QCD Critical Point and Net-proton Number Fluctuations

Xiaofeng Luo

Central China Normal University

April 7th, 2021

Phase Diagram: Water

How matter self-organized by varying external conditions.

Critical Point and Critical Phenomena

T. Andrews.Phil. Trans. Royal Soc., 159:575 (1869). https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1869.0021

First CP was discovered in 1869 for CO₂ by Andrews.

Explained by Van der Waals (1873) Nobel Prize 1910.

 $\left(P + a\frac{n^2}{V^2}\right)(V - nb) = nRT$

Reviewed by : J. C. Maxwell, Nature 10, 477 (1874)

Critical Phenomena :

- Singularity of EoS : divergence of correlation length (ξ), susceptibilities (χ), heat capacity (C_V), critical opalescence.
- Universality and critical exponents : determined by degree of freedom and symmetry of system. (Landau mean field theory, renormalization group theory)
- Finite size/time effects.

QCD Thermodynamics (μ_B =0) : Lattice **QCD**

A. Bazavov, et al. (hotQCD), PRD 90, 094503 (2014)

Rapid rise of the energy density:

Rapid increase in degrees of freedom due to transition from hadrons to quarks and gluons.

S Borsanyi, et al. (WB), JHEP 1009, 073 (2010). T. Bhattacharya, et al (hotQCD), PRL 113, 082001 (2014); A. Bazavov (hotQCD), PRD 85,054503 (2012); PLB 795, 15 (2019)

Chiral susceptibility peaks at T_c:

$$\chi_{\bar{\Psi}\Psi} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial m^2}$$

Transition at
$$\mu_B$$
=0 with T_c ~ 156 MeV ~ trillion °C (10¹²)

QCD Phase Diagram

Emergent Properties of Strong Interactions : More is Different

A. Bzdak et al., Phys. Rep. 853, 1 (2020).

Lattice QCD : at $\mu_B = 0$, smooth crossover. Large μ_B : 1st order phase transition and QCD critical point.

Xiaofeng Luo

HENPIC Seminar, April 7th, 2021

Preliminary collection from Lattice, DSE, FRG and PNJL (2004-2020)

Large uncertainties for the estimation of CP location.

STAR Detector System

STAR Beam Energy Scan Adventure

BES-II White Paper (2014)

STAR, arXiv:1007.2613 <u>https://drupal.star.bnl.gov/STAR/starnotes/public/sn0493</u> <u>https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598</u>

- BES first proposed to PAC 2006,
- STAR BES campaign formally started in 2010
- BES-II officially requested in 2014, starts 2019(18)

Main Motivation:

- Looking for turning off QGP signals observed at RHIC top energy.
- Mapping out the crossover and/or 1st order QCD phase boundary
- Search for the signatures of possible QCD critical point.

Major Upgrades for BES-II

All 3 detectors fully installed prior to start of Run-19 Very successful and important for BES-II

iTPC:

- •Improves dE/dx
- Extends η coverage from 1.0 to 1.5
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c
- Ready in 2019

EndCap TOF:

- Forward rapidity coverage is critical
- PID at η = 0.9 to 1.5
- Improves the fixed target program
- Provided by CBM-FAIR
- Ready in 2019

EPD:

- Improves trigger
- Reduces background
- Allows a better centrality and reaction plane measurement Ready in 2018

iTPC: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0619 eTOF: STAR and CBM eTOF group, arXiv: 1609.05102 EPD: J. Adams, et al. Nucl. Instr. Meth. A 968, 163970 (2020)

- Enlarge rapidity acceptance
- Improve particle identification
- 3) Enhance centrality/EP resolution

Xiaofeng Luo

1)

2)

FXT Experiments at STAR (2018-2021)

Target design: Gold foil 1 mm Thick , ~1 cm High ~4 cm Wide, 210 cm from IR

FXT Data Taking Plan: 2015: Au+Au: 4.5 GeV (test Run) 2018: Au+Au :3 GeV (100 million events) 2019-2020: Au+Au: 6.2, 5, 4.5, 4, 3.5 GeV 2021: 3 GeV Extend μ_B up to ~ 720 MeV Explore High Baryon Density Region !

