Spin Physics at the STAR Experiment

Zilong Chang

Brookhaven National Laboratory, Upton, New York 11973
January 21st, 2021

- The proton structure
- Proton helicity structure
(1) Gluon polarization: inclusive jet, and di-jet production
(2) Sea quark polarization: $W^{ \pm} / Z$ boson production
- 3D Structure of the proton
(1) TMD parton distribution function
(2) Transversity and TMD fragmentation function, identified hadrons in jets
- Future STAR measurements
- STAR forward upgrade at η as large as 4
- Conclusion

Proton Helicity Structure from Longitudinally Polarized Proton Beam

- $x f\left(x, Q^{2}=10 \mathrm{GeV}^{2}\right)$ vs. x for quarks and gluons, MSTW, EPJC63, 189
- Constituents: quarks and gluons

- Parton distribution functions: $f\left(x, Q^{2}\right)$, the probability of a probe at momentum transfer Q^{2} encountering a parton in the proton with momentum fraction x
- gluons dominate at low x

Proton spin sum rule:

$$
S_{z}=\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q, g}
$$

- In longitudinally polarized proton, PDF also depends on parton helicity
- Quark: $\Delta \Sigma\left(Q^{2}\right)=\int_{0}^{1} d x \Delta f_{q}\left(x, Q^{2}\right)=\int_{0}^{1} d x\left(f_{q}^{+}\left(x, Q^{2}\right)-f_{q}^{-}\left(x, Q^{2}\right)\right)$
- Gluon: $\Delta G\left(Q^{2}\right)=\int_{0}^{1} d x \Delta g\left(x, Q^{2}\right)=\int_{0}^{1} d x\left(g^{+}\left(x, Q^{2}\right)-g^{-}\left(x, Q^{2}\right)\right)$

Deep inelastic scattering:

- Quark contribution $\Delta \Sigma$: constrained
$\Delta \Sigma=0.254 \pm 0.042$, Leader et al, PRD 82,
114018
- Gluon contributions ΔG : poorly constrained

Fixed targets experiments \rightarrow Limited in $x-Q^{2}$ space
Constrained through scaling violation

- Orbital angular momentum contribution, $L_{q, g}$: not constrained

Gluon Polarization at RHIC

Exploring Gluon Polarization at Hadron-hadron Collider

- Asymptotic freedom at short distances \rightarrow parton-parton scattering
- At RHIC, jets, clusters of collimated particles, are dominated by $g g$ and $q g$ processes, therefore allow direct access to Δg

- Define longitudinal double-spin asymmetry $A_{L L}$:

$$
A_{L L}=\frac{\sigma^{++}-\sigma^{+-}}{\sigma^{++}+\sigma^{+-}} \sim \frac{\Delta f_{a} \Delta f_{b}}{f_{a} f_{b}} \hat{a}_{L L}
$$

- Theory predicts large partonic $a_{L L}$ involving $g g$ and $q g$ processes
- Making $A_{L L}$ sensitive to gluon polarization

RHIC Facilities, World-only Polarized Collider

- 2.4 mile in circumference, two lane "racetrack"
- 120 bunches around each ring
- Polarization orientation varies from bunch to bunch to minimize systematic uncertainty
- Spin rotators provide choice of polarization orientation (longitudinal or transverse).
- Beam polarizations are around 55 to 65%

Polarized protons

- Full 2π coverage in azimuthal
- Tracking with TPC: $|\eta|<1.3$
- EM energy and triggering with:

BEMC: $-1.0<\eta<1.0$,
EEMC: $1.0<\eta<2.0$

- Spin-sorted relative luminosity monitoring detectors:

VPD, BBC and ZDC

- Polarized $p p$ dataset collected at RHIC over the past two decades
- At both $\sqrt{s}=200 \mathrm{GeV}$ and $\sqrt{s}=500 / 510 \mathrm{GeV}$
- Two large dataset collected in 2013 (longitudinally polarized) and 2017 (transverse polarized) at 510 GeV
- Recent 200 GeV data from 2015 have equal amount of transverse and longitudinal polarizations

