prompt J/ψ at high p_T and is similar to that of D^0 mesons.

Guannan Xie

$\mathbf{B} \to \mathbf{D}^0$

- Extract non-prompt fraction and R_{AA} from D⁰ DCA distribution
- Strong suppression of non-prompt D^0 at p_T range 5-8 GeV/c
- Hint of less suppression for $B \rightarrow D^0$ at p_T range 3-5 GeV/c.

$B/D \rightarrow e$

- Impact parameter method to separate c/b \rightarrow electrons
- Indication of less suppression for $B \rightarrow e$ than $D \rightarrow e (\sim 2 \sigma)$: consistent with $\Delta E_c > \Delta E_b$.

Guannan Xie

Summary - Bottom

- Open heavy flavor (bottom)
 - Strong suppression for $B \rightarrow J/\psi$ and $B \rightarrow D^0$ at high p_T
 - Indication of less suppression for $B \rightarrow e$ than $D \rightarrow e (\sim 2\sigma)$: consistent with $\Delta E_c > \Delta E_b$

Evidence of less energy loss of bottom in the QGP.

Outlook and Future

Improved p+p reference, p/d+Au for cold nuclear matter effect

Bottom :

- Precision low p_T bottom measurements (R_{AA} , v_2)
 - precision determination of HQ diffusion coefficient
 - systematic investigate mass dependence of parton energy loss

Back up

Light Flavor Behavior

High p_T : Light quark e-loss, Jet quenching Low p_T : Hydrodynamics works Multi-strange hadrons flow Intermediate p_T : Number of Constituent Quark scaling flow $s \sim u,d$

Large partonic collective flow observed. u,d,s quarks strongly interact with Hot/dense medium. What about heavy quarks? Is the medium hot/dense enough to modify heavy quarks at RHIC energy? And LHC energy?

More differential D⁰ measurement

- D^0 lifetime $c\tau$ measurement
- D⁰ cross-section vs rapidity measurement

Ref.

 $\mathbf{D}^{+-}\mathbf{R}_{\mathbf{A}\mathbf{A}}$

- Similar suppression for D⁰ and D^{+/-}
- Spectra measurement is important for the total charm cross-section

D*+ Production in Au+Au Collisions

- D^{*+} feeds down to D^0 yields $D^{*+} \rightarrow D^0 + \pi^+_{soft}$
- Possible hot medium effects :
 - D*+ life time could become shorter in hot medium
 - Re-scattering can lead to loss of yield

Shuai Y. F. Liu and Ralf Rapp. Phys. Rev. C 97 (2018) 034918.

D*+/**D**⁰ Ratio in Au+Au Collisions

- D*+/D⁰ ratio in Au+Au collisions at 200 GeV is consistent with PYTHIA and with ALICE data at higher p_T.
- Ratio of the integrated yields shows no strong centrality dependence

K/K, Phys. Rev. C (2011) 84. 034909. ALICE Collaboration, arXiv:1804.09083.*

Guannan Xie

D^0 Directed Flow (v₁)

- Charm quarks interact with bulk medium $\rightarrow D^0 v_1$ sensitive to the initial tilt of the source (bulk) S. Chatterjee and P. Bożek, PRL 120 (2018) 192301
- Charm and anti-charm quarks can be deflected differently by the initial EM field \rightarrow difference between D^0 and $\overline{D^0}$ v₁ sensitive to EM field
- First observation of non-zero (negative) $D^0(\overline{D^0})$ v₁ slope, much larger than that of kaons $D^0 + \overline{D^0} dv_1/dy = -0.081 \pm 0.021(stat) \pm 0.017(sys)$
- More precise data are needed for $\Delta v_1 d\Delta v_1/dy = -0.041 \pm 0.041(stat) \pm 0.020(sys)$

B Study from Non-prompt J/ ψ & D⁰ & e

- Strong interaction of charm with the medium. How about bottom?
- Strong suppression for $B \rightarrow J/\psi$ and D^0 at high p_T .

STAR

• Indication of less suppression for $B \rightarrow e$ than $D \rightarrow e$ (~2 σ): consistent with $\Delta E_c > \Delta E_b$. Measurements with improved precision on the way