BES-I & II at RHIC (2010-2017, 2019-2021)

ALL ALL Calliniana

Callidarmada

Collider mode AutAu Collisions FXT mode											
√s _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	μ _B (MeV)	Т _{СН} (MeV)		√s _{NN} (GeV)	Events (10 ⁶)	BES II	μ _Β (MeV)	Т _{СН} (MeV)	
200	238	2010	25	166		7.7	50+112	2019+2020	420	140	
62.4	46	2010	73	165		6.2	118	2020	487	130	
54.4	1200	2017	83	165		5.2	103	2020	541	121	
39	86	2010	112	164		4.5	108	2020	589	112	
27	30 (560)	2011/2018	156	162		2.0	447	0000	<u> </u>	400	
19.6	538 / 15	2019 /2011	206	160		3.9	117	2020	633	102	
14.5	325 / 13	2019 /2014	264	156		3.5	116	2020	666	93	
11.5	230 / 7	2020 /2010	315	152		3.2	200	2019	699	86	
9.2	160 / 0.3	2020 /2008	355	140		3.0	259	2018	720	80	
7.7	100 / 3	2021 /2010	420	140		3.0*	2000	2021	720	80	
17.1*	250	2021	230	158		T_{ch} and μ_B from J. Cleymans et al. PRC73, 034905 (2006) *Newly Proposed Energy in Beam User Request 2021.					

BES-II and FXT Program: data taking smoothly and reached the goal of statistics.
 ➢ Precisely map the QCD phase diagram 200 < µ_B < 720 MeV

Particle Production and Freeze-out Dynamics

Editors' Suggestion

32 citations

Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

L. Adamczyk et al. (STAR Collaboration)

Phys. Rev. C 96, 044904 (2017) - Published 13 October 2017

The beam-energy scan at RHIC aims to discover whether a critical point exists in the phase diagram of QCD. This paper reports on the most comprehensive measurement of single-particle spectra for a multitude of hadrons from the first run, taken with the STAR experiment. From these the authors infer the kinetic and chemical freeze-out temperatures and the baryon chemical potential as functions of beam energy and centrality. The results provide an opportunity for the beam-energy scan program at RHIC to enlarge the $(T, \mu B)$ region of the phase diagram to search for the QCD critical point. Show Abstract +

Editors' Suggestion

Strange hadron production in ${ m Au}+{ m Au}$ collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, and 39 GeV

J. Adam *et al.* (STAR Collaboration) Phys. Rev. C **102**, 034909 (2020) – Published 29 September 2020

Strange hadrons are an excellent probe for identifying the phase boundary and onset of deconfinement in the QCD phase diagram. The STAR Collaboration has performed precision measurements of the abundances and transverse-momentum distributions for 8 species of strange mesons and baryons, as functions of centrality during a Au+Au beam-energy scan at RHIC. The results point to a possible change in strange-hadron production dynamics for $\sqrt{s_{NN}} < 20$ GeV. The results significantly improve the experimental knowledge in the energy range where key features of the QCD phase diagram are nowadays being studied.

Chemical freeze-out and QCD phase boundary

- > The chemical freeze-out T and μ_B (GCE) are close to the phase boundary determined from Lattice QCD with μ_B < 300 MeV.
- > The peak of K⁺/ π^+ ratio around 8 GeV can be well described by thermal model, where the system start to enter into "high baryon density region". (< 8 GeV, μ_B > 420 MeV)

STAR : PRC96, 044904 (2017); PRC 102, 034909 (2020). ALICE : PRL 109, 252301 (2012), PRC 88, 044910 (2013). A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018). X. Luo, S. Shi, N. Xu and Y. Zhang, Particle 3, 278 (2020); K. Fukushima, B. Mohanty, N. Xu, arXiv: 2009.03006; J. Randrup et al., Phys. Rev. C74, 047901(2006).

1. Fluctuations signals the QCD Critical Point.

M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. Lett. 81, 4816 (1998). M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. D 60, 114028 (1999).