Longitudinal Double-spin Asymmetry $A_{L L}$ for Jets

- Inputs to jet finder, reconstructed charged TPC tracks and electromagnetic towers
- Anti- k_{T} algorithm with $R=0.6$ for 200 GeV and $R=0.5$ for 510 GeV
- Count number of jets when beams have the same and the opposite helicity, N^{++}and N^{+-}

- Measure:

$$
A_{L L}=\frac{N^{++}-R N^{+-}}{P_{B} P_{Y}\left(N^{++}+R N^{+-}\right)}
$$

$P_{B(Y)}$: beam polarizations, and
$R=\frac{L^{++}+L^{--}}{L^{+-}+L^{-+}}$: spin-sorted relative luminosity

Dijet Events at STAR

- Two leading p_{T} jets in an event
- $p_{3, T}>6 \mathrm{GeV} / \mathrm{c}, p_{4, T}>8 \mathrm{GeV} / \mathrm{c}$, theoretical consideration
- Opening angle $\Delta \phi=\phi_{3}-\phi_{4}>\frac{2 \pi}{3}$, remove hard gluon emissions

- $|\Delta \eta|=\left|\eta_{3}-\eta_{4}\right|<1.6$, limit detector acceptance
- Dijets are measured in topology bins defined by η_{3} and η_{4}
- Topology bins sample different pairs of x_{1} and x_{2} and scattering angles $\cos \theta^{*}$, therefore constrain the shape of $\Delta g(x)$

$$
\begin{aligned}
x_{1} & =\frac{1}{\sqrt{s}}\left(p_{T, 3} e^{\eta_{3}}+p_{T, 4} e^{\eta_{4}}\right) \\
x_{2} & =\frac{1}{\sqrt{s}}\left(p_{T, 3} e^{-\eta_{3}}+p_{T, 4} e^{-\eta_{4}}\right) \\
M & =\sqrt{x_{1} x_{2} s} \\
\left|\cos \theta^{*}\right| & =\tanh \frac{\left|\eta_{3}-\eta_{4}\right|}{2}
\end{aligned}
$$

Newly Developed Techniques in the Analysis

- Data-driven modified PYTHIA6 Perugia 2012 Tune with reduced $P_{90}=0.213$ from 0.24

$$
\begin{aligned}
\sigma & \sim \frac{1}{\left(p_{T}^{2}+p_{T, 0}^{2}\right)^{2}} \\
p_{T, 0} & =p_{T, \text { ref }} \times\left(\frac{\sqrt{s}}{\sqrt{s_{r e f}}}\right)^{P_{90}}
\end{aligned}
$$

- Jet reconstruction at three levels: simulated detector response, PYTHIA particle and parton jets
- Simulated jet quantities match data very well
- Two off-axis cones centered at $\pm \frac{\pi}{2}$ away in ϕ and the same η relative to a given jet are used to estimate underlying event for that jet, ALICE, PRD 91, 112012
(1) Corrected the measured jet energy due to underlying event contribution
(2) Estimated the underlying event contribution to jet $A_{L L}$

STAR Inclusive Jet Results at $\sqrt{s}=200 \mathrm{GeV}$

- Inclusive jet $A_{L L}$ at $\sqrt{s}=200 \mathrm{GeV}$

- Reduced statistical uncertainty from the recent 2015 data comparing to the 2009 data
- $x \Delta g\left(x, Q^{2}\right)$ vs. x at $Q^{2}=10 \mathrm{GeV}^{2}$
- With STAR 2009 data only:
$\int_{0.05}^{0.5} d x \Delta g(x)=0.23 \pm 0.07$

- Significant impact on $x \Delta g\left(x, Q^{2}\right)$
- Uncertainty on $x \Delta g$ still large when $x<0.05$
- To constrain $x \Delta g$ at $x<0.05$
better: increasing \sqrt{s}

