

IMPORTANCE OF NON-FLOW BACKGROUND ON THE CHIRAL MAGNETIC WAVE SEARCH

Haojie Xu(徐浩洁)

Huzhou University (湖州师范学院)

Collaborators: Jie Zhao, Yicheng Feng, Fuqiang Wang

The 97th HENPIC seminar, 26 March, 2020

OUTLINE

➤ Introduction

>Background Sources:

- 1. Trivial linear- A_{ch} term
- 2. The multiple pion source effect
- 3. Non-flow effect
- 4. Local charge conservation, decay kinematics
- ≻ Summary

- Local charge conservation [A. Bzdak, PLB (2013)]
- Isospin chemical potential [Y. Hatta et al, NPA (2016)]

HJX, J. Zhao, Y. Feng, F. Wang, "Complications in the interpretation of the charge asymmetry dependent π flow for the chiral magnetic wave", Phy.Rev. C101 (2020), 014913, arXiv:1910.02896

INTRODUCTION

HEAVY ION COLLISIONS

Deng, PRC85, 044907 (2012)

STAR, NPA757, 102 (2005)

CHIRAL MAGNETIC WAVE

D. Kharzeev, PLB 633, 260 (2006)D. Kharzeev, PRD 83, 085007 (2006)D. Kharzeev, PPNP 88, 1 (2016)

The Chiral Magnetic Wave (CMW) is a gapless collective excitation of the QGP stemming from the interplay of the CME and CSE

THE CMW OBSERVABLE

Y. Burnier, PRL 107, 052303 (2011)

Charge quadrupole moment

The A_{ch} -dependent elliptic flow

$$v_2^{\pm} = v_2 \mp \frac{rA_{ch}}{2}$$

where

$$A_{ch} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

The CMW observable: slope of $\Delta v_2(A_{ch}) \equiv v_2^-(A_{ch}) - v_2^+(A_{ch})$

Elliptic flow: SIGNAL

EXPERIMENTAL MEASUREMENTS

8

THE BACKGROUNDS

Local Charge Conservation [A. Bzdak, PLB (2013)]

Similar slope for pion triangle flow differenes

Isospin chemicial poential [Y. Hatta, NPA (2016)]

$$r pprox rac{\Delta v_2^\pi}{A_{ch}} \propto rac{\mu_I/T}{A_{ch}} rac{\eta}{s} rac{\epsilon}{S^2} rac{dN}{dy} \,,$$

Negative slope for kaon elliptic flow differenes

9

NON-FLOW BACKGROUND

Two particles correlations [N. Borghini, PRC2000]:

- Transverse momentum coservation
- Resonance decays
- HBT, Coulomb and strong interaction

•

N-particles correlations:

• Jet emission

• • • • • • •

.

Flow in small sysmtem Flow in most central heavy ion collisions

For the CMW measurment:

[STAR, PRL(2015)] The non-flow correlations are largely canceled in the v_2 difference between π^- and π^+ . ???

II. BACKGROUND SOURCES

1) ANALYSIS FLAW: TRIVIAL LINEAR A_{ch} TERM

Q-cumulant flow method [Bilandzic, PRC(2011)]

$$\langle 2 \rangle_{n,-n} = \frac{|Q_n|^2 - M}{M(M-1)},$$

$$Q_n = \sum_{i=1}^M e^{in\varphi_i}, \quad \langle 4 \rangle_{n,n,-n,-n} = \frac{|Q_n|^4 + |Q_{2n}|^2 - 2 \cdot \operatorname{Re}[Q_{2n}Q_n^*Q_n^*]}{M(M-1)(M-2)(M-3)}$$

$$-2\frac{2(M-2) \cdot |Q_n|^2 - M(M-3)}{M(M-1)(M-2)(M-3)},$$

$$c_n\{2\} = \langle \langle 2 \rangle \rangle_{n,-n},$$

$$c_n\{4\} = \langle \langle 4 \rangle \rangle_{n,n,-n,-n} - 2 \cdot \langle \langle 2 \rangle \rangle_{n,-n}^2.$$

$$v_n\{2\} = \sqrt{c_n\{2\}}, \quad v_n\{4\} = \sqrt[4]{-c_n\{4\}}.$$

Random walk, form wiki

1) ANALYSIS FLAW: TRIVIAL LINEAR A_{ch} TERM

The two-particle Q-cumulant flow for particle of interset (POI) $v_n\{2\} = d_n\{2\}/\sqrt{c_n\{2\}}$ For all charges as reference particles (REF), $d_n\{2\}$ can be written as