Probe singularity of the equation of state: Divergence of the fluctuations.

2. Fluctuations signals the Quark Deconfinement.

S. Jeon and V. Koch, Phys. Rev. Lett. 85, 2076(2000). M. Asakawa, U. Heinz and B. Muller, Phys. Rev. Lett. 85, 2072 (2000).

Proposed experimental observables:

- 1. Pion multiplicity fluctuations.
- 2. Mean p_T fluctuations.
- 3. Particle ratio fluctuations

Higher Moments of Conserved Quantities (B, Q, S)

 Higher order cumulants/moments: describe the shape of distributions and quantify fluctuations. (sensitive to the correlation length (ξ))

$$\langle \delta N \rangle = N - \langle N \rangle$$

$$C_{1} = M = \langle N \rangle$$

$$C_{2} = \sigma^{2} = \langle (\delta N)^{2} \rangle$$

$$\langle (\delta N)^{3} \rangle_{c} \approx \xi^{4.5}, \quad \langle (\delta N)^{4} \rangle_{c} \approx \xi^{7}$$

$$C_{3} = S\sigma^{3} = \langle (\delta N)^{3} \rangle$$

$$C_{4} = \kappa \sigma^{4} = \langle (\delta N)^{4} \rangle - 3 \langle (\delta N)^{2} \rangle^{2}$$

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009). M.Asakawa, S. Ejiri and M. Kitazawa, Phys. Rev. Lett. 103, 262301 (2009). M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).

2. Direct connect to the susceptibility of the system.

$$\chi_q^{(n)} = \frac{1}{VT^3} \times C_{n,q} = \frac{\partial^n (p/T \wedge 4)}{\partial (\mu_q)^n}, q = B, Q, S$$

S. Ejiri et al, Phys.Lett. B 633 (2006) 275. Cheng et al, PRD (2009) 074505. B. Friman et al., EPJC 71 (2011) 1694. F. Karsch and K. Redlich , PLB 695, 136 (2011).S. Gupta, et al., Science, 332, 1525(2012). A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13)

Event-by-Event Distribution

Xiaofeng Luo

HENPIC Seminar, April 7th, 2021

Signals of QCD Critical Point : Theory/Model

1

M. Stephanov, PRL107, 052301 (2011); J. Phys. G 38, 124147 (2011). Schaefer et al., PRD 85, 034027 (2012); W. Fu et al., PRD 94, 116020 (2016). J.W. Chen, J. Deng, et al., PRD 93, 034037 (2016). PRD 95,014038 (2017). W. K. Fan, X. Luo, H.S. Zong, IJMPA 32, 1750061 (2017); G. Shao et al., EPJC 78, 138 (2018); Z. Li et al., EPJC 79, 245 (2019). A. Bzdak et al., Phys. Rep. 853, 1(2020). D. Mroczek et al. arXiv: 2008.04022.

Caveats : Non-equilibrium, finite size/time effects

M. Asakawa, M. Kitazawa, B. Müller, PRC 101, 034913 (2020). S Mukherjee, R. Venugopalan, Y Yin, PRL 117, 222301 (2016). S. Wu, Z. Wu, H. Song, PRC 99, 064902 (2019).

 $\kappa\sigma^2 = 1$ (Poisson Fluctuations)

Characteristic signature of CP: Non-monotonic energy dependence

"Oscillation Pattern" Especially the Peak at low energies

(Anti-) Proton PID and Acceptance

Extend the phase space coverage by TOF. Doubled the accepted number of proton/anti-proton

 $\begin{array}{l} |y|{<}0.5, \ \ 0.4 < p_T \, (GeV/c) < 0.8 \ (Low \ p_T, \ TPC \ PID) \\ 0.8 < p_T \, (GeV/c) < 2 \ \ (High \ p_T, \ TPC{+}TOF \ PID) \end{array}$

> Purity of proton and anti-proton identification > 97%.

Collision Centrality definitions

Correlations between particles used in centrality definition and fluctuations. Methods to suppress/avoid self-correlations:

1) kinematic separation : use particle in different kinematic regions to define centrality.

