

Probing neutron skin thickness with parity-violating electron scattering

Reference: D. Adhikari et al., (PREX Col.) PRL 126, 172502 (2021)

Jinlong Zhang (张金龙) Shandong University October 21, 2021

Credits:

- Much of the work is done by other dedicated people as part of the PREX/CREX collaboration
- I borrowed a lot of plots from talks of my collaborators, especially C. Gal.

Parity violating in weak interaction

The Nobel Prize in Physics 1957

Photo from the Nobel Foundation archive. Chen Ning Yang Prize share: 1/2

Prize share: 1/2

Chien-Shiung Wu Forever Stamps U.S. Postal Service

The Nobel Prize in Physics 1957 was awarded jointly to Chen Ning Yang and Tsung-Dao (T.D.) Lee "for their penetrating investigation of the so-called parity laws which has led to important discoveries regarding the elementary particles."

NobelPrize.org

Chien-Shiung Wu

Chien-Shiung Wu (1912-1997) was one of the most influential nuclear physicists of the 20th century. During a career that spanned

more than 40 years in a field dominated by men, she established herself as the authority on conducting precise and accurate research to test fundamental theories of physics. Art Director Ethel Kessler designed the stamp with original art by Kam Mak.

usps.com

Parity Violating Electron Scattering

Clean and theoretically easy interpretation, but very challenging!

Parity Violating Electron Scattering

- PVES has a long history of pushing the limits of precision and discovery
 - E122: (ΔA=10 ppm) 1978
 - pioneering experiment (already had most of the features of modern PVES experiments)
 - Strange form factor
 - G0, HAPPEX
 - Standard Model Tests
 - E158, PVDIS, Qweak
 - <u>Nuclear structure / neutron skin</u>
 - PREX, PREX-II, CREX
 - Future:
 - MOLLER, P2, SoLID

High statistics and excellent systematics control

What's the size of nucleus?

- Proton distribution:
 - Owing to the electric charge, this has been accurately measured for many atomic nuclei
- Neutron distribution: poorly known
 - Primarily from hadron experiments (pN, HIC, Rare Isotope, electric dipole polarizability, etc), model dependent
 - Parity-violating electron scattering: via the weak charge

Charge type	Proton	Neutron
Electric	1	0
Weak	~0.07	-1

Weak interaction sees neutrons

Neutron Skin

- For N=Z: the neutron and proton density distributions are expected to have a similar shape
- For N>>Z, the excess neutrons are pushed out to the periphery forming a neutron skin

Neutron skin: Difference between root-mean-squared radii of neutron and proton.

$$\Delta r_{np} = R_n - R_p = \sqrt{\langle r_n^2 \rangle} - \sqrt{\langle r_p^2 \rangle}$$

Neutron Skin and Symmetry Energy

Symmetry energy $S(\rho)$: energy penalty for breaking N=Z symmetry

Slope of the symmetry energy *L*:

$$L \propto \frac{\partial S(\rho)}{\partial \rho} \big|_{\rho_0}$$

Symmetry energies are different in the inner core (high density) and outer core (low density)

FIG. 2. The neutron EOS for 18 Skyrme parameter sets. The filled circles are the Friedman-Pandharipande (FP) variational calculations and the crosses are SkX. The neutron density is in units of neutron/fm³.

The extent of the neutron skin in a neutron rich nucleus is the result of balance between the surface tension and the slope of the symmetry energy.

Neutron Skin and Symmetry Energy

Mean-Field predictions show a correlation between neutron skin of a heavy nucleus, Δr_{np} , and the density slope of the symmetry energy.

X. Roca-Maza (et al.) PRL 106 (2011) 252501

 Δr_{np} calibrates the Equation of State of neutron rich matter, determining *L* constrains and guides models needed for heavy nuclei

Neutron Skin and Neutron Star

- In spite of the 18 orders of magnitude size difference, heavy nucleus and neutron star are both described with the nuclear Equation of State
 - Both strongly correlated with the slope of the symmetry energy L

Constraints deduced from Binary Neutron Stars

Binary Neutron Stars Merger

J. Phys. G: Nucl. Part. Phys. 46 (2019) 093003

The induced quadrupole deformation will advance the orbit in this case and change the phase of rotation!

Binary Neutron Stars merger significantly limits the phase space for the neutron skin

Choice of Nuclei Target

Stable and Least theoretical uncertainties

Doubly-magic; Neutron excess; First excited state far from elastic

²⁰⁸Pb:

in realm of uniform nuclear matter & Density Functional Theory

PREX

CREX

 serves as terrestrial laboratory to test neutron star structure

⁴⁸Ca:

 "ab initio" (exact microscopic) calculations of R_{skin} for ⁴⁸Ca have recently been available.

