

Jianhui Zhu (INFN-Padova) for the ALICE Collaboration

Heavy-flavor production and hadronisation with ALICE at the LHC

Sezione di Padova

CENTRAL CHINA NORMAL UNIVERSITY

Quark-Gluon Plasma (QGP)

https://cds.cern.ch/record/2025215

Time evolution of ultra-relativistic heavy-ion collisions

Phase transition at LHC is a smooth crossover

Similar to early universe (~few µs after the Big Bang)

Heavy quarks: unique probes

- Tests of pQCD calculations
- Reference for heavy-ion collisions

- - Cold nuclear matter effects

p

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

Charm: $m_{\rm c} \approx 1.3 ~{\rm GeV}/c^2$

Beauty: $m_{\rm b} \approx 4.2 ~{\rm GeV}/c^2$

- Charm and beauty quarks: unique probes of the medium
 - $m_{\rm Q} \gg \Lambda_{\rm QCD}$
 - Enable the evaluation of their production cross sections within pQCD

$$m_{\rm Q} \gg T_{\rm QGP}$$

Produced mainly in initial hard scatterings (high Q^2) at early stage of heavy-ion collisions

$$\tau_{\rm prob} \approx \frac{1}{2m_{\rm q}} \approx 0.1_{\rm q=c} (0.03)_{\rm q=b} \,\,{\rm fm/c} \,\,< \tau_{\rm QGP} (\,\approx 0.3 - 1.5 \,\,{\rm fm/c})$$

Experience the full evolution of the QGP

- Pb-Pb collisions
 - Hot nuclear matter effects
 - Energy loss in the QGP
 - Collective motion of the system
 - Modification of hadronisation mechanisms

Modification of Parton distribution functions (PDF) in bound nucleons

Heavy-flavour hadron formation in e^+e^- and Pb-Pb collisions

- "Point-like" object interaction
- Pure fragmentation

Fragmentation

Eur.Phys.J.C 78 (2018) 11, 983

- Hard scattering $e^+e^- \rightarrow q\bar{q}$
- Color-potential string between q and \bar{q}
- Hadronisation via multiple string breaking and formation of quark-antiquark pairs

HENPIC - Jianhui Zhu

Coalescence

- Parton degrees of freedom
- Modification of hadronisation mechanisms

📄 Phys.Lett.B 68 (1977) 459, Phys.Lett.B 73 (1978) 504 (erratum)

- Heavy quarks produced in hard scattering coalesce with light (di-)quarks from the system
- Expected to increase baryon production at low and intermediate p_{T}
- QGP: interplay coalescence (low $p_{\rm T}$) vs. fragmentation (high $p_{\rm T}$)

HF production and hadronisation with ALICE at the LHC

Heavy-flavour hadron formation in pp collisions

- "Point-like" object interaction
- Pure fragmentation

Superimposition of many "e⁺e⁻" collisions?

hadronisation?

Standard description of heavy-quark hadronisation based on a factorisation approach

$$\frac{\mathrm{d}\sigma^{\mathrm{D}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{D}}}(p_{\mathrm{T}};\mu_{\mathrm{F}};\mu_{\mathrm{R}}) = PDF(x_{\mathrm{a}},\mu_{\mathrm{F}})PDF(x_{\mathrm{b}},\mu_{\mathrm{F}}) \otimes \frac{\mathrm{d}\sigma^{\mathrm{c}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{c}}}(x_{\mathrm{a}},x_{\mathrm{b}},\mu_{\mathrm{R}},\mu_{\mathrm{F}}) \otimes D_{\mathrm{c}\to\mathrm{D}}(z=p_{\mathrm{D}}/p_{\mathrm{c}},\mu_{\mathrm{F}})$$

parton distribution function (PDF) (non-perturbative)

partonic cross section (perturbative)

Ratios of particle species -> ratios of fragmentation fractions, sensitive to HF quark hadonization

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

Color charges from MPI modify

QGP: complex large-size system

- Parton degrees of freedom
- Modification of hadronisation mechanisms

Fragmentation functions assumed universal among collision systems and constrained from e⁺e⁻ and e⁻p collisions

hadronisation by fragmentation (non-perturbative)

Charm fragmentation measured in e^+e^- and ep

- Charm fragmentation fractions (FF) $f(c \rightarrow H_c) = \sigma(H_c)/\sigma(c) = \sigma(H_c)/\sum \sigma(H_c)$ (w.d.: weakly decaying)
 - Inputs used in a standard factorisation approach
- Production cross section of $\Xi_c^{0,+}$ are calculated under assumptions^[1]: $f(c \to \Xi_c^0) / f(c \to \Lambda_c^+) = f(s \to \Xi^-) / f(s \to \Lambda) \approx 0.004$

Average LEP FF	H_{c}	$f(c \rightarrow H_c)$
	D^0	54.2 ± 2.4
	D^+	22.5 ± 1.0
	D_s^+	9.2 ± 0.8
	Λ_c^+	5.7 ± 0.6
	D^{*+} , rate	23.4 ± 0.7
	D^{*+} , double-tag	24.4 ± 1.3
L. Gladilin, EPJC 75 (2015) 19	D^{*+} , combined	23.6 ± 0.6

