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Exploring nucleus at short distances

» Lorentz contracted
nuclei collide as
squeezed pancakes

» Pre-equilibrium
dynamics leads to
emergent
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Hydrodynamics: é%§>

one theory to rule them all
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New discoveries
Fluids at extreme conditions
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Hydrodynamics: @

one theory to rule them all

Effective field theory of long-wavelength modes
Near to equilibrium the energy-momentum tensor is expanded in

gradients o0
uv o ja%
T = > THS
k=0
Evolution of T* is universal and determined by conservation laws:

0, T =0

Truncation in gradients leads to Euler, Navier-Stokes, Israel-Stewart, ...
Hydrodynamics works across phase transitions
Microscopic details encoded in transport parameters and EOS
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Fluidity in Heavy lons

Weller & Romatschke (2017)
superSONIC for Pb+Pb, Vs=5.02 TeV, 0-5%
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 Hydrodynamics is a deterministic initial-value problem and the QGP

flows with nearly zero viscosity
 V_is sensitive to the initial geometry of the collision 12



Paradox

Small gradient expansion = expansion in Knudsen number
Microscopic scale Macroscopic scale
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Paradox

Small gradient expansion = expansion in Knudsen number
Microscopic scale Macroscopic scale

| | [eWN /s — HH-
Knudsen number | N ol =HEl]

[

K .
=T

Kn is not small !!

r [fm]

Denicol & Niemi (2014)

However, hydrodynamics works. Why? _ 16



New developments In far-from-
equilibrium hydrodynamics
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Attracting behavior in hydrodynamics

il - Different IC
i - NS
%9 AR -1S
- Attractor
0.8
S—
0.7
2 Tr
0.6 _ s
J 3 + de
0.5
0.0 0.5 1.0 1.5 2.0 2.5 3.0

w =TT == [Kn] "

Same late time behavior independent of the IC!!!

Heller and Spalinski (2015)



Message to take

Romatschke

(2017) rBRSSS Boltzmann AdS/CFT
0 T T pr—————] T P —rT=TTTT]
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DR IS C.=0.4 . C,=0.21
-0.5 Y \C. =0 . C,=07171 T C, =0.77 "
w * 7\' ‘\ 7\, ) ~~ 7\‘ .
E . hRS N o S
(DP 3 S =3 - \
S T T
-1.5
0™ order hydro = = _
1% order hydro = = = - numerical
5 2" order hydro attractor
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T T T

arbitrarily far-from-equilibrium initial conditions used to solve hydro
equations merge towards a unique line (attractor).

Independent of the coupling regime.
Attractors can be determined from very few terms of the gradient expansion

At the time when hydrodynamical gradient expansion merges to the attractor,
the system is far-from-equilibrium, i.e. large pressure anisotropies are

present in the system PiL#Pr
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Message to take
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Existence of a new theory for far-from-
equilibrium fluids

o What are their properties?



In this talk:

Far-from-equilibrium:
Fokker Planck Equation

?

Hydrodynamics
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Fokker Planck Equation

0.015 7
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Bjorken expansion and Kkinetics

Bjorken model o
| Q L T=X e )
k=0

Kn=(rT(r))”

:
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Landau & Lifschitz, Physical kinetics 2

For gluons: A. Mueller (1999)
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Moments expansion

Orf(1,pr,D2) = Cairs.|f]

By expanding the distribution function in orthogonal polynomials
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Moments expansion

Orf(1,pr,D2) = Cairs.|f]

By expanding the distribution function in orthogonal polynomials

f(,p) = feq. (Ep/T(7))

@)

C| (7’) 7)2[ (COS Hp)

[=0

The problem of solving the FP Egn is mapped into solving a
nonlinear set of ODEs for the Legendre moments

dc

dw

= F(c,

w

-

w=T7~Kn!