G. Hagen et al., Nature Physics 12, 186(2016).

 bridge between "*ab initio*" models and effective theory (DFT)

ab initio Calculation

G. Hagen et al., Nature Physics 12, 186(2016).

Figure 1 | **Predictions for observables related to the neutron distribution in** ⁴⁸**Ca. a**, the neutron skin R_{skin} ; **b**, the point-neutron radius R_n ; and **c**, the electric dipole polarizability α_D – all versus the point-proton radius R_p . The *ab initio* predictions with NNLO_{sat} (dots) and chiral interactions of ref. 28 (squares) are compared to the DFT results with the energy density functionals SkM^{*}, SkP, SLy4, SV-min, UNEDF0, and UNEDF1¹⁹ (diamonds). The theoretical error bars are indicated. The blue line represents a linear fit to the data, with theoretical uncertainties shown by a blue band. The horizontal green line marks the experimental value of R_p that puts a constraint on the ordinate (orange band).

- Coupled cluster method: solve the quantum nuclear many-body problem; Nuclear forces based on chiral effective field theory.
- Predicted a smaller ⁴⁸Ca neutron skin thickness than DFT
- Extra important need for CREX result.

From A_{PV} to Neutron Skin

Continuous Electron Beam Accelerator Facility at Jefferson Lab

Continuous Electron Beam Accelerator Facility at Jefferson Lab

Polarimeters:

- Mott at Injector
- Compton and Moller at Hall
- ~1% level precision

Moller Polarimetry

- Polarized cross section asymmetry of Moller scattering (elastic electron-electron scattering)
- Rapid, high precision measurement; **Destructive** only low beam current

$$\sigma \sim 1 + \sum_{i=X,Y,Z} (A_{ii} \cdot P_i^{targ} \cdot P_i^{beam})$$

$$A_{ZZ} = -\frac{\sin^2 \theta_{CM} \cdot (7 + \cos^2 \theta_{CM})}{(3 + \cos^2 \theta_{CM})^2}$$

Energy independent

Iron Foil Target in high-field superconductor magnet.

Compton Polarimeter

- 4-dipole chicane, non-destructive measurement: continuous monitoring of beam polarization
- Laser beam colliding with electron beam nearly head-on
- Integrating DAQ; GSO used to detect scattered photons;
 Diamond microstrips used to detect scattered electrons
 PREX2 will need 1% at 950 MeV
 - CREX will need 0.8% at 2.22GeV

Beam monitoring:

- RF antenna or RF resonating cavities
- Charge ~30ppm, position ~1um
- Fast feed back to injector

Beam Monitoring

- Mostly use RF resonating cavities or RF antennas
 - can measure beam charge to about 30 ppm and positions to about 1 micron
- Electronics are used to fast feedback and reduce large helicity correlated beam asymmetries

Spectometers:

- HRS High Resolution Spectrometers
- dp/p ~ 2x10⁻⁴

Hall A High Resolution Spectrometers

Main Detectors

- Fused silica Cherenkov radiator, 5mm thick 3.5x16 cm2 area, mated to a single PMT
 - Non-linearity of detector response was tested on the bench and with beam during the experiment
- GEMs for tracking runs (Q² measurement)

Determining central scattering angle and Q²

- ¹H and ¹⁶O in one target (same E-loss) provides measurement of angle θ
- Nuclear recoil method recoil momentum difference \longrightarrow scattering angle
- Determined central angle with pointing with precision of $\delta \theta = 0.02^{\circ}$ (0.45%)

PREX $\langle Q2 \rangle = 0.00616 \pm 0.00004 \text{ GeV}^2$ ($\delta Q2/Q2 = 0.65\%$)

PREX/CREX Target

- Lead has low melting point, and low thermal conductivity
- Diamond foils have excellent thermal conductivity, Helium cooled
- ¹²C is isoscaler, spin-0 (and wellmeasured) harmless background

- ~5.7 mm thick
- ~91.7% ⁴⁸Ca, ~7.96% ⁴⁰Ca

Scattering Chamber

- One cryogenic production target ladder and one optics ladder at single target location
- Improved based on lessons learned during PREX-I
- Solves vacuum and mechanical assembly considerations

Radiation Shielding

PREX-I distributed significant power in the hall, damaging vacuum and electronics

