Transasymptotics, dynamical systems and far from equilibrium hydrodynamics

Mauricio Martinez Guerrero

129th HENPIC Seminar December 2020

arXiv: 2011.08235

NC STATE UNIVERSITY

Exploring nucleus at short distances

- Lorentz contracted nuclei collide as squeezed pancakes
- Pre-equilibrium dynamics leads to emergent hydrodynamis
- Hydrodynamical flow of the quark-gluon plasma
- Condensation into confined hadrons and freeze-out
- Late-time hadron cascade

New discoveries Fluids at extreme conditions

T ~ 10¹² K

 $T \sim 10^{-7} K$

QGP

Cold atoms

• Effective field theory of **long-wavelength modes**

- Effective field theory of **long-wavelength modes**
- Near to equilibrium the energy-momentum tensor is expanded in gradients ∞

$$T^{\mu\nu} = \sum_{k=0} T^{\mu\nu}_{(k)}$$

- Effective field theory of **long-wavelength modes**
- Near to equilibrium the energy-momentum tensor is expanded in gradients ∞

$$T^{\mu\nu} = \sum_{k=0} T^{\mu\nu}_{(k)}$$

$$T_0^{\mu\nu} = (\epsilon + p(\epsilon)) u^{\mu} u^{\nu} + p(\epsilon) g^{\mu\nu}$$

- Effective field theory of **long-wavelength modes**
- Near to equilibrium the energy-momentum tensor is expanded in gradients $T^{\mu\nu} = \sum_{k=1}^{\infty} T^{\mu\nu}_{(k)}$

k=0

$$T_0^{\mu\nu} = (\epsilon + p(\epsilon)) u^{\mu} u^{\nu} + p(\epsilon) g^{\mu\nu}$$

1st order: Navier-Stokes

- Effective field theory of **long-wavelength modes**
- Near to equilibrium the energy-momentum tensor is expanded in gradients ∞

$$T^{\mu\nu} = \sum_{k=0}^{m} T^{\mu\nu}_{(k)}$$

• Evolution of $T^{\mu\nu}$ is universal and determined by **conservation laws**:

$$\partial_{\mu}T^{\mu\nu} = 0$$

- Effective field theory of **long-wavelength modes**
- Near to equilibrium the energy-momentum tensor is expanded in gradients ∞

$$T^{\mu\nu} = \sum_{k=0}^{\mu\nu} T^{\mu\nu}_{(k)}$$

• Evolution of $T^{\mu\nu}$ is universal and determined by **conservation laws**:

$$\partial_{\mu}T^{\mu\nu} = 0$$

• Truncation in gradients leads to Euler, Navier-Stokes, Israel-Stewart, ...

- Effective field theory of **long-wavelength modes**
- Near to equilibrium the energy-momentum tensor is expanded in gradients ∞

$$T^{\mu\nu} = \sum_{k=0}^{m} T^{\mu\nu}_{(k)}$$

• Evolution of $T^{\mu\nu}$ is universal and determined by **conservation laws**:

$$\partial_{\mu}T^{\mu\nu} = 0$$

- Truncation in gradients leads to Euler, Navier-Stokes, Israel-Stewart, ...
- Hydrodynamics works across **phase transitions**

- Effective field theory of **long-wavelength modes**
- Near to equilibrium the energy-momentum tensor is expanded in gradients ∞

$$T^{\mu\nu} = \sum_{k=0}^{\infty} T^{\mu\nu}_{(k)}$$

• Evolution of $T^{\mu\nu}$ is universal and determined by **conservation laws**:

$$\partial_{\mu}T^{\mu\nu} = 0$$

- Truncation in gradients leads to Euler, Navier-Stokes, Israel-Stewart, ...
- Hydrodynamics works across **phase transitions**
- Microscopic details encoded in transport parameters and EOS

 η, ζ

 C_{S}

Oth **order:** Speed of sound 1st order: Shear and bulk viscosities $au_{\pi}, \lambda_{1}, \ \lambda_{2}, \lambda_{3}, \kappa \dots$

2nd order: Relaxation coefficients ¹¹

Fluidity in Heavy Ions

- Hydrodynamics is a deterministic initial-value problem and the QGP flows with nearly zero viscosity
- v_n is sensitive to the **initial geometry** of the collision

Small gradient expansion \equiv expansion in Knudsen numberMicroscopic scaleMacroscopic scale

 $l \sim au_{\pi}$

$$L^{-1} \sim \partial_i v^i$$

Small gradient expansion \equiv expansion in Knudsen numberMicroscopic scaleMacroscopic scale

$$l\sim au_\pi$$

$$L^{-1} \sim \partial_i v^i$$

Knudsen number

$$Kn \equiv \frac{l}{L}$$

Small gradient expansion \equiv expansion in Knudsen numberMicroscopic scaleMacroscopic scale

Denicol & Niemi (2014)

Small gradient expansion \equiv expansion in Knudsen numberMicroscopic scaleMacroscopic scale

Denicol & Niemi (2014)

However, hydrodynamics works. Why?