Sum of $f(c \rightarrow H_c)$ for D⁰, D⁺, D⁺_s and $\Lambda_c^+: 91.6 \pm 3.3$ (stat \oplus syst) ± 1.0 (BR) %

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

[1] M. Lisovyi, et al., EPJC 76 (2016) no.7, 397 [2] B factories: EPJC 76 no. 7, (2016) 397 [3] LEP: EPJC 75 no. 1, (2015) 19 [4] HERA: EPJC 76 no. 7, (2016) 397

Factorisation: a very successful framework

- vs. $p_{\rm T}$ and y (wide range)
- in different collision energies
- relative abundance of charm meson species

HENPIC - Jianhui Zhu

Described by pQCD calculations relying on factorisation

Universality confirmed at the LHC in 2013

M. Lisovyi, A. Verbytskyi, O. Zenaiev, EPJC 76 (2016) no.7, 397

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

Very nice agreement across collision systems (e^+e^- , ep and pp)

In 2013, only LHCb Λ_c^+ measurement at forward rapidity in pp@7 TeV^[1] available at the LHC

Forward rapidity

Role of hadronisation began to change in 2017

https://cerncourier.com/a/alice-investigates-charm-quark-hadronisation

Reporting on international high-energy physics CERNCOURIER

Community -Magazine Physics -Technology -In focus

f \square ₽

STRONG INTERACTIONS | NEWS

ALICE investigates charm-quark hadronisation

16 February 2018

(Left) The Λ^+_c/D^0 baryon-to-meson ratio measured in pp and p-Pb collisions as a function of transverse momentum, compared with different event generators for pp collisions. (Right) The ratio of the p_T differential cross-sections of Ξ^{0}_{c} baryons (multiplied by the branching ratio into e⁺ $v_e \Xi^-$) as a function of transverse momentum, showing the large uncertainty on the $\Xi_c^0 \rightarrow e^+ v_e \Xi^$ branching ratio (shaded bands).

HENPIC - Jianhui Zhu

- Measurements of $\Lambda_c^+/D^{0[1]}$ and $\Xi_c^0/D^{0[2]}$ from ALICE in 2017 much higher than calculations based on fragmentation fractions tuned on e⁺e⁻ data
- Indicate fragmentation of charm quark NOT well understood
- Charm baryon studies suggested that charm hadronisation might be not universal and depends on collision system

Central rapidity

[1] ALICE: JHEP 04 (2018) 108 [2] ALICE: PLB 781 (2018) 8-19

A Large Ion Collider Experiment (ALICE)

System	Year(s)	√s _{NN} (TeV)	L _{int} (MB)	00
	2017	5.02	~19 nb ⁻¹	
рр	2016-2018	13	~33 nb ⁻¹	•
p–Pb	2016	5.02	~0.3 nb ⁻¹	Þ
Pb–Pb (0-10%)	2010	F 0.2	~0.13 nb ⁻¹	
Pb–Pb (30-50%)	2010	5.02	~0.056 nb ⁻¹	THE ALIC

Time Projection Chamber (TPC)

- $|\eta| < 0.9$
- Tracking, PID

Time-Of-Flight (TOF)

- $|\eta| < 0.9$
- Tracking, PID

HENPIC - Jianhui Zhu

nner Tracking System (ITS)

| *η* | < 0.9

Tracking, vertex, particle identification (PID), multiplicity

Charm-hadron reconstruction

- Particle identification of decay tracks
- Selections on the displaced decay topology
- Machine-learning (ML) techniques used

PRL 127 (2021) 27, 272001

HF production and hadronisation with ALICE at the LHC

. 128 no. 1, (2022) 012001

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

	Charm mesons					Charm	arm baryons			
	D ⁰ (uc)	$D^+(\overline{d}c)$	$D^{*+}(\overline{d}c)$	D_{s}^{+} (sc)	Λ_{c}^{+} (udc)	Σ_{c}^{0} (ddc)	${\Sigma_{c}}^{++}$ (uuc)	Ξ _c + (usc)	Ξ _c ⁰ (dsc)	${\Omega_{c}}^{0}$ (ssc)
Strangeness		0		1		0		1		2
Mass (MeV/ c^2)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20
Lifetime (µm)	122.9	311.8	_	151.2	60.7	—	—	136.6	45.8	80

$$D^{0} \rightarrow K^{-}\pi^{+} (BR=3.95\%)$$

$$D^{+} \rightarrow K^{-}\pi^{+}\pi^{+} (BR=9.38\%)$$

$$D^{*+} \rightarrow D^{0}\pi^{+} (BR=67.7\%)$$

$$D^{+}_{s} \rightarrow \phi\pi^{+} \rightarrow K^{+}K^{-}\pi^{+} (BR=2.24\%)$$

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

HF meson-to-meson production ratios in pp collisions

- HF meson-to-meson ratios independent of meson $p_{\rm T}$ and collision system
- Agreement with model calculations (FONLL^[1]) based on a factorisation approach and relying on universal fragmentation functions and with e⁺e⁻ and e⁻p measurements
- ALICE and LHCb reach the same conclusion