STAR Inclusive Jet $A_{L L}$ Results at $\sqrt{s}=510 \mathrm{GeV}$

- Inclusive jet $A_{L L}$ vs. jet $x_{T}=\frac{2 p_{T}}{\sqrt{s}}$ together with 2009200 GeV results, PRD100, 052005

- Sampled x_{g} distribution by jet with $<p_{T}>=8 \mathrm{GeV} / \mathrm{c}$ and $34.4 \mathrm{GeV} / \mathrm{c}$

- Agree with previously published data at $\sqrt{s}=200 \mathrm{GeV}$
- Also agree well with pQCD calculation with recent polarized PDF
- At 510 GeV , access \mathbf{x}_{g} as low as $\mathbf{0 . 0 1 5}$

STAR Dijet $A_{L L}$ Results at $\sqrt{s}=200 \mathrm{GeV}$

- Dijet $A_{L L}$ in $|\eta|<0.8$, barrel region

- With STAR 2009 dijet results, the DSSV study shows PRD100, 114027:
$\int_{0.01}^{1} \Delta g\left(x, Q^{2}=10 G e V^{2}\right)=0.296$
± 0.108
- Dijet $A_{L L}$ for $\eta<1.8$, endcap region

STAR Dijet $A_{L L}$ Results at $\sqrt{s}=510 \mathrm{GeV}$

- Dijet $A_{L L}$ vs. $M_{i n v}$ in four η topology bins
- Topology bins sample x_{1}, x_{2} and $\cos \theta^{*}$ bins
$x_{1}=\frac{1}{\sqrt{s}}\left(p_{T, 3} e^{\eta_{3}}+p_{T, 4} e^{\eta_{4}}\right)$
$x_{2}=\frac{1}{\sqrt{s}}\left(p_{T, 3} e^{-\eta_{3}}+p_{T, 4} e^{-\eta_{4}}\right)$
$\left|\cos \theta^{*}\right|=\tanh \frac{\left|\eta_{3}-\eta_{4}\right|}{2}$
- Constrain the shape of $\Delta g(x)$
- More inclusive jet and dijet results from 2013 at
$\sqrt{s}=510 \mathrm{GeV}$ will come out soon

Sea Quark Polarization at RHIC

W Production in Longitudinally Polarized pp Collisions

- Ws are produced through left-handed quarks and right-handed anti-quarks
- W are identified from $e^{ \pm}$with:
(1) Large isolated energy deposition in EM-cal
(2) Large p_{T} imbalance due to missing neutrino
- Longitudinal single-spin asymmetry, $A_{L}=\frac{\sigma^{+}-\sigma^{-}}{\sigma^{+}+\sigma^{-}}$

$$
\begin{aligned}
& A_{L}^{W^{-}} \sim \frac{-\Delta d\left(x_{1}\right) \bar{u}\left(x_{2}\right)+\Delta \bar{u}\left(x_{1}\right) d\left(x_{2}\right)}{d\left(x_{1}\right) \bar{u}\left(x_{2}\right)+\bar{u}\left(x_{1}\right) d\left(x_{2}\right)} \\
& A_{L}^{W^{+}} \sim \frac{-\Delta u\left(x_{1}\right) \bar{d}\left(x_{2}\right)+\Delta \bar{d}\left(x_{1}\right) u\left(x_{2}\right)}{u\left(x_{1}\right) \bar{d}\left(x_{2}\right)+\bar{d}\left(x_{1}\right) u\left(x_{2}\right)}
\end{aligned}
$$

- W^{-}with backward e^{-}:
$A_{L}^{W^{-}} \approx \frac{\Delta \bar{u}\left(x_{1}\right)}{\bar{u}\left(x_{1}\right)}, y_{W-} \ll 0\left(x_{1} \ll x_{2}\right)$
- W^{+}with forward e^{+}:

$$
A_{L}^{W^{+}} \approx \frac{\Delta \bar{d}\left(x_{1}\right)}{\bar{d}\left(x_{1}\right)}, y_{W^{+}} \ll 0\left(x_{1} \ll x_{2}\right)
$$