The trivial term arises when:

• All charges are included in REF

• Non-flow differs between like- and unlike-sign pairs. (if only flow, then it vanishes)

1) ANALYSIS FLAW: TRIVIAL LINEAR A_{ch} TERM

- Non-flow correlations: close unlike-sgin pairs
- A toy Monte Carlo study:
 - pion only
 - pT and eta spectra, 30-40% AuAu@ $\sqrt{s_{NN}} = 200 \text{ GeV}.$
 - Poisson multiplcity fluctuation.
- Single-sign charges as reference to remove the trivial term

$$\bar{v}_n^{\pi} \equiv \frac{v_n^{\pi}\{2; h^+\} + v_n^{\pi}\{2; h^-\}}{2}.$$

slope parameters: r_{triv} : trivial contribution r_0 : trival-included r: trivial-removed

1) TRIVIAL LINEAR A_{ch} TERM: TOY MODEL STUDY

Back-to-back unlike-sign non-flow correlations

 $\succ v_n = 4\%$ is used for both π^+ and π^- , no input Ach dependence.

 $\succ r_0$ (trivial term included), r (trivial term removed)

The trivial slope is positive for Δv₂(A_{ch}) and negative for Δv₃(A_{ch}).
 Single-sign charges as reference to remove the trivial term

1) TRIVIAL LINEAR A_{ch} TERM: STAR MEASUREMENT

H. Xu (STAR), QM2019 poster

2) THE MULTIPLE PION SOURCE EFFECT

From the two-component model ($\epsilon = N_D/N_P$), assume the charge asymmetry distributions of each sources A_P and A_D are both normal distributions with width σ_P and σ_P ,

$$\Delta v_n = \frac{2\epsilon(\epsilon\sigma_D^2 - \sigma_P^2)(v_{n,P} - v_{n,D})}{(1+\epsilon)(\epsilon^2\sigma_D^2 + \sigma_P^2)} A_{ch} \equiv r^{2C}A_{ch}$$

 A_D and A_P differences

- \rightarrow different A_{ch} , different component ratio
- \rightarrow competition between different pion flow
- \rightarrow *A_{ch}* dependence pion flow
- ➔ slope parameter

3) NON-FLOW DILUTION EFFECT

For like-sign non-flow correlations:
A_{ch} > 0
→ large π⁺ multiplicity
→ more non-flow dilution
→ smaller π⁺ ν₂
→ positive slope

Close-pair like-sign non-flow correlations
 Trivial term have been removed

4) LOCAL CHARGE CONSERVATION (LCC) EFFECT

Without LCC effect, the slope parameter from decays is negative.

4) LCC: INDIVIDUAL SOURCE

Mass effect, 2-body or 3-body decays

4) LCC: MULTIPLE SOURCE

Primordial π^+ and π^- :

□ Independent production

LCC correlations

SUMMARY

Non-CMW mechanisms can generate A_{ch} -dependent π flows

- 1. Trivial linear- A_{ch} term
- 2. The multiple pion source effect

HJX, PRC(2020)

- 3. Non-flow effect
- 4. Resonance decays, decay kinematics, Local Charge Conservation

- The A_{ch} -dependent pion flow v_2 difference CMW observable is awfully complicated !!
- In order to say anything about the CMW, a precise modeling of all heavy-ion collision backgrounds is a must-prerequisite.

BACKUP

3.1B events for both Ru+Ru, Zr+Zr collected over 8 weeks Plans for blind analyses of the data was laid down from the beginning

Z. Xu, QM2019

The isobar (nucleon/charge) density distributions play important role on the CME search!

ISBAR COLLISIONS AND NEUTRON SKIN