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

[1] M. Cacciari, et al., JHEP 10 (2012) 137 [2] PYTHIA8: P. Skands, et al., EPJC 74 (2014) 3024

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

	Charm mesons			Charm baryons						
	D ⁰ (uc)	D ⁺ (dc)	D*+ (dc)	D_{s}^{+} (sc)	Λ_{c}^{+} (udc)	Σ_{c}^{0} (ddc)	Σ_{c}^{++} (uuc)	Ξ_{c}^{+} (usc)	Ξ _c ⁰ (dsc)	${\Omega_{c}}^{0}$ (ssc)
Strangeness		0		1		0		1		2
Mass (MeV/ c^2)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20
Lifetime (µm)	122.9	311.8	_	151.2	60.7	_	_	136.6	45.8	80

$$\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$$
 (BR=6.28%)
 $\Lambda_{c}^{+} \rightarrow pK_{s}^{0}$ (BR=1.59%)

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

Λ_c^+/D^0 in Run 2: more precise

More precise and wider $p_{\rm T}$ range measurements (w.r.t. Run 1) highlight strong $p_{\rm T}$ dependence (CMS reaches higher $p_{\rm T}$)

- Low $p_{\rm T}$ significantly higher than e⁺e⁻ and ep
- High $p_{\rm T}$ approaches value measured in e⁺e⁻ and ep

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

Λ_{c}^{+}/D^{0} in Run 2: more precise

104 (2021) 5, 054905 PRL 127 (2021) 20, 202301

More precise and wider $p_{\rm T}$ range measurements (w.r.t. Run 1) highlight strong $p_{\rm T}$ dependence (CMS reaches higher $p_{\rm T}$)

Low $p_{\rm T}$ significantly higher than e^+e^- and ep

High $p_{\rm T}$ approaches value measured in e⁺e⁻ and ep

Comparison with forward and backward rapidity measured by LHCb represents interesting trend

All measurements from Run 2 at the LHC agree to draw conclusion that Λ_c^+/D^0 is higher in pp w.r.t. e^+e^- and ep HF production and hadronisation with ALICE at the LHC HENPIC - Jianhui Zhu

Λ_c^+/D^0 in Run 2: more precise

04 (2021) 5, 054905 PRL 127 (2021) 20, 202301

LHC Run 2 data confirm the indications observed previously • Enhancement of $\Lambda_c^+/D^0 \rightarrow \text{modification of charm hadronisation mechanism}$

More precise and wider $p_{\rm T}$ range measurements (w.r.t. Run 1) highlight strong $p_{\rm T}$ dependence (CMS reaches higher $p_{\rm T}$)

- Low $p_{\rm T}$ significantly higher than e⁺e⁻ and ep
- High $p_{\rm T}$ approaches value measured in e⁺e⁻ and ep

 $p_{T}(\text{GeV}/c)|_{ATT}$

Comparison with forward and backward rapidity measured by LHCb represents interesting trend

HENPIC - Jianhui Zhu

 p_{\perp} (GeV/C)

All measurements from Run 2 at the LHC agree to draw conclusion that Λ_c^+/D^0 is higher in pp w.r.t. e^+e^- and ep HF production and hadronisation with ALICE at the LHC

Λ_c^+/D^0 down to $p_T = 0$ in pp collisions

- First measurements of Λ_c^+ down to $p_T = 0$ in pp@5.02 TeV and pp@13 TeV
- NO collision energy dependence
- Charm baryon-to-meson ratios significantly higher than e^+e^- results
 - PYTHIA 8 Monash (e^+e^- charm fragmentation functions)
- **Beauty** baryon-to-meson enhancement at low $p_{\rm T}$ also observed

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

How do model calculations and MC generators perform at the LHC ?

RC 104 (2021) 5, 054905 127 (2021) 20, 202301

HENPIC - Jianhui Zhu

The MC generators

- **PYTHIA8 Monash tune**^[1] simple LUND string fragmentation
- ▶ HERWIG7^[2]: hadronisation implemented via clusters
- **POWHEG**^[3]: matched to PYTHIA6^[4] to generate parton shower
- GM-VFNS^[5]: pQCD calculations, compute the ratios of Λ_c^+ and D^0 cross sections with same choice of pQCD scales
- All implement fragmentation processes tuned on e⁺e⁻ $\Lambda_c^+/D^0 \approx 0.1$
 - NO $p_{\rm T}$ dependence
- At low $p_{\rm T}$, significantly underestimate $\Lambda_{\rm c}^+/{\rm D}^0$
- At high $p_{\rm T}$, discrepancy reduced
- [1] PYTHIA8 Monash: P. Skands, et al., EPJC 74 (2014) 3024
- [2] HERWIG: M. Bahr, et al., EPJC 58 (2008) 639-707
- [3] POWHEG: S. Frixione, et al., JHEP 09 (2007) 126
- [4] PYTHIA6: T. Sjostrand, JHEP 05 (2006) 026
- [5] GM-VFNS: B. Kniehl, et al., PRD 101 (2020) 114021

PYTHIA with new colour reconnection

PYTHIA8^[1,2]