New developments in far-fromequilibrium hydrodynamics

Attracting behavior in hydrodynamics

Same late time behavior independent of the IC!!!

Heller and Spalinski (2015)

Message to take

- arbitrarily far-from-equilibrium initial conditions used to solve hydro equations merge towards a unique line (attractor).
- Independent of the coupling regime.
- Attractors can be determined from very few terms of the gradient expansion
- At the time when hydrodynamical gradient expansion merges to the attractor, the system is far-from-equilibrium, i.e. large pressure anisotropies are present in the system $P_L \neq P_T$

Message to take

Existence of a new theory for far-fromequilibrium fluids

• What are their properties?

In this talk:

Far-from-equilibrium: Fokker Planck Equation

Hydrodynamics

Fokker Planck Equation

Bjorken expansion and kinetics

Bjorken model

$$T^{\mu\nu} = \sum_{k=0}^{\infty} a_k^{\mu\nu} (Kn)^k$$
$$Kn = (\tau T(\tau))^{-1}$$

Landau & Lifschitz, Physical kinetics For gluons: A. Mueller (1999)

Bjorken expansion and kinetics

Bjorken model

Landau & Lifschitz, Physical kinetics For gluons: A. Mueller (1999)

Bjorken expansion and kinetics

Bjorken model

Landau & Lifschitz, Physical kinetics For gluons: A. Mueller (1999)

Moments expansion

$$\partial_{\tau} f(\tau, p_T, p_z) = \mathcal{C}_{diff.}[f]$$

By expanding the distribution function in orthogonal polynomials

$$f(x, \mathbf{p}) = f_{eq.} \left(E_{\mathbf{p}} / T(\tau) \right) \sum_{l=0}^{\infty} c_l(\tau) \mathcal{P}_{2l}(\cos \theta_{\mathbf{p}})$$
Physical observables:
$$T^{\mu\nu} = \int_{\mathbf{p}} p^{\mu} p^{\nu} f(x^{\mu}, \mathbf{p}) \equiv \text{diag.} \left(\epsilon, P_T, P_T, P_L\right)$$

$$\sim T^4 \qquad P_T = \epsilon \left(\frac{1}{3} - \frac{c_1}{15} \right) \qquad P_L = \epsilon \left(\frac{1}{3} + \frac{2}{15} \right)$$

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235

 ϵ

Moments expansion

$$\partial_{\tau} f(\tau, p_T, p_z) = \mathcal{C}_{diff.}[f]$$

By expanding the distribution function in orthogonal polynomials

$$f(x, \mathbf{p}) = f_{eq.} \left(E_{\mathbf{p}} / T(\tau) \right) \sum_{l=0}^{\infty} c_l(\tau) \mathcal{P}_{2l}(\cos \theta_{\mathbf{p}})$$

The problem of solving the FP Eqn is mapped into solving a nonlinear set of ODEs for the Legendre moments

$$\frac{d\mathbf{c}}{dw} = F(\mathbf{c}, w)$$

$$\mathbf{w} = T \tau \sim K n^{-1}$$

Non-autonomous dynamical system

Flow lines in phase space

Flow lines in phase space

Flow lines in phase space

 $\frac{d c_1}{dw} = F(c_1, w)$

UV and IR regimes

 $d\mathbf{c}$ = $F(\mathbf{c},w)$ \overline{dw}

IR: w >> 1

Near equilibrium Linear response theory

UV: w << 1

- Extremely far from equilibrium
- Behavior of solutions depends on fixed point

UV and IR regimes

 $\frac{d\mathbf{c}}{dw} = F(\mathbf{c}, w)$

 IR: w >> 1
 Near equilibrium Linear response theory

UV: w << 1

- Extremely far from equilibrium
- Behavior of solutions depends on fixed point

Today

Transasymptotics and resurgence

Basic idea:

Reconstruct the solution of ODE by knowing its asymptotic behavior

Transasymptotics and resurgence

Basic idea:

Reconstruct the solution of ODE by knowing its asymptotic behavior

In some cases it is possible provided the knowledge of the fluctuations around the fixed points of the ODE
Transseries solutions in the IR regime

IR perturbative expansion

$$\frac{d\,c_1}{dw} = F(c_1, w)$$

Asymptotic solution looks like

$$c_1 = \sum_{k=1}^{\infty} u_{1,k}^{(0)} w^{-k}$$

Perturbative asymptotic expansion is divergent!!!!