Non-autonomous dynamical system

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



Flow lines in phase space
dc

dw

0 2 4 6 3 10

= F(c,w)
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Flow lines in phase space

d
d—i}l = F(c1,w)

0.000 0.005 0.010 0.015 0.020

8.0 8.0 0.00 0.02 0.04 0.06 0.08 0.10
a: e -1.0 ' = 1.0
7.5 W EATAIRAIRY - - 15| 15
& 70__ A Y Y __70 = —2.02 ;_2_0
o Vv v v v i K 4 N -25
6.5 M NNE s X . 30
- ' S -3.5¢ —— - _35

0.000 0.005 0.010 0.015 0.020 0.00 0.02 004 0.06 0.08 010

W W

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



Flow lines in phase space
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Flow lines in phase space

d
d—;l = F(c1,w)
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UV and IR regimes

dc
— = F(c,w
- = F(c,w)
IR: w>>1 UV:w<<1
» Near equilibrium > Extremely far from
equilibrium

Linear response

theory » Behavior of

solutions depends
on fixed point
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UV and IR regimes

/

IR: w>>1

theory

» Near equilibrium
Linear response

dc
— = F(c,w
- = F(c,w)
UV:w<<1
» Extremely far from
equilibrium

Today

» Behavior of
solutions depends
on fixed point
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Transasymptotics and resurgence

Basic idea:

Reconstruct the solution of ODE by knowing its
asymptotic behavior

A dCl

% — F(Cl,UJ)




Transasymptotics and resurgence

Basic idea:

Reconstruct the solution of ODE by knowing its
asymptotic behavior

} dey
dw

— F(cl,w)

In some cases it is possible provided the
knowledge of the fluctuations around the fixed
points of the ODE



Transseries solutions in the
IR regime

37



IR perturbative expansion

Asymptotic solution looks like

dCl
= F(c1,w) cl—Zulkw

dw

Perturbative asymptotic
expansion is divergent!!!!

Borel resummation is one
way to sort out this type of
situations.

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



Martinez et. al.

IR perturbative expansion

Asymptotic solution looks like

d C1 P
dw (c1, w) c1 = E ulkw
C1s
1 Far from
4 equilibrium
u Exact
3tk memeas O (Kn): 1. order
- —— O (Kn?): 2" . order
2
- _ _ Close to
1 : Large anisotropies / equilibrium
i Kn~1 ,
0} 77777 NG o % ***** T e e e T ] /
1.:.— __________ == -0.75
B - _,;‘)‘ :
_2:7 /,¢'l’}/ |
7 |
_3, | | g | | |
10° 101

w=7T(r) === [Kn|
1805.07881, 1901.08632, 1911.06406, 2011.08235



Fluctuation around IR

Linearize around the the perturbative expansion series

d561 (9F1
= — ocq
dw oct |, —e,
561 ‘7 —Siw W bl
Lyapunov exponent Anomalous dimension

Continue doing this procedure to all perturbative orders

40
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IR transseries solutions

Asymptotic :5 Transseries solutions
expansion Costin (1998)

0 > l
P PR R e e A
k=1

C | ‘Instanton’
15 - -
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-\ Non-perturbative L e O (Kn): 1. order
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2:* ——= Ren. O (Kn®): 2" . order
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Non-newtonian fluids and rheology

. _ mmy
-
= M

Moy = —10p0y Ty = =100y ) Oply

Equilibrium Shear thinning Shear thickening

2 Increasingshear rate
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Non-newtonian fluids and rheology

I S )

- ———Ch
-
R

Ty = —1] 0z0y Ty = =100y ) Oply

Shear viscosity

» Becomes a function of the gradient
of the flow velocity

» can increase or decrease
depending on the size of the
gradient of the flow velocity
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Transasymptotic matching

er(w) = [ul)or Gu(w) + uf) for Gw)]? + - |
b [ u e Gw) o )P + ]
+ =5 [ul%) + ufldor Guw) +uB o ) + -

/ Cl — e—Slwwb]_

Perturbative IR data Non-Perturbative

Resummation of fluctuations around
the IR perturbative expansion

44
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Transasymptotic matching
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Transasymptotic matching

Each function Gik satisfies: _
Asymptotic value of

Iim Gy = ugoll > the transport
W=reo ’ coefficient
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E.Q.
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Transasymptotic matching

Each function Gik satisfies: _
Asymptotic value of

Iim Gy = ugoll —— the transport

W—> 00 coefficient
= =2 i Gy (onC(w))
- 40 wl—I>noo LINO16 W
. 3 Non-equilibrium
! — @ transport 47
s(w) 40 1’k(01C(w)) coefficient!!!