- New CR model: colour reconnection beyond leading colour (CR-BLC) mode with SU(3) topology weights + string-length minimisation
 - The junction topology favours baryon formation
 - Primordial Λ_c^+ enhanced by factor ~2 with new CR model
 - Extra contribution from feed-down of Σ_c states (x20~30 more)

MPI-based CR (Old CR model)

Partons created in different scatterings do not interact

- CR allowed between partons from different MPIs to minimize string length
- As implemented in Monash

[1] P. Skands, S. Carrazza and J. Rojo, EPJC 74 (2014) 3024 [2] J. Christiansen, P. Skands, JHEP 08 (2015) 003

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

New CR	model (N_{par}	$/N_{\rm events}$)	Old CR
string	junction	all	$N_{\rm par}/N_{\rm ev}$
$5.3 \cdot 10^{-2}$	0	$5.3 \cdot 10^{-2}$	$6.5 \cdot 1$
$4.0 \cdot 10^{-3}$	$7.9\cdot10^{-3}$	$1.2 \cdot 10^{-2}$	$6.6 \cdot 1$
$2.7 \cdot 10^{-4}$	$1.3\cdot10^{-2}$	$1.3 \cdot 10^{-2}$	$5.4 \cdot 1$
$2.5 \cdot 10^{-4}$	$1.5\cdot10^{-2}$	$1.5 \cdot 10^{-2}$	$5.2 \cdot 1$
$2.5 \cdot 10^{-4}$	$1.3\cdot10^{-2}$	$1.3\cdot 10^{-2}$	$5.1 \cdot 1$
	New CR string $5.3 \cdot 10^{-2}$ $4.0 \cdot 10^{-3}$ $2.7 \cdot 10^{-4}$ $2.5 \cdot 10^{-4}$ $2.5 \cdot 10^{-4}$	New CR model (N_{par} stringstringjunction $5.3 \cdot 10^{-2}$ 0 $4.0 \cdot 10^{-3}$ $7.9 \cdot 10^{-3}$ $2.7 \cdot 10^{-4}$ $1.3 \cdot 10^{-2}$ $2.5 \cdot 10^{-4}$ $1.5 \cdot 10^{-2}$ $2.5 \cdot 10^{-4}$ $1.3 \cdot 10^{-2}$	New CR model (N_{par}/N_{events}) stringjunctionall $5.3 \cdot 10^{-2}$ 0 $5.3 \cdot 10^{-2}$ $4.0 \cdot 10^{-3}$ $7.9 \cdot 10^{-3}$ $1.2 \cdot 10^{-2}$ $2.7 \cdot 10^{-4}$ $1.3 \cdot 10^{-2}$ $1.3 \cdot 10^{-2}$ $2.5 \cdot 10^{-4}$ $1.5 \cdot 10^{-2}$ $1.5 \cdot 10^{-2}$ $2.5 \cdot 10^{-4}$ $1.3 \cdot 10^{-2}$ $1.3 \cdot 10^{-2}$

More-QCD CR (New CR-BLC model)

- Uses a simple model of the colour rules of QCD to determine the formation of strings and introduce junctions
- * Minimization of the string length over all possible configurations
- * Include CR with MPIs and with beam remnants

Statistical hadronisation with augmented resonances

Statistical Hadronisation Model and Relativistic Quark Model (SHM+RQM)(M. He and R. Rapp)^[1]

SHM (M. He and R. Rapp), and FF from e^+e^-

Tuned on D^0 ALICE data + scaling for mass

- Strong feed-down from an augmented set of excited charm baryons based on RQM^[2]
 - PDG: 5 Λ_c , 3 Σ_c , 8 Ξ_c , 2 Ω_c
 - RQM: extra 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c w.r.t. PDG2018^[3]

[1] M. He and R. Rapp, PLB 795 (2019) 117-121 [2] D. Ebert, R. Faustov and V. Galkin, PRD 84:014025, 2011 [3] PDG: PRD 98, no.3, 030001 (2018)

HENPIC - Jianhui Zhu

M. He and R. Rapp, PLB 795 (2019) 117-121

r_i	D^+/D^0	D^{*+}/D^0	D_s^+/D^0	Λ
PDG(170)	0.4391	0.4315	0.2736	(
PDG(160)	0.4450	0.4229	0.2624	(
RQM(170)	0.4391	0.4315	0.2726	(
RQM(160)	0.4450	0.4229	0.2624	(

M. He and R. Rapp, PLB 795 (2019) 117-121

$_i (\cdot 10^{-4} \text{ fm}^{-3})$	D^0	D^+	D^{*+}	D_s^+	Λ_c^+	$\Xi_c^{+,0}$	
DG(170)	1.161	0.5098	0.5010	0.3165	0.3310	0.0874	(
DG(160)	0.4996	0.2223	0.2113	0.1311	0.1201	0.0304	(
QM(170)	1.161	0.5098	0.5010	0.3165	0.6613	0.1173	(
QM(160)	0.4996	0.2223	0.2113	0.1311	0.2203	0.0391	

Coalescence from a partonic system

Catania^[1,2]

