Spin Physics at the STAR Experiment

Zilong Chang

Brookhaven National Laboratory, Upton, New York 11973

January 21st, 2021

Outline

• The proton structure

- Proton helicity structure
 - Gluon polarization: inclusive jet, and di-jet production
 - 2 Sea quark polarization: W^{\pm}/Z boson production
- 3D Structure of the proton
 - TMD parton distribution function
 - Transversity and TMD fragmentation function, identified hadrons in jets

• Future STAR measurements

• STAR forward upgrade at η as large as 4

Conclusion

Proton Helicity Structure from Longitudinally Polarized Proton Beam

The Proton Structure

• Constituents: quarks and gluons

- Parton distribution functions: f(x, Q²), the probability of a probe at momentum transfer Q² encountering a parton in the proton with momentum fraction x
- gluons dominate at low x

• $xf(x, Q^2 = 10 \text{ GeV}^2)$ vs. x for

The Proton Helicity Distribution

Proton spin sum rule:

$$S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q,g}$$

- In longitudinally polarized proton, PDF also depends on parton helicity
- Quark: $\Delta\Sigma(Q^2) = \int_0^1 dx \Delta f_q(x, Q^2) = \int_0^1 dx (f_q^+(x, Q^2) f_q^-(x, Q^2))$
- Gluon: $\Delta G(Q^2) = \int_0^1 dx \Delta g(x, Q^2) = \int_0^1 dx (g^+(x, Q^2) g^-(x, Q^2))$ Deep inelastic scattering:
 - Quark contribution ΔΣ: constrained

 $\Delta\Sigma=0.254\pm0.042$, Leader et al, PRD 82,

114018

• Gluon contributions ΔG : poorly constrained

Fixed targets experiments \rightarrow Limited in $x-Q^2$ space

Constrained through scaling violation

 Orbital angular momentum contribution, L_{q,g}: not constrained

Zilong Chang

h

Gluon Polarization at RHIC

Exploring Gluon Polarization at Hadron-hadron Collider

- $\bullet \ \ \text{Asymptotic freedom at short distances} \rightarrow \text{parton-parton scattering}$
- At RHIC, jets, clusters of collimated particles, are dominated by gg and qg processes, therefore allow direct access to Δg

• Define longitudinal double-spin asymmetry A_{LL}:

$$A_{LL} = rac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \sim rac{\Delta f_a \Delta f_b}{f_a f_b} \hat{a}_{LL}$$

- Theory predicts large partonic a_{LL} involving gg and qg processes
- Making A_{LL} sensitive to gluon polarization

Zilong Chang

RHIC Facilities, World-only Polarized Collider

- 2.4 mile in circumference, two lane "racetrack"
- 120 bunches around each ring
- Polarization orientation varies from bunch to bunch to minimize systematic uncertainty
- Spin rotators provide choice of polarization orientation (longitudinal or transverse).
- Beam polarizations are around 55 to 65%

Zilong Chang

STAR Detectors

Polarized protons 600 $2017 \dot{P} = 53\%$ 250/255 GeV (Lpeak limited 2013 P = 53% --- 100 GeV by STAR Integrated polarized proton luminosity L [pb⁻¹] 500 400 300 2012 P = 52% 200 2015 P= 55% 2009 P = 34% 2012 P = 59% $2011 \dot{P} = 48\%$ 100 2009 P = 56%/2006 P = 55% 2005 P = 47% 10 14 16 Zilong Chang Time [weeks in physical]

- Full 2π coverage in azimuthal
- Tracking with TPC: $|\eta| < 1.3$
- EM energy and triggering with:
 - BEMC: $-1.0 < \eta < 1.0$, EEMC: $1.0 < \eta < 2.0$
- Spin-sorted relative luminosity monitoring detectors:

VPD, BBC and ZDC

- Polarized *pp* dataset collected at RHIC over the past two decades
- At both $\sqrt{s} = 200$ GeV and $\sqrt{s} = 500/510$ GeV
- Two large dataset collected in 2013 (longitudinally polarized) and 2017 (transverse polarized) at 510 GeV
- Recent 200 GeV data from 2015

have equal amount of transverse and

longitudinal polarizations

¹⁸Online HENPIC Seminar

Longitudinal Double-spin Asymmetry A_{LL} for Jets

- Inputs to jet finder, reconstructed charged TPC tracks and electromagnetic towers
- Anti- k_T algorithm with R = 0.6 for 200 GeV and R = 0.5 for 510 GeV
- Count number of jets when beams have the same and the opposite helicity, N⁺⁺ and N⁺⁻
- Measure:

$$A_{LL} = \frac{N^{++} - RN^{+-}}{P_B P_Y (N^{++} + RN^{+-})}$$

 $P_{B(Y)}$: beam polarizations, and $R = \frac{L^{++}+L^{--}}{L^{+-}+L^{-+}}$: spin-sorted relative luminosity

- Two leading p_T jets in an event
- p_{3,T} > 6 GeV/c, p_{4,T} > 8 GeV/c, theoretical consideration
- Opening angle Δφ = φ₃ φ₄ > ^{2π}/₃, remove hard gluon emissions
- $|\Delta \eta| = |\eta_3 \eta_4| < 1.6$, limit detector acceptance
- Dijets are measured in topology bins defined by η_3 and η_4
- Topology bins sample different pairs of x₁ and x₂ and scattering angles cosθ*, therefore constrain the shape of Δg(x)

$$\begin{aligned} x_1 &= \frac{1}{\sqrt{s}} (p_{T,3} e^{\eta_3} + p_{T,4} e^{\eta_4}) \\ x_2 &= \frac{1}{\sqrt{s}} (p_{T,3} e^{-\eta_3} + p_{T,4} e^{-\eta_4}) \\ M &= \sqrt{x_1 x_2 s} \\ \theta^* | &= tanh \frac{|\eta_3 - \eta_4|}{2} \end{aligned}$$

Online HENPIC Seminar

COS

11 / 28

Newly Developed Techniques in the Analysis

• Data-driven modified PYTHIA6 Perugia 2012 Tune with reduced $P_{90} = 0.213$ from 0.24

$$\begin{split} \sigma &\sim \frac{1}{(p_T^2 + p_{T,0}^2)^2} \\ p_{T,0} &= p_{T,ref} \times (\frac{\sqrt{s}}{\sqrt{s_{ref}}})^{P_{90}} \end{split}$$

- Jet reconstruction at three levels: simulated detector response, PYTHIA particle and parton jets
- Simulated jet quantities match data very well
- Two off-axis cones centered at ±π/2 away in φ and the same η relative to a given jet are used to estimate underlying event for that

jet, ALICE, PRD 91, 112012

- Corrected the measured jet energy due to underlying event contribution
- 2

 A_{II}

Estimated the underlying event contribution to jet

STAR Inclusive Jet Results at $\sqrt{s} = 200 \text{ GeV}$

NNPDF, NPB887, 276

- $x\Delta g(x,Q^2)$ vs. x at $Q^2 = 10 {
 m GeV}^2$
- With STAR 2009 data only: $\int_{0.05}^{0.5} dx \Delta g(x) = 0.23 \pm 0.07$

• Inclusive jet A_{LL} at $\sqrt{s} = 200 \text{ GeV}$

the 2009 data Zilong Chang

STAR Inclusive Jet A_{LL} Results at $\sqrt{s} = 510$ GeV

- Agree with previously published data at $\sqrt{s} = 200 \text{ GeV}$
- Also agree well with pQCD calculation with recent polarized PDF
- At 510 GeV, access xg as low as 0.015