Borel resummation is one way to sort out this type of situations.

IR perturbative expansion

Fluctuation around IR

Linearize around the the perturbative expansion series

$$\frac{d\delta c_1}{dw} = \frac{\partial F_1}{\partial c_1} \bigg|_{c_1 = \bar{c}_1} \delta c_1$$

$$\delta c_1(w) = \sigma_1 e^{-S_1 w} w^{-b_1}$$
yapunov exponent Anomalous dimension

Continue doing this procedure to all perturbative orders

Martinez et. al. 1805.07881, 1901.08632, 1911.06406, 2011.08235

Ľ

IR transseries solutions

Non-newtonian fluids and rheology

Non-newtonian fluids and rheology

$$\pi_{xy} = -\eta \,\partial_x v_y$$

$$\pi_{xy} = -\eta(\partial_x v_y) \,\partial_x v_y$$

Shear viscosity

- Becomes a function of the gradient of the flow velocity
- can increase or decrease depending on the size of the gradient of the flow velocity

$$c_{1}(w) = \begin{bmatrix} u_{1,0}^{(1)} \sigma_{1} \zeta_{1}(w) + u_{1,0}^{(2)} [\sigma_{1} \zeta_{1}(w)]^{2} + \cdots \end{bmatrix} \\ + \frac{1}{w} \begin{bmatrix} u_{1,1}^{(0)} + u_{1,1}^{(1)} \sigma_{1} \zeta_{1}(w) + u_{1,1}^{(2)} [\sigma_{1} \zeta_{1}(w)]^{2} + \cdots \end{bmatrix} \\ + \frac{1}{w^{2}} \begin{bmatrix} u_{1,2}^{(0)} + u_{1,2}^{(1)} \sigma_{1} \zeta_{1}(w) + u_{1,2}^{(2)} [\sigma_{1} \zeta_{1}(w)]^{2} + \cdots \end{bmatrix} \\ \zeta_{1} = e^{-S_{1}w} w^{b_{1}}$$
Perturbative IR data Non-Perturbative

Resummation of fluctuations around the IR perturbative expansion

$$c_{1} \equiv \sum_{k=0}^{\infty} G_{1,k}(\sigma_{1}\zeta_{1}(w)) w^{-k}$$
$$\zeta_{1} = e^{-S_{1}w} w^{b_{1}}$$
$$G_{1,k}(\sigma_{1}\zeta_{1}(w)) = \sum_{n=0}^{\infty} u_{1,k}^{(n)} [\sigma_{1}\zeta_{1}(w)]^{n}$$

$$c_{1} \equiv \sum_{k=0}^{\infty} G_{1,k}(\sigma_{1}\zeta_{1}(w)) w^{-k}$$

$$\zeta_{1} = e^{-S_{1}w} w^{b_{1}}$$

$$G_{1,k}(\sigma_{1}\zeta_{1}(w)) = \sum_{n=0}^{\infty} u_{1,k}^{(n)} [\sigma_{1}\zeta_{1}(w)]^{n}$$

Each function G_{1,k} satisfies:

$$\lim_{w \to \infty} G_{1,k} = \underbrace{u_{1,k}^{(0)}}$$

Asymptotic value of
 the transport
 coefficient

$$c_{1} \equiv \sum_{k=0}^{\infty} G_{1,k}(\sigma_{1}\zeta_{1}(w)) w^{-k}$$

$$\zeta_{1} = e^{-S_{1}w} w^{b_{1}}$$

$$G_{1,k}(\sigma_{1}\zeta_{1}(w)) = \sum_{n=0}^{\infty} u_{1,k}^{(n)} [\sigma_{1}\zeta_{1}(w)]^{n}$$

Each function G_{1,k} satisfies:

$$\lim_{w \to \infty} G_{1,k} = \underbrace{u_{1,k}^{(0)}}_{k}$$

Asymptotic value of the transport coefficient

.g.
$$\frac{\eta}{s} = -\frac{3}{40} \lim_{w \to \infty} G_{1,1}(\sigma_1 \zeta(w))$$

F

$$\frac{\eta}{s}(w) = -\frac{3}{40}G_{1,k}(\sigma_1\zeta(w))$$

Non-equilibrium transport coefficient!!!