- Transport model with hadronization via coalescence+fragmentation
 - Assume a partonic system (QGP-like) in pp
 - Coalescence enhances baryon-to-meson yield ratio
- Total charm cross section $d\sigma_{c\bar{c}}/dy = 1.0$ mb used (higher than FONLL)
- Charm quark spectrum from FONLL
- Same excited resonances as PDG
- At $p_{\rm T} pprox 0$, a charm quark can hadronize only by coalescence
- At high $p_{\rm T}$, fragmentation becomes dominant
- QCM: Quark (re-)Combination Mechanism^[3]
- Charm combined with equal-velocity light quarks
 - Charm can pick up a co-moving light antiquark or two co-moving quarks
- Both models maybe related to creation of deconfined parton system in pp

[1] V. Minissale, S. Plumari, V. Greco, arXiv:2012.12001
 [2] S. Plumari, et al., EPJC (2018) 78:348
 [3] J. Song, H. Li, F. Shao, EPJC (2018) 78: 344

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

Models with different assumptions compared with data

- PYTHIA8 CR-BLC tunes^[2] largely enhance Λ_c^+ yield w.r.t. Monash tune^[1]
- SHM^[3]+RQM^[4] enhance Λ_c^+ yield w.r.t. SHM+PDG and better describes data
 - Suggest yet-unobserved higher-mass charm-baryon states exist
- Catania^[5] with coalescence approach describes data
 - Indicate coalescence exists in pp

HENPIC - Jianhui Zhu

Compare with light flavor (LF)

Comparison of baryon-to-meson yield ratio in heavy and light sector show similar properties Λ_c^+/D^0 consistent with Λ/K_s^0 both in magnitude and shape Similar $p_{\rm T}$ trend observed for p/ π

Caveat: Light-flavor hadrons have a significant contribution from gluon fragmentation Low $p_{\rm T}$ light-flavor hadrons mainly originate from soft scattering process involving small momentum transfers

HENPIC - Jianhui Zhu

- HF production and hadronisation with ALICE at the LHC

$\Lambda_{\rm c}^+/{\rm D}^0$ vs. $p_{\rm T}$ from low to high multiplicity

hys.Lett.B 829 (2022) 137065

- $p_{\rm T}$ -dependent enhancement of $\Lambda_{\rm c}^+/{
 m D}^0$ observed from low to high multiplicity
- Lowest multiplicity still higher than measurements in e⁺e⁻ and e⁻p 0.4

HENPIC - JianlouBZhu

HF production and hadronisation with ALICE at the LHC

 $p_{\rm VOM}$ multiplicity classes $\langle dN_{ch}/d\eta \rangle$: 6.9, INEL > 0 4.4 13.8 31.5

$\Lambda_{\rm c}^+/{\rm D}^0$ vs. $p_{\rm T}$ from low to high multiplicity

- multiplicity
- Lowest multiplicity still higher than measurements in e^+e^- and e^-p 0.4

HENPIC - JianhußZhu

- Λ/K_s^0 observed from low to high multiplicity
 - Common mechanism for light and charm baryon formation ?

Non-prompt Λ_c^+ production in pp@13 TeV

- $p_{\rm T}$ dependence well reproduced by theoretical calculations
 - $\Lambda_{\rm b}^0$ fragmentation fractions measured by LHCb
 - Folding with $H_b \rightarrow \Lambda_c^+ + X$ decay from PYTHIA 8

HENPIC - Jianhui Zhu

- - Similar baryon-to-meson ratio enhancement
- Non-prompt Λ_c^+/D^0 vs. models
 - Well reproduced by FONLL+PYTHIA 8 for $p_{\rm T} > 4 \ {\rm GeV}/c$
- Non-prompt Λ_c^+/D^0 : pp vs. e^+e^-
 - Enhanced beauty-baryon production in pp w.r.t. e⁺e⁻

Heavier charm baryons: $\Sigma_c^{0,+,++}$

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

		Charm	mesons				Charm	baryons		
	D ⁰ (uc)	D+ (dc)	D*+ (dc)	D_{s}^{+} (sc)	Λ_{c}^{+} (udc)	Σ_{c}^{0} (ddc)	${\Sigma_{c}}^{++}$ (uuc)	Ξ_{c}^{+} (usc)	Ξ _c ⁰ (dsc)	${\Omega_{\rm c}}^0$ (ssc)
Strangeness		0		1		0		1		2
Mass (MeV/ c^2)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20
Lifetime (µm)	122.9	311.8	—	151.2	60.7	—	_	136.6	45.8	80

 $\Sigma_c^0 \rightarrow \Lambda_c^+ \pi^-$ (BR=100%, strongly decay) $\Sigma_c^{++} \rightarrow \Lambda_c^+ \pi^+$ (BR=100%, strongly decay) x3/2 to count Σ_c^+ (udc)

HENPIC - Jianhui Zhu

Heavier charm baryons: $\Sigma_{c}^{0,+,++}$ in pp@13 TeV

- Effect of $\Sigma_c^{0,+,++}$ feed-down contribution on Λ_c^+/D^0 enhancement
 - ~40% contribution, only partially explained by $\Sigma_c^{0,+,++}$ feed-down

PRL 128 (2022) 1, 012001

- PYTHIA8 Monash^[1] severely underestimates Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$
- PYTHIA8 CR Modes^[2] overestimate Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++}$)/ Λ_c^+
- SHM^[3]+RQM^[4] describes both Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$