Solution: Localize power in hall at collimator, and shield it

- Heavy concrete shielding over the target and collimator region to reduce the boundary dose
- Collimation and shielding protect sensitive electronics inside the hall

Integrating DAQ

Flux integration Technique

D: detector signal, I: beam current

Continuous Wave (CW) laser which flips helicity fast enough to make sure that experimental conditions do not change from one helicity signal to the other

Integrating, not counting (total number of detected electrons was ~6e+15

Time Line

PREX-II Data Overview

The corrected asymmetry removed effects from beam asymmetries and noise

"Blinding box": an additive term on every octet asymmetry, randomly selected (flat) at the start of the run, from \pm 160 ppb

PREX-II Data Overview

$$A_{PV} = R_{acceptNorm} \frac{A_{corr}/P_e - \sum_i A_i f_i}{1 - \sum_i f_i}$$

$$A_{corr} = A_{raw} + A_{beam} + A_{nonLin} - A_{blind}$$

	A _{PV} uncertainty contribution [ppb]	A _{PV} uncertainty contribution [%]
Polarization	5.23	0.95%
Acceptance normalization	4.56	0.83%
Beam correction	2.98	0.54%
Non-linear detector response	2.69	0.49%
Carbon dilution	1.45	0.26%
Charge correction	0.25	0.04%
Inelastic contamination	0.12	0.02%
Total	8.16	1.48%

When taken all into account the experimental systematic uncertainty comes to just ~1.5% (2% in proposal)

Unblinded A_{PV} : (550.0 ± 16.1)ppb

PREX-II Result

Combined PREX-I and PREX-II

²⁰⁸ Pb Parameter	Value
Weak radius (R_W)	$5.800 \pm 0.075 ~\rm{fm}$
Interior weak density (ρ_W^0)	$-0.0796 \pm 0.0038 \text{ fm}^{-3}$
Interior baryon density (ρ_b^0)	$0.1480 \pm 0.0038 ~{\rm fm}^{-3}$
Neutron skin $(R_n - R_p)$	$0.283 \pm 0.071 ~{\rm fm}$

$$A_{\rm PV}^{\rm meas} = 550 \pm 16 \,({\rm stat}) \pm 8 \,({\rm syst}) \,\,{\rm ppb}$$

$$F_W(\langle Q^2 \rangle) = 0.368 \pm 0.013 \,(\text{exp}) \pm 0.001 \,(\text{theo})$$
$$R_W = 5.795 \pm 0.082 (\text{exp}) \pm 0.013 (\text{theo}) \,\text{fm}$$
$$R_n - R_p = 0.278 \pm 0.078 (\text{exp}) \pm 0.012 (\text{theo}) \,\text{fm}.$$

- Consistent with PREX-I
- Did better than originally proposed statistical (±3%) and systematic (±2%) uncertainty goals

Impact on symmetry energy slope

Reed, Horowitz et al. PRL 126, 172503 (2021)

PREX result indicating a larger L (stiff EOS)

Implication on Neutron Star

- NICER (NASA's neutron star Interior Composition ExporeR) is an X-ray telescope on the International Space Station
- LIGO GW170817 provided upper limits for tidal polarizability < 580 neutron star radius and accordingly for neutron skin as well.
- Consistent with NICER, but tension with LIGO

Press attention

Jinlong Zhang (张金龙), SDU

CREX Result

$$A_{PV} = R_{acceptNorm} \frac{A_{corr}/P_e - \sum_i A_i f_i}{1 - \sum_i f_i}$$

$$A_{corr} = A_{raw} + A_{beam} + A_{nonLin} - A_{blind}$$

- corrected asymmetry removed effects from beam asymmetries and noise
- Blinded Apv
 - 2334.8 ± 106.1(stat) ± 37.3(sys) ppb

CREX Result

Unblinded on October 9, 2021

Unblinded APV: 2658.6 ± 113.2 ppb (4.3%)

<Q2> =0.0297+-0.0002 GeV²

Presented at the DNP2021 by Caryn Palatchi on Oct 12.