$W^{ \pm} A_{L}$ sensitive to sea quark polarization

W A_{L} from 510 GeV pp Collisions and its Impact

- $W A_{L}$ vs. η_{e}, STAR, PRD 99, 051102

- $W^{-}, \eta_{e}<0 \approx \frac{\Delta \bar{u}\left(x_{1}\right)}{\bar{u}\left(x_{1}\right)}$
- $W^{+}, \eta_{e}>0 \approx \frac{\Delta \bar{d}\left(x_{1}\right)}{\bar{d}\left(x_{1}\right)}$
- $\Delta \bar{u}-\Delta \bar{d}$ vs. x, NNPDF, NPB887, 276

- By reweighting NNPDF replicas at $Q^{2}=10 \mathrm{GeV}^{2}: \Delta \bar{u}>\Delta \bar{d}$ unlike $\bar{d}>\bar{u}$

Proton 3D Structure from Transversely Polarized Beam

Transverse Structure of the Proton

- At given Q^{2}, described by transverse momentum dependent (TMD) parton distribution function, $f\left(x, k_{T}\right)$

- In polarized case, becoming spin dependent
- Predict single spin azimuthal asymmetry $A_{N}=\frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}}$, for example jets, hadron in jets, W / Z bosons, and so on
- Definition: $\delta q(x)=q^{\uparrow}(x)-q^{\downarrow}(x)$

- Chiral odd, need to couple with another chiral-odd distribution, TMD fragmentation function (FF)
- TMD FF is universal for example Collins FF
- Large uncertainties from DIS measurements

Collins Asymmetry for $\pi^{ \pm}$in Jets

- Transverse azimuthal asymmetry:
$d \sigma^{\uparrow}-d \sigma^{\downarrow} \sim d \Delta \sigma_{0} \sin \phi_{S}+d \Delta \sigma_{1}^{-} \sin \left(\phi_{S}-\phi_{H}\right)+$
$d \Delta \sigma_{1}^{+} \sin \left(\phi_{S}+\phi_{H}\right)+d \Delta \sigma_{2}^{-} \sin \left(\phi_{S}-2 \phi_{H}\right)+d \Delta \sigma_{2}^{+} \sin \left(\phi_{S}+2 \phi_{H}\right)$ PRD, 83, 034021
- Collins asymmetry: $A_{U T}^{\sin \left(\phi_{S}-\phi_{H}\right)} \sim d \Delta \sigma_{1}^{-}$
- $A_{U T}^{\sin \left(\phi_{s}-\phi_{h}\right)}$ vs z (longitudinal momentum fraction of $\pi^{ \pm}$relative to the jet), at $\sqrt{s}=500 \mathrm{GeV}$
- $<p_{T}>=31 \mathrm{GeV} / \mathrm{c}$

PRD 97, 032004

- At large jet p_{T}, large difference between π^{+}and π^{-}in forwarding moving jets
- First indication of transversity in $p p$ collisions

Collins Asymmetry for π^{0} in EM-Jets

- $A_{U T}$ vs. $z_{E M}$ for π^{0} in electromagnetic jets in forward region at $\sqrt{s}=200$ and 500 GeV , arXiv2012.11428
- $2.9<\eta_{j e t}<3.8,2.7<\eta_{\pi^{0}}<4.0$

- Small asymmetry over measured $z_{E M}$
- Compared with theory predictions with and without TMD evolutions, PLB774, 635

STAR Forward Upgrade

STAR Forward Upgrade

- STAR forward upgrade has been fully funded and approved in time for polarized 510 GeV run in 2022
- Forward Calorimeter System (FCS), an EMCal and a HCal
- Forwarding Tracking System (FTS), silicon detectors (Si) and small thin gap chamber (sTGC)
- Lay the groundwork for the realization of the future Elector Ion Collider (EIC)