Zilong Chang

STAR Dijet A_{LL} Results at $\sqrt{s} = 200$ GeV

• Dijet A_{LL} in $|\eta| < 0.8$, barrel region

STAR Dijet A_{LL} Results at $\sqrt{s} = 510$ GeV

- Dijet A_{LL} vs. M_{inv} in four η topology bins
- Topology bins sample x₁, x₂ and cosθ* bins
- $x_{1} = \frac{1}{\sqrt{s}} (p_{T,3}e^{\eta_{3}} + p_{T,4}e^{\eta_{4}})$ $x_{2} = \frac{1}{\sqrt{s}} (p_{T,3}e^{-\eta_{3}} + p_{T,4}e^{-\eta_{4}})$ $|\cos\theta^{*}| = tanh \frac{|\eta_{3} \eta_{4}|}{2}$ Constrain the shape of $\Delta g(x)$
 - More inclusive jet and dijet results from 2013 at $\sqrt{s} = 510$ GeV will come out soon

Zilong Chang

Sea Quark Polarization at RHIC

W Production in Longitudinally Polarized pp Collisions

Ws are produced through left-handed guarks and right-handed anti-guarks ۰

- W are identified from e[±] with:

Large isolated energy deposition in EM-cal

2 Large p_T imbalance due to missing neutrino

• Longitudinal single-spin asymmetry, $A_L = \frac{\sigma^+ - \sigma^-}{\sigma^+ \pm \sigma^-}$

$$\begin{aligned} A_L^{W^-} &\sim \frac{-\Delta d(x_1)\bar{u}(x_2) + \Delta \bar{u}(x_1)d(x_2)}{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)} \\ A_L^{W^+} &\sim \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)} \end{aligned}$$

- W^- with backward e^- : $A_L^{W^-} \approx \frac{\Delta \bar{u}(x_1)}{\bar{u}(x_1)}, y_{W^-} \ll 0 \ (x_1 \ll x_2)$
- W^+ with forward e^+ .

$$A_L^{W^+} \approx \frac{\Delta \bar{d}(x_1)}{\bar{d}(x_1)}, \ y_{W^+} \ll 0 \ (x_1 \ll x_2)$$

$W^{\pm} A_{l}$ sensitive to sea quark polarization

W A_L from 510 GeV pp Collisions and its Impact

• $\Delta \bar{u} - \Delta \bar{d}$ vs. x, NNPDF, NPB887, 276

• By reweighting NNPDF replicas at $Q^2 = 10 \text{ GeV}^2$: $\Delta \bar{u} > \Delta \bar{d}$ unlike $\bar{d} > \bar{u}$

Transverse Structure of the Proton

At given Q², described by transverse momentum dependent (TMD) parton distribution function, f(x, k_T)

- In polarized case, becoming spin dependent
- Predict single spin azimuthal asymmetry A_N = σ[↑]-σ[↓]/σ[↑]+σ[↓], for example jets, hadron in jets, W/Z bosons, and so on

Transversity

• Definition:
$$\delta q(x) = q^{\uparrow}(x) - q^{\downarrow}(x)$$

- Chiral odd, need to couple with another chiral-odd distribution, TMD fragmentation function (FF)
- TMD FF is universal for example Collins FF
- Large uncertainties from DIS measurements

Collins Asymmetry for π^{\pm} in Jets

- Transverse azimuthal asymmetry: $d\sigma^{\uparrow} - d\sigma^{\downarrow} \sim d\Delta\sigma_0 \sin\phi_S + d\Delta\sigma_1^- \sin(\phi_S - \phi_H) + d\Delta\sigma_1^+ \sin(\phi_S + \phi_H) + d\Delta\sigma_2^- \sin(\phi_S - 2\phi_H) + d\Delta\sigma_2^+ \sin(\phi_S + 2\phi_H)$ PRD, 83, 034021
- Collins asymmetry: $A_{UT}^{\sin(\phi_S \phi_H)} \sim d\Delta \sigma_1^-$
 - $A_{UT}^{\sin(\phi_s \phi_h)}$ vs z (longitudinal momentum fraction of π^{\pm} relative to the jet), at $\sqrt{s} = 500 \text{ GeV}$
 - $< p_T >= 31 \text{ GeV/c}$