Non-newtonian fluids and rheology

)
3
)=~ 2anaoncu)) e

Thus, transseries solutions resummes non-perturbative contributions
when the dissipative corrections are large.
As a result, each transport coefficient is renormalized

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



Transient rheological behavior

N 3
—(w) = ——G1 1(o1C(w
L (w) = — 2 Gra(or¢(w))
1.0 I
0'8:_ — o0 =3.1
C . =054
=0.6- - 0=1.31
% |
= 0.4
~ B \
: Shear thickening
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Universal properties
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Universal features of attractors

74/3 €(T)

— (r4/3

6) hydro

10—
_ /Miw
0.8—
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' 2 0.6
?0’ i — AMY-YM kinetics, C.. = 0.98
[ — FP Boltzmann, C,, = 0.91
0.4— —- RTA Boltzmann, C.. = 0.89
i 1st. Order Hydro
_ - Free streaming
0-2_ I I | | ] :!:::::::::!:
0.1 0.3 0.5 1.0 4.0 9.0

Martinez et. al.

i = 7T (471 5) 4 [Kn] ™" /(471 5)
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Universal features of attractors

c 74/3 €(T)
(7—4/36) hydro
1.0, ——
- Early-time /”““““
- free- A
0.8 streaming
_
'R .6
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“ [ — FP Boltzmann, C,, = 0.91
0.4— —- RTA Boltzmann, C,, = 0.89
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0.2 | | R I |

0.1 03 05 1.0 1.0 9.0
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Universal features of attractors

74/3 €(T)
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Conclusions

1. Hydrodynamics can be formulated even if the
system is far-from-equilibrium

2. Transient rheological behavior is intimately related
with the formulation of a new theory of far-from-
equilibrium hydrodynamics.

3. Transport coefficients get renormalized effectively
after resumming non-perturbative instanton-like
contributions

4. Early and late time behavior of different kinetic
models are determined by free streaming and viscous
hydrodynamics at early and late times respectively.



Excellent group of collaborators

C. N. Camacho S. Kamata




Outlook

» Resurgence analysis of other relevant systems
» Relevance of attractors and connection to experiments

- Giacalone et. al. PRL 123 (2019) 262301
- Martinez et. al. 2012.02184

» Challenges:
1. How to generalize to arbitrarily expanding
geometries?
2. Phase transitions?
3. Effective action (Lyapunov functionals)
For Gubser flow: Behtash. et. al. PRD 97 044041 (2018)
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Slow Iinvariant manifold picture

Phase space
trajectory Fast modes

N //

Phase space
trajectory

1-D manifold
\\‘

Slow modes

T sl _b‘\
2-D manifold

"~ 0-D manifold
(i.e. equilibrium point)



Transseries solutions to ODEs

If you have a non-linear differential B
equation of the form o
o i
y' = folz) Ay - —By +g(a.y) 1
Then e V4
it ¥ GGy, W
k>0:[k|>0 O. Coustin

1. Non-resonance condition: A does not have null eigenvalues

2. Regularity when x — oo
Duke Math. J. vol 93, No 2, 1998



Moments method

Grad’s moments method

@) Nl
f(@",p) = fo (1 +> Y HL, plrEp

A

Background Polynomials of  Irreducible
distribution energy moments

Irreducible
tensors

60
Grad (1949), Israel-Stewart (1976), DNMR (2010)



Moments method

Grad’s moments method

df . o0 f
F'—L
at 833 i op*

!

@) Nl
f(x'ua p (1 + > >1 pﬁzllmmlulp(,ul " 'p,ul>>

[=0 n=0

Relaxation to the asymptotic state of the distribution function is
determined by analyzing the non-linear evolution equation of the
moments

[

Grad (1949), Israel-Stewart (1976), DNMR (2010)

= —C|/f]
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Hydro as an coarse-grained approach

How many moments do we need?
o Nl

NN\ 491
Fatp)=fo (14D > Hynfh™™ " Pl Py
[=0 n=0

» Coarse-grained procedure reduces # of degrees of freedom
» The slowest degrees of freedom determine hydrodynamics
» However, kinetic theory is highly non-linear.....