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

Future Plan with STAR Forward Upgrade

- FCS system has been fully installed and is ready for test in the upcoming run
- STAR will be continuing running till 2025, including two sets of transversely polarized $p p$ collisions at $\sqrt{s}=200$ and 510 GeV

Year	$\sqrt{s}(\mathrm{GeV})$	Sampled Luminosity $\left(\mathrm{pb}^{-1}\right)$	Polarization	Duration
2022	510	400	Transverse	16 weeks
2024	200	235	Transverse	TBD

- Extend coverage of valence quark up to $x>0.3$, where no current experiment has probed
- STAR longitudinal program has been complete
- STAR inclusive jet and dijet $A_{L L}$ measurements have provided evidence of positive gluon polarization in the proton, with $\sqrt{s}=510$ data pushing gluon polarization at $x<0.02$
- $W^{ \pm} A_{L}$ at $\sqrt{s}=510 \mathrm{GeV}$ measures the sea quark polarization and shows that $\Delta \bar{u}>\Delta \bar{d}$
- STAR transverse program is a great tool to test universality and factorization breaking in TMD formalism from pp collisions
- STAR $A_{U T}^{\sin \left(\phi_{S}-\phi_{H}\right)}$ provided first evidence of transversity
- More new results coming out soon including dijet Sivers asymmetry, $W^{ \pm} / Z$ boson A_{N} from 2017 data, etc.
- The forward upgrade will further explore the transverse spin structure for valence quark at new regime, $x>0.3$

Expect Another 5 Successful Years at STAR

Backup

Forward Neutral Pions at $2.7<\eta<3.9$ from 510 GeV Collisions

- Reconstructed π^{0} from its γ decays, star, PRD 98, 032013
- Access Xg_{g} as low as $\mathbf{0 . 0 0 1}$

- DIS, final state interaction, opposite colors attract
- Drell-Yan, $W^{ \pm} / Z^{0}$, initial state interaction, same colors repel

- Sivers $_{\text {DIS }}=-$ Sivers $_{\text {Drell }- \text { Yan }}$ or, - Sivers $_{W} \pm$ or - Sivers $_{Z^{0}}$
- $A_{N}=\frac{1}{P_{\text {beam }}} \frac{\sqrt{N^{\uparrow}(\phi) N^{\downarrow}(\phi+\pi)}-\sqrt{N^{\uparrow}(\phi+\pi) N^{\downarrow}(\phi)}}{\sqrt{N^{\uparrow}(\phi) N^{\downarrow}(\phi+\pi)}+\sqrt{N^{\uparrow}(\phi+\pi) N^{\downarrow}(\phi)}}$, where $\cos (\phi)=\frac{\overrightarrow{S_{p}} \cdot\left(\overrightarrow{\rho_{T}, \vec{W}} \times \overrightarrow{p_{T}, W \mid}\right.}{\left|p_{T}\right|}$

PRL 106, 62002

Zilong Chang

Online HENPIC Seminar $^{\mathbf{y}^{\mathbf{w}}}$

- Cross ratio formula cancels out left-right detector efficiency and relative luminosity
- $W^{ \pm} A_{N}$ s favor sign change if no TMD evolution effect
- New measurements from 2017 dataset will reduce statistical uncertainty by a factor of 4

A_{N} for EM-Jet at $\sqrt{s}=200$ and 500 GeV

- $A_{N}=\frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}}$ as a function of Feynman- x, at $2.9<\eta^{\text {jet }}<3.8$ arXiv2012.11428

- Sivers first k_{T} moments as a function of x, top u quark and down:
d quark, arXiv2101.03955
- Small EM-jet A_{N} as seen in STAR inclusive $\pi^{0} A_{N}$
- STAR EM-jet has a big impact on constraining the Sivers function than SIDIS data especially at large x