PRD 97, 032004

Zilong Chang

Online HENPIC Seminar

- Š_{ben} D P_{ben} D
- $A_{UT}^{\sin(\phi_s \phi_h)}$ vs jet p_T at $\sqrt{s} = 200$ GeV
- 0.1 < z < 0.8

Collins Asymmetry for π^0 in EM-Jets

- A_{UT} vs. z_{EM} for π^0 in electromagnetic jets in forward region at $\sqrt{s} = 200$ and 500 GeV, arXiv2012.11428
- $2.9 < \eta_{jet} < 3.8, 2.7 < \eta_{\pi^0} < 4.0$

• Small asymmetry over measured z_{EM}

Compared with theory predictions with and without TMD evolutions, PLB774, 635

STAR Forward Upgrade

STAR Forward Upgrade

- STAR forward upgrade has been fully funded and approved in time for polarized 510 GeV run in 2022
- Forward Calorimeter System (FCS), an EMCal and a HCal
- Forwarding Tracking System (FTS), silicon detectors (Si) and small thin gap chamber (sTGC)
- Lay the groundwork for the realization of the future Elector Ion Collider (EIC)

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

Future Plan with STAR Forward Upgrade

- FCS system has been fully installed and is ready for test in the upcoming run
- STAR will be continuing running till 2025, including two sets of transversely polarized *pp* collisions at $\sqrt{s} = 200$ and 510 GeV

Year	\sqrt{s} (GeV)	Sampled Luminosity (pb^{-1})	Polarization	Duration
2022	510	400	Transverse	16 weeks
2024	200	235	Transverse	TBD

• Extend coverage of valence quark up to x > 0.3, where no current experiment

has probed

Conclusion

- STAR longitudinal program has been complete
 - STAR inclusive jet and dijet A_{LL} measurements have provided evidence of positive gluon polarization in the proton, with $\sqrt{s} = 510$ data pushing gluon polarization at x < 0.02
 - W^\pm A_L at $\sqrt{s}=510$ GeV measures the sea quark polarization and shows that $\Delta \bar{u} > \Delta \bar{d}$
- STAR transverse program is a great tool to test universality and factorization breaking in TMD formalism from *pp* collisions
 - STAR $A_{UT}^{sin(\phi_S \phi_H)}$ provided first evidence of transversity
 - More new results coming out soon including dijet Sivers asymmetry, W^{\pm}/Z boson A_N from 2017 data, etc.
- The forward upgrade will further explore the transverse spin structure for valence quark at new regime, x > 0.3

Expect Another 5 Successful Years at STAR

Backup

Forward Neutral Pions at 2.7 $<\eta<$ 3.9 from 510 GeV Collisions

- Reconstructed π^0 from its γ decays, STAR, PRD 98, 032013
- Access xg as low as 0.001

Zilong Chang

Online HENPIC Seminar

Sivers Function

- DIS, final state interaction, opposite
 - colors attract

• Drell-Yan, W^{\pm}/Z^0 , initial state

interaction, same colors repel

• Sivers_{DIS} = $-Sivers_{Drell-Yan}$ or, $-Sivers_{W\pm}$ or $-Sivers_{70}$

•
$$A_N = \frac{1}{P_{beam}} \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} - \sqrt{N^{\uparrow}(\phi+\pi)N^{\downarrow}(\phi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} + \sqrt{N^{\uparrow}(\phi+\pi)N^{\downarrow}(\phi)}}$$
, where $cos(\phi) = \frac{\overline{S_{p}} \cdot (\overline{p_{T,W}} \times \overline{p_{beam}})}{|p_{T,W}|}$