Non-newtonian fluids and rheology

Thus, transseries solutions resummes non-perturbative contributions when the dissipative corrections are large. As a result, **each transport coefficient is renormalized**

Transient rheological behavior

$$\frac{\eta}{s}(w) = -\frac{3}{40}G_{1,1}(\sigma_1\zeta(w))$$

Universal properties

Universal features of attractors

$$\mathcal{E} = \frac{\tau^{4/3} \,\epsilon(\tau)}{\left(\tau^{4/3} \epsilon\right)_{hydro}}$$

Universal features of attractors

$$\mathcal{E} = \frac{\tau^{4/3} \,\epsilon(\tau)}{\left(\tau^{4/3} \epsilon\right)_{hydro}}$$

Universal features of attractors

$$\mathcal{E} = \frac{\tau^{4/3} \,\epsilon(\tau)}{\left(\tau^{4/3} \epsilon\right)_{hydro}}$$

Conclusions

1. Hydrodynamics can be formulated even if the system is far-from-equilibrium

2. Transient rheological behavior is intimately related with the formulation of a new theory of far-fromequilibrium hydrodynamics.

3. Transport coefficients get renormalized effectively after resumming non-perturbative instanton-like contributions

4. Early and late time behavior of different kinetic models are determined by free streaming and viscous hydrodynamics at early and late times respectively.

Excellent group of collaborators

A. Behtash

C. N. Camacho

S. Kamata

H. Shi

T. Schaefer

V. Skokov

Outlook

- Resurgence analysis of other relevant systems
- Relevance of attractors and connection to experiments
 - Giacalone et. al. PRL 123 (2019) 262301
 - Martinez et. al. 2012.02184
- Challenges:
 - **1.** How to generalize to arbitrarily expanding geometries?
 - 2. Phase transitions?
 - 3. Effective action (Lyapunov functionals)
 - For Gubser flow: Behtash. et. al. PRD 97 044041 (2018)

Backup slides

Slow invariant manifold picture

Transseries solutions to ODEs

If you have a non-linear differential equation of the form

$$\mathbf{y}' = \mathbf{f}_0(x) - \hat{\Lambda}\mathbf{y} - \frac{1}{x}\hat{B}\mathbf{y} + \mathbf{g}(x, \mathbf{y})$$

Then

$$\tilde{\mathbf{y}} = \tilde{\mathbf{y}}_0 + \sum_{\mathbf{k} \ge 0; |\mathbf{k}| > 0} C_1^{k_1} \cdots C_n^{k_n} e^{-(\mathbf{k} \cdot \boldsymbol{\lambda})x} x^{\mathbf{k} \cdot \mathbf{m}} \tilde{\mathbf{y}}_{\mathbf{k}}$$
$$\tilde{\mathbf{y}}_{\mathbf{k}} = x^{-\mathbf{k}(\boldsymbol{\beta} + \mathbf{m})} \sum_{l=0}^{\infty} \mathbf{a}_{\mathbf{k};l} x^{-l}$$

O. Coustin

1. Non-resonance condition: Λ does not have null eigenvalues 2. Regularity when $x \to \infty$

Duke Math. J. vol 93, No 2, 1998

Moments method

Grad's moments method

Grad (1949), Israel-Stewart (1976), DNMR (2010)

Moments method

Grad's moments method

$$\boxed{\frac{\partial f}{\partial t} + v_i \frac{\partial f}{\partial x^i} + F^i \frac{\partial f}{\partial p^i} = -\mathcal{C}[f]}$$

$$f(x^{\mu}, \mathbf{p}) = f_0 \left(1 + \sum_{l=0}^{\infty} \sum_{n=0}^{N_l} \mathcal{H}^l_{\mathbf{p}, n} \rho_n^{\mu_1 \mu_2 \cdots \mu_l} p_{\langle \mu_1} \cdots p_{\mu_l \rangle} \right)$$

Relaxation to the asymptotic state of the distribution function is determined by analyzing the non-linear evolution equation of the moments

$$\frac{d\rho_r^{\mu_1\mu_2\cdots\mu_l}}{dt} \sim \frac{d}{dt} \left[\int_{\mathbf{p}} E_{\mathbf{p}}^r p^{\langle \mu_1} \cdots p^{\mu_l \rangle} \delta f \right]$$

Grad (1949), Israel-Stewart (1976), DNMR (2010)

Hydro as an coarse-grained approach

How many moments do we need?

$$f(x^{\mu}, \mathbf{p}) = f_0 \left(1 + \sum_{l=0}^{\infty} \sum_{n=0}^{N_l} \mathcal{H}^l_{\mathbf{p}, n} \rho_n^{\mu_1 \mu_2 \cdots \mu_l} p_{\langle \mu_1} \cdots p_{\mu_l \rangle} \right)$$

Coarse-grained procedure reduces # of degrees of freedom
 The slowest degrees of freedom determine hydrodynamics
 However, kinetic theory is highly non-linear.....