Net-charge fluctuations: STAR, PRL 113, 092301 (2014).

Off-diagonal 2nd order cumualnts: STAR, PRC100, 014902 (2019).

Net-Lambda fluctuations : STAR, PRC102, 014903 (2020).

2) Exclude particles used in fluctuation analysis from the centrality definition

net-proton and net-kaon fluctuations : STAR, PRL 112, 032302 (2014); PRL 126, 092301 (2021); PLB 785, 551 (2018).

STAR, 2101.12413 (long paper)

Event-by-Event Net-Proton Distributions (0-5%)

Efficiency uncorrected.

Mean values increase when decreasing energy: ST Interplay between baryon stopping and pair production.

STAR, PRL 126, 092301 (2021) STAR, 2101.12413 (long paper)

STAR, PRL 126, 092301 (2021) STAR, 2101.12413 (long paper)

low p_T (TPC PID) > High p_T (TPC+TOF PID) Central > Peripheral Proton > Anti-proton Proton and anti-proton :

Factorial Moments -> Central Moments

$$\begin{split} m_n(N_p - N_{\bar{p}}) &= < (N_p - N_{\bar{p}})^n > = \sum_{i=0}^n (-1)^i \binom{n}{i} < N_p^{n-i} N_{\bar{p}}^i > \\ &= \sum_{i=0}^n (-1)^i \binom{n}{i} \left[\sum_{r_1=0}^{n-i} \sum_{r_2=0}^i s_2(n-i,r_1) s_2(i,r_2) F_{r_1,r_2}(N_p,N_{\bar{p}}) \right] \\ &= \sum_{i=0}^n \sum_{r_1=0}^{n-i} \sum_{r_2=0}^i (-1)^i \binom{n}{i} s_2(n-i,r_1) s_2(i,r_2) F_{r_1,r_2}(N_p,N_{\bar{p}}) \end{split}$$

Central Moments -> Cumulant

$$C_r(N_p - N_{\bar{p}}) = m_r(N_p - N_{\bar{p}}) - \sum_{s=1}^{r-1} \binom{r-1}{s-1} C_s(N_p - N_{\bar{p}})m_{r-s}(N_p - N_{\bar{p}})$$

A. Bzdak and V. Koch, PRC91, 027901 (2015) X. Luo, Phys. Rev. C 91, 034907 (2015).

Track-by-track efficiency method (based on factorial cumulant):

- 1. T. Nonaka et al., PRC95, 064912 (2017).
- 2. M. Kitazawa and X. Luo, PRC96, 024910 (2017).
- 3. X. Luo and T. Nonaka, PRC99, 044917 (2019).

Centrality Bin Width Correction (CBWC)

HENPIC Seminar, April 7th, 2021

Centrality Dependence of Net-Proton Cumulant $(C_1 - C_4)$

Efficiency and CBWC corrections applied.

- In general, cumulants are extensive quantity and proportional to the volume of system.
- Expecting sudden changes when passing through critical point/region.

STAR, PRL 126, 092301 (2021) STAR, 2101.12413 (long paper)

- HRG (GCE) and transport model predicted monotonical energy dependence. Suppression at low energy due to conservation.
- Observe a non-monotonic energy dependence in 0-5% net-proton κσ² with a significant of 3.1σ

Is there a peak structure below 20 GeV ? Need precise measurement at STAR (BES-II), CBM, NICA etc. HADES, PRC 102, 024914 (2020) STAR, PRL 126, 092301 (2021) STAR, 2101.12413 (long paper)

Comparison between model calculations and exp. data

- Canonical Ensemble (CE) is used for describing the system at high baryon density (baryon number conservation). Their calculations are consistent with transport model results.
- Excluded volume (EV) approach also leads to suppression at high baryon region. 'repulsive force' suppress the fluctuations. 'Attractive' of protons at the 7.7 GeV collisions ?