Catania^[5] and OCM^[6] also provide good description of data HENPIC - Jianhui Zhu HF production and hadronisation with ALICE at the LHC

[1] P. Skands, et al., EPJC 74 (2014) 3024 [2] J. Christiansen, et al., JHEP 08 (2015) 003 [3] M. He and R. Rapp, PLB 795 (2019) 117-121 [4] D. Ebert, et al., PRD 84:014025, 2011 [5] V. Minissale, et al., arXiv:2012.12001 [6] J. Song, et al., EPJC (2018) 78: 344

Heavier charm baryons: $\Sigma_c^{0,+,++}$ in pp@13 TeV

- Effect of $\Sigma_c^{0,+,++}$ feed-down contribution on Λ_c^+/D^0 enhancement
 - ~40% contribution, only partially explained by $\Sigma_c^{0,+,++}$ feed-down

PRL 128 (2022) 1, 012001

- PYTHIA8 Monash^[1] severely underestimates Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$ and $\overline{\Sigma_c^{0,+,++}}/D^0$
- PYTHIA8 CR Modes^[2] overestimate $\Lambda_c^+ (\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$, but describe $\Sigma_c^{0,+,++}/D^0$
- SHM^[3]+RQM^[4] describes both Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$ and $\Sigma_c^{0,+,++}/D^0$

Catania^[5] and OCM^[6] also provide good description of data HENPIC - Jianhui Zhu HF production and hadronisation with ALICE at the LHC

[1] P. Skands, et al., EPJC 74 (2014) 3024 [2] J. Christiansen, et al., JHEP 08 (2015) 003 [3] M. He and R. Rapp, PLB 795 (2019) 117-121 [4] D. Ebert, et al., PRD 84:014025, 2011 [5] V. Minissale, et al., arXiv:2012.12001 [6] J. Song, et al., EPJC (2018) 78: 344

Strange-charm baryons: $\Xi_c^{0,+}$

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

		Charm mesons								
	D ⁰ (uc)	$D^{0}(uc)$ $D^{+}(dc)$ $D^{*+}(dc)$ $D_{s}^{+}(s)$								
Strangeness		1								
Mass (MeV/ c^2)	1864.83	1869.65	2010.26	1968.34						
Lifetime (µm)	122.9	151.2								

$$\begin{split} &\Xi_{\rm c}^{0} \to \Xi^{-} \pi^{+} \, ({\sf BR}{=}1.43\%) \\ &\Xi_{\rm c}^{0} \to {\rm e}^{+} \Xi^{-} \nu_{\rm e} \, ({\sf BR}{=}1.8\%) \\ &\Xi_{\rm c}^{+} \to \Xi^{-} \pi^{+} \pi^{+} \, ({\sf BR}{=}2.86\%^{[1]}) \end{split}$$

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

Charm baryons $\Lambda_{c}^{+}(udc) \left| \Sigma_{c}^{0}(ddc) \right|$ Ξ_{c}^{0} (dsc) Σ_{c}^{++} (uuc) Ω_{c}^{0} (ssc) ${\Xi_{c}}^{+}$ (usc) 2 0 1 2453.75 2453.97 2467.94 2470.90 2286.46 2695.20 80 60.7 136.6 45.8

Strange-charm baryons: Ξ_c^0 and Ξ_c^+ in pp@5.02 and 13 TeV

- Ξ_c^0/D^0 in agreement with Ξ_c^+/D^0
- $\Xi_c^{0,+}/D^0$ similar p_T trend as Λ_c^+/D^0

[1] P. Skands, et al., EPJC 74 (2014) 3024 [2] J. Christiansen, et al., JHEP 08 (2015) 003 [3] M. He and R. Rapp, PLB 795 (2019) 117-121 [4] D. Ebert, et al., PRD 84:014025, 2011

HENPIC - Jianhui Zhu

[5] J. Song, et al., EPJC (2018) 78: 344 [6] V. Minissale, et al., arXiv:2012.12001 [7] Belle e⁺e⁻: PRD 97 (2018) 7, 072005

HF production and hadronisation with ALICE at the LHC

- larger ratio w.r.t. Monash, but largely underestimate data
- QCM^[5], further enhanced, still NOT describe the data
- Catania^[6] better describes measurements

HEP 10 (2021) 159

Double strange-charm baryon: Ω_c^0

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

	Charm mesons					Charm	baryons					
	D ⁰ (uc)	D ⁺ (dc)	D*+ (dc)	D_{s}^{+} (sc)	Λ_{c}^{+} (udc)	Σ_{c}^{0} (ddc)	Σ_{c}^{++} (uuc)	Ξ _c + (usc)	Ξ_{c}^{0} (dsc)	${\Omega_{ m c}}^0$ (ssc)		
Strangeness		0		1		0		1		2		
Mass (MeV/ c^2)	1864.83	1869.65	2010.26	1968.34	2286.46	2453.75	2453.97	2467.94	2470.90	2695.20		
Lifetime (µm)	122.9	311.8	_	151.2	60.7	_	_	136.6	45.8	80		

 $\Omega_c^0 \rightarrow \Omega^- \pi^+$ (BR unknown, theoretical calculations: BR = $0.51^{+2.19}_{-0.31}$ % ^[1-5])