Non-autonomous dynamical system

$$\frac{d\mathbf{c}}{dw} = F(\mathbf{c}, \boldsymbol{w})$$

 Any solution, aka flow, depends on its initial value, initial and final values of w

$$\mathbf{c} \equiv \mathbf{c}(\mathbf{c}_0, w, w_0)$$

• Since future and past are not the same one requires to consider the following limits

$$\lim_{w \to \infty, w_0 fixed} \mathbf{c}(\mathbf{c}_0, w, w_0) \qquad \lim_{w_0 \to 0, w fixed} \mathbf{c}(\mathbf{c}_0, w, w_0)$$
Forward
Attractor
Pullback
Attractor

Dynamical system as a RG flow

Let's rewrite the ODEs in a precise manner

$$\frac{dc_1}{d\log w} = \beta_1(c_1, w)$$

Any observable $\mathfrak{O} = \mathfrak{O}(G_{1,k}(\sigma_1\zeta_1))$

$$\frac{d\mathfrak{O}(G_{1,k}(\sigma_1\zeta_1))}{d\log w} = -\sum_{k=0}^{\infty} \left[(b_1 + S_1 w) \,\hat{\zeta}_1 G_{1,k}(\sigma_1\zeta_1) \right] \,\frac{\partial\mathfrak{O}}{\partial G_{1,k}}$$

RG flow equation for shear viscosity over entropy ratio is simply obtained by using

$$\frac{\eta}{s}(w) = -\frac{3}{40}G_{1,k}(\sigma_1\zeta(w))$$

Non-autonomous dynamical system

$$\frac{d\mathbf{c}}{dw} = F(\mathbf{c}, \boldsymbol{w})$$

- The evolution parameter w appears explicitly in the RHS. This is a non-autonomous dynamical system.
- When w does not appear explicitly the system is an autonomous one
- For autonomous systems the fixed points are simply dc/dw =0.
- For non-autonomous dynamical systems the invariance under translations in the w parameter is broken
- For non-autonomous dynamical systems one requires to consider limits in the past and in the future.
- These limits are not commutative.

Chapman-Enskog expansion

$$\frac{dc_1}{dw} = F_1(w, c_1)$$

$$c_1 = \sum_{k=0}^{\infty} u_{1,k}^{(0)} w^{-k}$$

From linear response theory

$$c_{1} = -\frac{40}{3} \frac{1}{w} \frac{\eta}{s} - \frac{80}{9} \frac{1}{w^{2}} \frac{T(\eta \tau_{\pi} - \lambda_{1})}{s} \cdots$$

$$Transport coefficients$$

Fokker-Planck equation

Microscopic dynamics is encoded in the distribution function f(t,**x**,**p**)

UV regime

UV expansion

By expanding $w \Rightarrow 0$ around the UV fixed points

$$\frac{d\,c_1}{dw} = F(c_1, w)$$

Perturbative solutions

$$c_1 = \sum_{k=1} v_{1,k}^{(0)} w^k$$

Linearized perturbations

$$\delta c_1 = \frac{\mu_1^{\pm}}{w^{\alpha_1^{\pm}}}$$

Power law behavior

UV expansion

By expanding $w \Rightarrow 0$ around the UV fixed points

$$\frac{d\,c_1}{dw} = F(c_1, w)$$

Perturbative solutions

$$c_1 = \sum_{k=1} v_{1,k}^{(0)} w^k$$

UV expansion around saddle fixed point

Consider the expansion around saddle point

$$c_1 = \sum_{k=1} v_{1,k}^{(0)} w^k$$

Power law series:

- Divergent.

- Fluctuations grow so one cannot perform any resummation scheme around saddle fix point.

- However, radius of convergence is extended by analytical continuation!!

UV expansion around saddle fixed point

Analitical continuation extends the finite radius of convergence

UV expansion around source fixed point

Consider the expansion around source point

$$c_{1} = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} v_{1,k}^{(n)} \varphi_{k}^{(n)}(w)$$

UV transseries

- Finite radius of convergence
- Fluctuations are not suppressed

Power law decay No Instanton-like contributions

Perturbative

Early universe and the quark-gluon plasma

At extremely high temperatures the universe was filled with **quarks and gluons** which 'condensate' into **hadronic bound states**

Little Big Bangs

75

Large Hadron Collider (LHC) and the Relativistic Heavy Collider (RHIC) create 'Little Big Bangs'

- A deconfined plasma of Quarks and Gluons
- What about using heavy ions to understand neutron star mergers? E. R. Most et. al. PRL 122 (2019) 061101