PBM et al., arXiv: 2007.02463, S. He et al., PLB 762 296 (2016). J.H. Fu, PLB 722, 144 (2013), A. Bhattacharyya et al., PRC 90, 034909(2014). HRG+VDW: Vovchenko et al., PRC92,054901 (2015); PRL118,182301 (2017). RMF: K. Fukushima, PRC91 044910 (2015)

STAR, PRL 126, 092301 (2021) STAR, 2101.12413 (long paper)

Factorial cumulants-> Help to understand the different contributions from underlying physics.

$$\begin{split} \kappa_1 &= C_1 = \langle N \rangle, \\ \kappa_2 &= -C_1 + C_2, \\ \kappa_3 &= 2C_1 - 3C_2 + C_3, \\ \kappa_4 &= -6C_1 + 11C_2 - 6C_3 + C_4, \end{split}$$

$$\begin{split} C_2 &= \kappa_2 + \kappa_1, \\ C_3 &= \kappa_3 + 3\kappa_2 + \kappa_1, \\ C_4 &= \kappa_4 + 6\kappa_3 + 7\kappa_2 + \kappa_1, \end{split}$$

- Negative K2 values are mainly due to the effects of baryon number conservations.
- No significant deviation of K3 and K4 from zero are observed. Need BES-II data to perform more precise measurements.

STAR, 2101.12413 (long paper)

Baryon number fluctuations at μ_B =0 from Lattice and FRG

Wei-jie Fu et al. arXiv: 2101.06035

$$C_6 = \mu_6 - 10\mu_3^2 - 15\mu_4\mu_2 + 30\mu_2^3$$
 μ_n : Central Moments

Lines : numerical results from the functional renormalization group (FRG) approach at $\mu_B = 0$

> Higher order fluctuations are more sensitive to crossover transition.

- > At $\mu_B = 0$, C₆ and C₈ become negative when freeze-out temperature close to Tc.
 - -> could serve as experimental evidence of chiral crossover.

Baryon number fluctuations at $\mu_B > 0$ from Lattice and FRG

> Along the crossover line, the larger the μ_B values, the stronger fluctuations.

Net-Proton fifth (C_5/C_1) and sixth (C_6/C_2) order from BES-I

Colliding Energy $\sqrt{s_{NN}}$ (GeV)

 \succ C₅/C₁ and C₆/C₂ data:

(i) > 0 for 70-80% peripheral collisions; (ii) mostly < 0 for 0-40% central collisions

LQCD and FRG calculations predict < 0 due to the transition between partonic and hadronic phases.

$$error(C_n/C_2) \propto \frac{\sigma^{n-2}}{\sqrt{N}\varepsilon^{\alpha}}$$

STAR, CPOD, Moriond 2021

- ▶ Results of the net-p cumulant ratios from p+p collisions fit in the multiplicity dependence of C_4/C_2 , C_5/C_1 and C_6/C_2 in Au+Au collisions
- \succ C₅/C₁ and C₆/C₁ are found to be negative in central Au+Au collisions
- LQCD calculations predict < 0 due to the transition between partonic and hadronic phase</p>

STAR, CPOD, Moriond 2021

BES-II at RHIC (2019-2021)

BES-II data taking are very successful.
 The data taking of 9.2, 11.5, 14.6, 19.6 GeV are completed.
 7.7 GeV data taking is ongoing, will reach goal around beginning of the May.

> FIX-target mode : $\sqrt{s_{NN}} = 3-7.7$ GeV (2018-2021).

- Sudden change between 19.6 and 14.5 GeV.
- > Still large μ_B gap ~ 60 MeV between 19.6 and 14.5 GeV.

Summary

Xiaofeng Luo

Outlook

Explore the QCD phase structure at high baryon density with high precision:

- (1) RHIC BES-II : Collider ($\sqrt{s_{NN}}$ =7.7 19.6 GeV) and FXT ($\sqrt{s_{NN}}$ = 3 7.7 GeV) mode.
- (2) Future Facilities ($\sqrt{s_{NN}}$ = 2 11 GeV) : FAIR/CBM, NICA/MPD, HIAF/CEE, JPARC-HI.

Stay tune for exciting physics !!!

Acknowledgements :

Thanks to the members of the STAR Collaboration and the kind invitation from the organizers.

Thank you for your attention !