HENPIC, online seminar, Sep. 10, 2020

Hard-core deconfinement & soft-surface delocalization from nuclear to quark matter

Toru Kojo

(CCNU, Wuhan, China)

Ref) K. Fukushima, T.K., and W. Weise, 2008.08436 [hep-ph]

The purpose of this work

• propose notions of Soft- & Hard- Deconfinement

•offer a concrete description of quark-hadron continuity

suggest new schemes of computations for dense QCD

Confinement-deconfinement in hot QCD

No order parameters, but the notion of conf-deconf trans. still makes sense :

Hot QCD case, lattice (e

(e.g., Ding+, review '15)

3/32

Confinement-deconfinement in hot QCD

No order parameters, but the notion of conf-deconf trans. still makes sense :

Hot QCD case, lattice

(e.g., Ding+, review '15)

An intuitive picture

At ~T_c, many hadrons with E >> T
(entropic effects > energy cost; Hagedorn)

An intuitive picture

Can we draw this sort of cartoon for dense QCD ?

4/32

 N_c counting : HRG vs Nuclear Matter

6/32

 N_c counting: HRG vs Nuclear Matter

"Soft" & "Hard" scales in a nucleon

"Soft" & "Hard" scales in a nucleon

Soft & Hard Deconfinement

Hard Deconfinement

$4-7 n_0 < n_B < \sim 50 n_0$

hard core overlap

pQCD valid

Hard Deconfinement

hard core overlap \neq perturbative regime

core properties of a nucleon \rightarrow alternative baselines ?

e.g. mechanical **P** & **E** in a nucleon

Hard Deconfinement

10/32

 $r_{\rm hard}$

hard core overlap \neq perturbative regime

core properties of a nucleon \rightarrow alternative baselines ?

e.g. mechanical $\mathbf{p} \& \mathbf{\hat{E}}$ in a nucleon gravitational form factors [Kobzarev-Okun('63), Pagels('66)] proton state $\langle p_2 | \hat{T}^q_{\mu\nu} | p_1 \rangle = \bar{U}(p_2) \left[M_2^q(t) \frac{P_{\mu}P_{\nu}}{M} + J^q(t) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M} + d_1^q(t) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^2}{5M} \right] U(p_1)$ energy mom. energy density angular mom pressure & shear forces tensor

On-going programs

11/32

models on the market: bag model, chiral quark soliton, Skyme model,...

For tentative estimates, we use a chiral soliton model + ω , ρ mesons (next slide)

"Nucleon" EoS vs neutron star EoS

12/32

close to realistic **NS EoS** : a useful **baseline** ? (like R_{AA} in HIC)

With this, can we quantify medium correlations such as BCS pairing?

Soft Deconfinement

$\sim 2 n_0 < n_B < 4-7 n_0$

nuclear

hard core overlap

Soft Deconfinement

relating "multi-quark exchanges" to "delocalization of quark w.f."

Need

to solve the dynamics of quarks being exchanged among moving baryons

looks very complicated...

strategy

Separate **fast** quark dynamics from **slow** baryon dynamics => *Born-Oppenheimer* descriptions

I, The velocity:
$$k_B/E_B \sim I/Nc \ll k_q/E_q \sim I$$
 $(k_B \sim k_q \sim n_B^{1/3})$
 $n_B = n_q^R = n_q^G = n_q^B$

2, Find quark eigenstates for a given baryon configuration

3, Take the "time average" \rightarrow "ensemble average" of baryons

A model of **classical** percolation

probability

16/32

bonds for nearest neighbor hopping of quarks

Classical Percolation (no quark dynamics) When do baryon clusters connect two opposite boundaries? e.g. 2D lattice (for $V \rightarrow \infty$)

17/32

p_c: critical probability (concentration)

def) at $p = p_c$, a cluster reaches opposite boundaries for the first time

Classical Percolation (no quark dynamics)

For 3D cubic lattice : $p_c = 0.34...$

A rough estimate of the critical density

Assuming r_{soft} ~ 0.7 fm

$$n_B^{c} \sim 0.34 \times (4\pi r_{soft}^3/3)^{-1} \sim 0.24 \text{ fm}^{-3}$$

~ 1.4 n_0 !

This may happen within the nuclear territory

But the CL percolation tells us only about the availability of paths for quarks...

Quantum Percolation

Quantum amplitudes from various paths may cancel: (destructive) interference

e.g. Anderson localization ('57)

√√√√√√√ clean

19/32

Quantum Percolation

Quantum amplitudes from various paths may cancel: (destructive) interference

e.g. Anderson localization ('57)

dirty

√↓↓↓↓↓↓↓↓ clean

→ **Bloch waves** (phase coherence)

 \rightarrow **Localized states** (random phase)

coordinate space

Delineating quark wavefunctions

procedures

=> we diagnose the **quark contents** of given baryon configurations

A model of **quantum** percolation

21/32

quarks hop only within connected clusters

I) $p \rightarrow 0$ (dilute limit) : **isolated** baryons only

like kin. energy (NR)

I) $p \rightarrow 0$ (dilute limit) : **isolated** baryons only

2) $p \rightarrow I$ (dense limit): all sites are filled

Eigenstates => plane waves with wavenumbers k_i

extended

X

localized

$$E(k) = 4V \sum_{i=x,y,z} \sin^2(k_i/2) \quad \rightarrow \quad \mathbf{V} \mathbf{k}^2$$

small k limit

for few baryon clusters (localized in y, z-directions)

a) 2-baryons

for few baryon clusters (localized in y, z-directions)

classically connected contain sub-clusters (localized states)

Histograms of quark eigenstates $\int dE \rho(E) = 1$

24/32

Mode-by-mode percolation

26/32

A momentum shell in Quarkyonic Matter

Quarkyonic Matter

[McLerran-Pisarski '07]

27/32

quark Fermi sea & mode-by-mode percolation 29/32

quark Fermi sea & mode-by-mode percolation

isolated baryons + sub-clusters

30/32

 $\int dE \rho(E) = 1$

quark Fermi sea & mode-by-mode percolation $\int dE \rho(E) = 1$

Summary: a cartoon