- Preliminary extraction of weak Form factor: F_W : 0.1297 ± 4.3%
- Analysis and extraction of neutron skin is ongoing

Collaboration

Spokespeople: Kent Paschke (contact), Krishna Kumar, Robert Michaels, Paul A. Souder, Guido M. Urciuoli

Post-docs and Run Coordinators: Rakitha Beminiwattha, Juan Carlos Cornejo, Mark-Macrae Dalton, Ciprian Gal, Chandan Ghosh, Donald Jones, Tyler Kutz, Hanjie Liu, Juliette Mammei, Dustin McNulty, Caryn Palatchi, Sanghwa Park, Ye Tian, Jinlong Zhang

Students: Devi Adhikari, Devaki Bhatta Pathak, Quinn Campagna, Yufan Chen, Cameron Clarke, Catherine Feldman, Iris Halilovic, Siyu Jian, Eric King, Carrington Metts, Marisa Petrusky, Amali Premathilake, Victoria Owen, Robert Radloff, Sakib Rahman, Ryan Richards, Ezekiel Wertz, Tao Ye, Allison Zec, Weibin Zhang

Thanks to the Hall A techs, Machine Control, Yves Roblin, Jay Benesch and other Jefferson Lab staff

Summary

- PREX-2 successfully ran a technically difficult experiment
 - Significant neutron skin is determined from PREX A_{PV} , 0.283 (0.071) fm
 - Prefer to a larger L and larger neutron star
 - The final results were published in PRL as cover article in April 2021 and are already having an impact well beyond electron scattering community
- CREX just released the preliminary results for the asymmetry, theoretical implication is ongoing.
 - provide tests of DFTs and microscopic calculations and thus provide valuable new insight into nuclear structure

Summary

- PREX-2 successfully ran a technically difficult experiment
 - Significant neutron skin is determined from PREX A_{PV} , 0.283 (0.071) fm
 - Prefer to a larger L and larger neutron star
 - The final results were published in PRL as cover article in April 2021 and are already having an impact well beyond electron scattering community
- CREX just released the preliminary results for the asymmetry, theoretical implication is ongoing.
 - provide tests of DFTs and microscopic calculations and thus provide valuable new insight into nuclear structure

Thank you for your attention!

Backup

PREX-I (2010)

Precision of PREX-I did not allow to exclude many models, motivation for PREX-II.

- Collected data at 2010
- 1.063 GeV electrons scattering from ²⁰⁸Pb at 5 degree
- Initial goal: 3% precision

 Systematic uncertainties were well under control, however radiation issues limited the statistical uncertainty

First electroweak observation that there is a neutron skin around a heavy nucleus

 $A_{PV} = 0.657 \pm 0.060(\text{stat}) \pm 0.014(\text{syst}) \text{ ppm}$

$$R_n - R_p = 0.33^{+0.16}_{-0.18} \, \text{fm}$$

44

Neutron Star

Nuclear Equation of State

At 0 temperature:

$$\mathcal{E}(\rho, \alpha) = \mathcal{E}_{SNM}(\rho) + \alpha^2 \mathcal{S}(\rho) + \mathcal{O}(\alpha^4)$$

EOS can be written as expansion around symmetric limit of the energy per nucleon

$$\mathcal{S}(\rho) \approx \mathcal{E}(\rho, \alpha = 1) - \mathcal{E}(\rho, \alpha = 0)$$

Taylor series expansion around saturation density:

$$\mathcal{E}_{\mathrm{SNM}}(
ho) = arepsilon_0 + \frac{1}{2}K_0x^2 + \dots$$

$$x = (\rho - \rho_0)/3\rho_0$$

 $\alpha \equiv (\rho_n - \rho_p) / (\rho_n + \rho_p)$

Energy per nucleon

Incompressibility coefficient

Symmetry Energy

Pressure of pure neutron matter at saturation density:

$$P_0 pprox rac{1}{3}
ho_0 L$$

- Nuclear masses are largely insensitive to the density dependence of the symmetry energy
- The extent of the neutron skin in a neutron rich nucleus is the result of balance between the surface tension and the slope of the symmetry energy
- The slope can be obtained by looking at the difference in the symmetry energy between:
 - The inner core (SNM at saturation density)
 - The outer core (lower nuclear densities)

Parity Violation in high energy scattering

Longitudinal single spin asymmetry

砷化镓GaAs光电子源

- 在圆偏振光激发下,电子从价带*p*_{3/2}和 *p*_{1/2} 跃迁到导带*s*_{1/2}
- 控制激光能量:
 - $E_g \leq \hbar \omega \leq E_g + \Delta E_{spin-orbit}$
 - 极化度: (3-1)/(3+1) = 50%
- 砷化镓表面镀Cs₂O,形成负电子亲和势 (NEA),受激极化电子发射
- 砷化镓晶体应变生长, $p_{3/2}$ 能级简并消除 - $E_g + \Delta E_{strain} \le \hbar \omega \le E_g + \Delta E_{spin-orbit}$ - 极化度: 100%