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

[1] EPJC 80 no. 11, (2020) 1066 [2] PRD 98 no. 7, (2018) 074011 [3] PRD 56 (1997) 2799-2811 [4] PRD 101 no. 9, (2020) 094033 [5] PRD 97 no. 7, (2018) 072005

Double strange-charm baryon: Ω_c^0 in pp@13 TeV

- Theoretical calculations: BR($\Omega_c^0 \rightarrow \pi^+ \Omega^-$) = 0.51^{+2.19}_{-0.31}%
- PYTHIA8 Monash^[1] largely underestimates Ω_c^0/D^0 and Ω_c^0/Ξ_c^0
 - Do not reproduce strangeness enhancement in pp
- PYTHIA8 CR-BLC^[2] NOT enough to describe the measurement
- Further enhancement with simple coalescence QCM^[3] still shows a hint of underestimation
- Catania^[4] closer to data points, additional resonances decay considered

HENPIC - Jianhui Zhu

Ratio	ALICE (pp@13 TeV)	Belle (e ⁺ e ⁻ @10.52
	$2 < p_{\mathrm{T}} < 12 \; \mathrm{GeV/c}$	visible
${ m BR}(\Omega_{ m c}^0 o \Omega^- \pi^+) imes \sigma(\Omega_{ m c}^0) / \sigma(\Lambda_{ m c}^0)$	$(1.96 \pm 0.42 \pm 0.13) \times 10^{-3}$	$(9.70 \pm 1.27 \pm 0.6)$
${ m BR}(\Omega_{ m c}^0 o \Omega^- \pi^+) imes \sigma(\Omega_{ m c}^0) / \sigma(\Xi_{ m c}^0)$	$(3.99\pm0.96\pm0.96) imes10^{-3}$	$(5.82 \pm 0.78 \pm 1.3$

HF production and hadronisation with ALICE at the LHC

 $\Omega_{\rm c}^0/\Lambda_{\rm c}^+({\rm pp})$ $\Omega_c^0/\Lambda_c^+(e^+e^-)$ $\Omega_c^0/\Xi_c^0(pp)$ $\Omega_{c}^{0}/\Xi_{c}^{0}(e^{+}e^{-})$

Coalescence in pp?

[1] P. Skands, et al., EPJC 74 (2014) 3024 [2] J. Christiansen, et al., JHEP 08 (2015) 003 [3] J. Song, et al., EPJC (2018) 78: 344 [4] V. Minissale, et al., arXiv:2012.12001 [5] Belle e⁺e⁻: PRD 97 (2018) 7, 072005

Λ_c^+/D^0 and $R_{pPb}(\Lambda_c^+)$ VS. p_T in p-Pb

[1] PRC 104 (2021) 5, 054905
[2] CMS: PRC 101 (2020) 6, 064906
[3] POWHEG: JHEP 09 (2007) 126
[4] EPPS16: EPJC 77 no. 3, (2017) 163
[5] POWLANG: JHEP 03 (2016) 123 HENPIC - Jianhui Zhu HF production and hadronisation with ALICE at the LHC

Λ_c^+/D^0 vs. p_T from low to high multiplicity in p-Pb

 Λ_c^+/D^0 vs. multiplicity in p-Pb:

- No significant separation between lowest and highest multiplicity
- Compatible with pp results within the large uncertainties
- More precise measurements needed

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

nultiplicity es Λ⁺_c/D⁰ vs. multiplicity in pp:
 Significant enhancement from lowest to highest multiplicity

Charm fragmentation fractions

- Charm fragmentation fractions in hadronic collisions at 5.02 TeV
 - pp: PRD 105 (2022) 1, L011103
 - ► p-Pb:
 - D^0 , Λ_c^+ (new): measured down to $p_T = 0$
 - D⁺, D⁺_s: extrapolated to $p_{\rm T} = 0$ using POWHEG+PYTHIA
 - ► $\Xi_c^0 \text{ not measured} \rightarrow \sigma_{pp}(\Xi_c^0) \times 208 \times R_{pPb}(\Lambda_c^+)$

- pp and p-Pb results compatible
- ► Significant baryon enhancement w.r.t. e⁺e⁻ and e⁻p

Charm fragmentation fractions not universal !

[1] B factories: EPJC 76 no. 7, (2016) 397

[2] LEP: EPJC 75 no. 1, (2015) 19

HENPIC - Jianhui Zhu

$c\bar{c}$ production cross section and R_{pPb}

Results in pp@2.76 & 7 TeV from D mesons updated with FFs from pp@5.02 TeV

~40% increase driven by observed baryon enhancement

On upper edge of FONLL^[3] and NNLO^[4] calculations HENPIC - Jianhui Zhu

[5] ALICE non-prompt D: JHEP 05 (2021) 220 [6] ALICE non-prompt J/ψ : JHEP 11 (2015) 065 [7] ALICE b→e: PLB 721 (2013) 13-23 [8] ALICE dielectrons: PRC 102 (2020) 5, 055204 [9] PHENIX: PRL (2009) 103, 082002 [10] UA1: PLB 256 (1991) 121-128 [11] CDF: PRL 91 (2003) 241804