Dijet Sivers Asymmetry at $\sqrt{s}=200 \mathrm{GeV}$

- Parton k_{T} leads to asymmetry in the centroid of dijet signed opening angle, ζ
- Measure $\Delta \zeta=\frac{\langle\zeta\rangle^{\uparrow}-\langle\zeta\rangle^{\downarrow}}{P_{\text {beam }}}$ vs. $\eta_{\text {total }}=\eta_{\text {jet }, 1}+\eta_{\text {jet }, 2} \sim \ln \left(\frac{x_{1}}{x_{2}}\right)$
- Associate jet with the polarized beam through the jet motion along the beam
- Weighted charge tagging to separate quark flavors u and d

- $\Delta \zeta: 5 \sigma$ separation between + tagging and - tagging
- Unfold $\Delta \zeta$ to k_{T} : at $Q^{2}=160 \mathrm{GeV}^{2}, k_{T, u}>0, k_{T, d}<0$ and $k_{T, \text { gluon }} \approx 0$
- $\left|\frac{\left\langle k_{T, d}\right\rangle}{\left\langle k_{T, u}\right\rangle}\right| \sim 2$

Collins Asymmetry for $K^{ \pm}$in Jets at $\sqrt{s}=200 \mathrm{GeV}$

- Jet p_{T} and asymmetries are corrected for underlying event contribution
- Integrated over hardron $0.1<z<0.8$

- Like π^{+}, K^{+}in the forward moving jets shows positive asymmetry

Collins-like Asymmetry for $\pi^{ \pm}$in Jets

- Transverse azimuthal asymmetry:
$d \sigma^{\uparrow}-d \sigma^{\downarrow} \sim d \Delta \sigma_{0} \sin \phi_{S}+d \Delta \sigma_{1}^{-} \sin \left(\phi_{S}-\phi_{H}\right)+d \Delta \sigma_{1}^{+} \sin \left(\phi_{S}+\phi_{H}\right)+$ $d \Delta \sigma_{2}^{-} \sin \left(\phi_{S}-2 \phi_{H}\right)+d \Delta \sigma_{2}^{+} \sin \left(\phi_{S}+2 \phi_{H}\right)$ PRD, 83, 034021
- Collins-like asymmetry: $\sin \left(\phi_{S}-2 \phi_{H}\right)$ modulation, $A_{U T}^{\sin \left(\phi_{S}-2 \phi_{H}\right)} \sim d \Delta \sigma_{1}^{-}$
- Sensitive to gluon linear polarization

PRD 97, 032004

- At both $\sqrt{s}=500$ and 200 GeV , Collins-like asymmetries are consistent with zero

Transverse Spin-dependent Azimuthal Correlation of Charged Pion Pairs

$\phi_{R S}=\phi_{R}-\phi_{S}: \phi_{S}$ angle between polarization and production plane, ϕ_{R} angle between production plane and hadron plane

- $\frac{N^{\uparrow}\left(\phi_{R S}\right)-r N^{\downarrow}\left(\phi_{R S}\right)}{N^{\uparrow}\left(\phi_{R S}\right)+r N^{\downarrow}\left(\phi_{R S}\right)}=P_{\text {beam }} \cdot A_{U T} \cdot \sin \left(\phi_{R S}\right)$, where $r=\frac{L^{\uparrow}}{L \downarrow}$
- Pion selected by TPC $\frac{d E}{d x}$: purity of pion $>95 \%$

- For $\sqrt{s}=200$ and 500 GeV , backward pairs corresponding to quarks with smaller x have smaller asymmetries
- At $\sqrt{s}=200 \mathrm{GeV}$, enhancement around ρ mass due to vector meson decay

Future plan with STAR Forward Upgrade

- A_{N} of $\pi^{ \pm}$in the forward region

- In the meantime with recently installed iTPC which will improve particle identification, STAR will measure $\pi^{ \pm}$Collins asymmetry more precisely