PRL 106, 62002

05

- Cross ratio formula cancels out left-right detector efficiency and relative luminosity
- $W^{\pm} A_N$ s favor sign change if no TMD evolution effect
- New measurements from 2017 dataset will reduce statistical uncertainty by a factor of 4 31 / 28

A_N for EM-Jet at $\sqrt{s} = 200$ and 500 GeV

• $A_N = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$ as a function of Feynman-*x*, at 2.9 < η^{jet} < 3.8 arXiv2012.11428

 Sivers first k_T moments as a function of x, top u quark and down: d quark, arXiv2101.03955

- Small EM-jet A_N as seen in STAR inclusive $\pi^0 A_N$
- STAR EM-jet has a big impact on constraining the Sivers function than SIDIS data especially at large x

Zilong Chang

Online HENPIC Seminar

32 / 28

Dijet Sivers Asymmetry at $\sqrt{s} = 200 \text{ GeV}$

 Parton k_T leads to asymmetry in the centroid of dijet signed opening angle, ζ

• Measure
$$\Delta \zeta = \frac{\langle \zeta \rangle^{\uparrow} - \langle \zeta \rangle^{\downarrow}}{P_{beam}}$$
 vs. $\eta_{total} = \eta_{jet,1} + \eta_{jet,2} \sim ln(\frac{x_1}{x_2})$

- Associate jet with the polarized beam through the jet motion along the beam
- Weighted charge tagging to separate quark flavors *u* and *d*

Zilong Chang

Online HENPIC Seminar

рT

kт

Collins Asymmetry for K^{\pm} in Jets at $\sqrt{s} = 200$ GeV

• Jet p_T and asymmetries are corrected for underlying event contribution

• Integrated over hardron 0.1 < z < 0.8

• Like π^+ , K^+ in the forward moving jets shows positive asymmetry

Collins-like Asymmetry for π^{\pm} in Jets

- Transverse azimuthal asymmetry: $d\sigma^{\uparrow} - d\sigma^{\downarrow} \sim d\Delta\sigma_{0} \sin\phi_{S} + d\Delta\sigma_{1}^{-} \sin(\phi_{S} - \phi_{H}) + d\Delta\sigma_{1}^{+} \sin(\phi_{S} + \phi_{H}) + d\Delta\sigma_{2}^{-} \sin(\phi_{S} - 2\phi_{H}) + d\Delta\sigma_{2}^{+} \sin(\phi_{S} + 2\phi_{H})$ PRD, 83, 034021
- Collins-like asymmetry: $sin(\phi_S 2\phi_H)$ modulation, $A_{UT}^{sin(\phi_S 2\phi_H)} \sim d\Delta \sigma_1^-$

Transverse Spin-dependent Azimuthal Correlation of **Charged Pion Pairs**

 $\phi_{RS} = \phi_R - \phi_S$: ϕ_S angle between polarization and production plane, ϕ_R angle between production plane and hadron plane

•
$$\frac{N^{\uparrow}(\phi_{RS}) - rN^{\downarrow}(\phi_{RS})}{N^{\uparrow}(\phi_{RS}) + rN^{\downarrow}(\phi_{RS})} = P_{beam} \cdot A_{UT} \cdot sin(\phi_{RS}), \text{ where}$$
$$r = \frac{L^{\uparrow}}{L^{\downarrow}}$$

• Pion selected by TPC $\frac{dE}{dx}$: purity of pion > 95%

- For $\sqrt{s} = 200$ and 500 GeV, backward pairs corresponding to quarks with smaller x have smaller asymmetries
- At $\sqrt{s} = 200$ GeV, enhancement around ρ mass due to vector meson decay Zilong Chang Online HENPIC Seminar

Future plan with STAR Forward Upgrade

- A_N of π^{\pm} in the forward region
- In the meantime with recently installed iTPC which will improve particle identification, STAR will measure π[±] Collins asymmetry more precisely

