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Motivation

* CME and Its current observables
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Observables Background effect

*y, Ay * Transverse momentum

* Event-shape-engineering conservation
e AS * Local charge conservation

* Elliptic flow

* [nvariant mass
* Spectator event plane

What dose CME
remain after
freeze out?



INntroduction

* Deep learning & Convolutional neural network (CNN)
* Our target
* AMPT



Deep learning

* Statistical learning: Model
fixed, fit parameters, like
Bayesian analysis.

* Machine learning:
Neurons(linear)+Activations(
non-linear). No fixed model.

* Deep learning: multiple
neural layers
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CNN

* Universal
Approximation
theorem

* Any f with proper
NN
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Deep learning x HIC: Previous research
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Deep learning x HIC: Previous research

 Phase transition

* Determine impact parameter / centrality
* Equation of state

* Hydrodynamics

* Jet



CNN: how to work

 Neural network
e | 0ss function

* Optimizer: Adam, with tuned learning rate schedule
* Output
* Data: Training set / Validation set / Test set



Our target

* A supervised learning that can distinguish
whether an event(Au+Au) has CS

* Insights into the trained network for physical
understandings

l

CNN | <
\_ NoCS

AMPT simulation (‘0")
(with or without CME)
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CNN: how to work

* Neural network
* Loss function: Cross entropy

1
H = NZ: —y;log(p;)

* Optimizer: Adam, with tuned learning rate schedule

* Output: SoftMax
* Data: Training set / Validation set / Test set



A multiphase transition(AMPT) model

 Simulation of nuclear-nuclear
collision event

* CME not included

* The method by Guo-Liang Ma
and Bin Zhang: switching p,,

of a certain fraction of partons
before ZPC
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Structure of AMPT model with string melting
A+B

HLJING

energy in nucleon
excited strings and minijet partons spectators

fragment into partons
ZPC (Zhang's Parton Cascade)
till parton freeceout

Quark Coalescence

ART (A Relativistic Transport model for hadrons)

14

Zi-Wel Lin etc, arXivinucl-th/0411110v3



Modifications with respect to CME

* Training set
* Boundary condition



Training set

* Events are pre-processed Into

the spectra of m™ and m~(20%24):

p*(pr, d)

* Generating at training:

* For every batch, randomly pick a
set of simulation condition(a Blue
Box)

* From the 50,000 events in the
chosen Blue Box, randomly pick
100 events’ pion spectra, and
average them into a mixed event.

11.5 145 196 27 39 624 200

0-10

10-20

20-30

30-40

40-50

50-60

Every or Blue Box corresponding to
50,000 single events

Label ‘0’
Label ‘1’

f =0: No CME,
f > 0: With CME,

* Large fluctuation — Statistically better

* Batch average v.s. pre-averaged data
‘Average knowledge’ or ‘typical behavior’ of
charge separation.




Training set

* Mirror symmetry along y-axis f

* Corresponding exchanging target and projectile

* Normalization

e Validation set

* Drag events from every and Blue Box
* 100 average events for every box

NFAN)

ANaN
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Boundary condition

* pE(pr, @), angular distribution

* Periodic boundary condition
for ¢

* Cylindrical Conv2D layers
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Results

* Accuracy of two trained NN: O+5% and 0+10%
* Robustness against centrality and /Syn

* More CS tests

* Comparison to Ay

* Prediction against elliptic flow

* |sobar results

* Visualization-Deep Dream



Accuracy and Prediction(P;)

* The output of NN: (Py, P;) for a single event
* Py Is the probability of ‘no initial CS’
* P; 1s the probability of ‘undergone CS’
e Ph+P; =1
« ‘0" if Py > Py, ‘1" if P, > P,
* P, can be a measure of CS strength

* Accuracy Is defined as:
No.correct tests

No. tests




Accuracy & Robustness

NN o 0+10%

Accuracy (Under training cond.) ~80% ~92%

* f = 5% samples have larger similarity with f = 0 samples
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More CS tests

° f = 2%, 5%, 7%, (a) (b)
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Comparison to Ay

Vsame = <COS (qbc(x ) + ¢(+) o ZCDR)>

Yopp = <COS (c,b(g ) + ¢(+) ZCDR)>

AY = Yopp — Vsame
* Contrast of Ay

_— |Ay(1) — Ay(0)]
Y lay(D)| + |Ay(0)]



Comparison to Ay

|Ay(1)-Ay(0)]

° R]/
* 0%+10%

VSNN = 39GeV
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Compare to v,

P, against background(v;)

* CME pattern is correlated with 100%* * H + + + + _+_

v, (both indicating anisotropy) . |

* Lower v,, smaller Py, more
uncertainty for CS class 00% 4+ 0+10CS

C g aC ' 0+10 no CS
« Significance: ~50 at large v, 40% > O+3ne

AT RS

0.00
Vz/N
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Isobar results

2°Ru + 38Ru and 25Zr + 287r
. Same nuclel number, different proton number —

* Same background, different magnetic field —
* Different CS!



Overfitting

* More parameters,
more likely to be
overfitting

* Generalization to
not learned data
s subtle.(Which
shall base on
large number of
training samples
& ML techniques)

ka] Mehta etc., Phys.
2021/27%
Eeports, 810 (2019) 1-124
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Fig. 2. Fitting versus predicting for noisy data. Niain = 100 noisy data points (¢ = 1) in the range x € [0, 1] were generated from a linear model
(top) or tenth-order polynomial (bottom). This data was fit using three model classes: linear models (red), all polynomials of order 3 (vellow), all
polynomials of order 10 (green) and used to make prediction on Ny = 20 new data points with xs € [0, 1.2](shown on right). Notice that even
when the data was generated using a tenth order polynomial, the linear and third order polynomials give better out-of-sample predictions, especially
beyond the x range over which the model was trained. 27



Isobar results

100%

* Py ruru > P1,zrzr, DOth ~90%
* Problem: the lines are close %%
* Possible solution: change the 60% |

activation function to make —

. a |
the NN work more reliably at 20% |

large P;.

20%

0%

2021/2/23

P, for isobaric collisions

ESLanas i

—%— RuRu 0%+10%
—— ZrZr 0%+10%
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Centrality(%)
2SRu + 3SRu and 3977 + 357
Simulated by AMPT, both @ 200GeV
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Visualization-DeepDream

* Fix NN, modify the input

DeepDream on a homogeneous input spectrum

Pr- (pT: 9)

pﬂ+ (pTI e)

2021/2/23 Modification trend
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Visualization-DeepDream

* Fix NN, modify the input

DeepDream on a homogeneous input spectrum

Pr- (pT: 9)

pﬂ+ (pTI e)

2021/2/23 Modification trend
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summary

* DL Is capable of distinguishing the pattern of charge separation

* And this pattern is robust against the background in the final
states

* Transportable to a series of collision systems



O u tl O O k l PointNet l

‘:\ e

* Better y-axis mirror symmetry Ty table?
* Tuning initial weights by hand car?

° From NN to ana|ytic Observab|e Classification Part Sé,é;neﬁtation Semantic Segmentaton
* Attention mechanism / importance mechanism
* PointNet and single event spectra

Attention Maps

How can we assess whether a network is attending to correct parts of the image in order to generate a decision?

2021/2/23 From github/kera8§\2/is
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