Microscopic: . )
P Mesoscopic: Continuum: &

23 :
10 partlcles 107 — ]_09 pa_‘[‘tiCleS T7 My iy €570, Dy -...



Non-autonomous dynamical system

dc
— = F(c,w)
dw
* Any solution, aka flow, depends on its initial value, initial and final

values of w

c = c(cy, w, W)

e Since future and past are not the same one requires to consider
the following limits

w%oolfgéfixed (o, w, o) wo—>(1)i,'rwnfixed ¢(Co, w, o)
Forward Pullback
Attractor Attractor
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Dynamical system as a RG flow

Let’s rewrite the ODESs In a precise manner

Any observable O = O(G1 x(011))

dD(G1 g (0101)) = =D [(bl +S1w) 51G1Jf("1@)} ai‘g
dlog w k=0 -

RG flow equation for shear viscosity over
entropy ratio is simply obtained by using

g(w) — —f—OGl,k(UlC(w))

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235
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Non-autonomous dynamical system

d
izF(c,w)

* The evolution parameter w appears explicitly in the RHS. This is
a non-autonomous dynamical system.

 When w does not appear explicitly the system is an autonomous
one

* For autonomous systems the fixed points are simply dc/dw =0.

* For non-autonomous dynamical systems the invariance under
translations in the w parameter is broken

* For non-autonomous dynamical systems one requires to
consider limits in the past and in the future.

e These limits are not commutative.

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235



Chapman-Enskog expansion

d
L = Fi(w, ) =) U

dw —0

From linear response theory

40 1 80 1 T( mW—Al)

Transport coefficients
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Fokker-Planck equation

Microscopic dynamics is encoded in the distribution function f(t,x,p)

of 2O | i OF fB(t2, 2(t2),(t2))  staten
E + v It - F — C[f] Z(t) g

“ N

Particle %’ - 5
Free imbalance ¥ 'state A fA( 1 55( 1) p( 1))
p(t)

expansion L

P P

Clf] = _

. 67
Galin Lose



UV regime
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UV expansion

By expanding w = 0 around the UV fixed points

dCl
—— = F(c1,w
dw ( ) )
. . _ 0) .k
Perturbative solutions C1 = U p W
k=1
Mi
Linearized perturbations bcp =
w

/

Power law behavior
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UV expansion

By expanding w = 0 around the UV fixed points

dCl
—— = F(c1,w
dw ( ) )
. . _ 0) .k
Perturbative solutions C1 = U p W
k=1
Mi
Linearized perturbations §cp = -2 —
w1

N

a1 : Fast decay @1 : Growth

70
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UV expansion around saddle fixed point

Consider the expansion around saddle point
0
C1 = Z v%l)ﬂ w"
k=1
Power law series:
- Divergent.

- Fluctuations grow so one cannot perform any resummation

scheme around saddle fix point.
- However, radius of convergence is extended by analytical

continuation!!

71
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UV expansion around saddle fixed point

Analitical continuation extends the finite radius of
convergence

o e e e i e

— Exact L=1
0) .., -
L= v
. Wo=U.
k:_]_ — W3=1.03
I
1 2

72
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UV expansion around source fixed point

Consider the expansion around source point

UV transseries
= " _ .
o™ (1) = ! k- Finite radius of convergence
e \ Fluctuations are not suppressed

Power law decay
No Instanton-like
contributions

Perturbative
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Early universe and the quark-gluon plasma

Big quark-gluon proton & neutron formation of formation of star dispersion of
Bang pla..mu formation W mass nuclei neutral atoms tormation massive elements

T B =1005K 10" K 10° K 4,000 K : = 2
time 1065 104 s 3 min 400,000 yr 110" yr >1 = 107 yr 15 = 10" yr

At extremely high temperatures the universe was filled with
quarks and gluons which ‘condensate’ into hadronic bound
states
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Little Big Bangs

g e -
— - L
- S ® e 0. o e

Large Hadron Collider (LHC) and the Relativistic Heavy
Collider (RHIC) create ‘Little Big Bangs’

» A deconfined plasma of Quarks and Gluons

» What about using heavy ions to understand neutron star

mergers?
E. R. Most et. al. PRL 122 (2019) 061101
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