- Nuclear shadowing effect
 - p-Pb not obvious, $R_{pPb}(c\bar{c})$ compatible with unity
 - $c\bar{c}$ in Pb-Pb would be interesting to see this effect

HF production and hadronisation with ALICE at the LHC

bb production cross section

Described widely by FONLL^[1] and NNLO^[2] calculations

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

JHEP 05 (2021) 220

[1] FONLL: JHEP 10 (2012) 137 [2] Beauty NNLO: JHEP 03 (2021) 029

Non-prompt Λ_c^+ production in p-Pb@5.02 TeV

- Non-prompt Λ_c^+
 - $p_{\rm T}$ dependence well reproduced by theoretical calculations, same as pp

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

Non-prompt $\Lambda_{\rm c}^+ R_{\rm pPb}$

Compatible with unity and with prompt $\Lambda_c^+ R_{pPb}$ within the large uncertainties

Pb-Pb collisions

Non-strange[®]charm meson to probe hadronisation^{rtainty not shown}

- D^+/D^0 : flat distribution, NOT modified in QGP, described by SHMc
 - $p_{\rm T}$ spectra of charm hadrons are modelled with a core-corona approach
 - Resonance decays computed with FastReso package
 - Low $p_{\rm T}$: dominated by the core contribution described with a Blast-Wave function
 - High $p_{\rm T}$: corona contribution more relevant and is parametrised from pp measurements

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

43

JHEP 01 (2022) 174

Charm-strange meson to probe hadronisation

D_{s}^{+}/D^{0} : hint of enhancement in $2 < p_{T} < 8 \text{ GeV}/c$ in 0-10% (30-50%) Pb-Pb by 2.3 σ (2.4 σ)

Described by models including strangeness enhancement and <u>fragmentation + recombination</u>

- Catania and LGR (coalescence implemented with Wigner formalism) describe data
- PHSD (coalescence implemented with MC) describe data

HENPIC - Jianhui Zhu

TAMU (coalescence implemented with a Resonance Recombination Model) significantly overestimates data

HF production and hadronisation with ALICE at the LHC

Non-strange charm baryon to probe hadronisation

 Λ_c^+/D^0 : enhanced in $4 < p_T < 8 \text{ GeV}/c$ for central Pb-Pb w.r.t. pp by 3.7σ

- Also seen for light-flavor baryon-to-meson ratios
- Described by TAMU
- The shapes of the Catania and SHMc predictions agree qualitatively

 $\Xi_c^{0,+}/D^0$ and Ω_c^0/D^0 vs. p_T in Pb-Pb with Run 3 data to further constrain hadronisation processes

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

arXiv:2112.08156

Λ_c^+/D^0 vs. multiplicity for integrated and intermediate p_T

- $p_{\rm T}$ -integrated $\Lambda_c^+/{
 m D}^0$ ratio compatible with a flat behaviour versus event multiplicity, similar to $\Lambda/{
 m K}_s^0$
- Same mechanism in all collision systems? Modified hadronisation? Radial flow?

 $\Xi_c^{0,+}/D^0$ and Ω_c^0/D^0 vs. multiplicity for integrated and intermediate $p_{\rm T}$ with Run 3 data to further constrain hadronisation processes

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

Re-distribution of $p_{\rm T}$ that acts differently for baryons and mesons, no modification of overall $p_{\rm T}$ -integrated yield

$p_{\rm T}$ -integrated $\Lambda_{\rm c}^+/{\rm D}^0$ vs. multiplicity comparing with models

Flat trend reproduced by models implementing fragmentation+coalescence and SHM predictions

PYTHIA 8 CR-BLC 2 predicts enhancement with multiplicity

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

mentation+coalescence and SHM predictions iplicity

Summary (I)

Charm hadronisation mechanisms need further investigations

	Models	$\Lambda_{ m c}/{ m D}^{ m 0}$ (no s)	$\Sigma_{ m c}/{ m D}^{ m 0}$ (no s)	Ξ_c/D^0 (s)	$\Omega_{ m c}/{ m D}^{ m 0}$ (ss)
pp	PYTHIA8 Monash				
	PYTHIA8 CR Mode	\odot	\odot		
	SHM+RQM	<u>:</u>	\odot		_
	QCM	<u>:</u>	<u>:</u>		
	Catania	\odot	<u>:</u>	<u>:</u>	• <u>·</u> ·
	Models	D+/D ⁰ (no s)	$D_{s}/D^{0}(s)$ Λ	_c /D ⁰ (no s))
Pb-Pb	SHMc	\odot			
	TAMU	_		\odot	_
	Catania	_			_
	LGR				
	PHSD		\odot		

HF production and hadronisation with ALICE at the LHC

HENPIC - Jianhui Zhu

Summary (II)

- Charm hadronisation NOT a universal process among collision systems
- by FONLL and NNLO calculations
- Nuclear shadowing effect probed by $c\bar{c}$ in p-Pb not obvious, interesting to see in Pb-Pb
- yield
 - Need measurements of $\Xi_c^{0,+}/D^0$ and Ω_c^0/D^0 to confirm
 - Same mechanism in all collision systems? Modified hadronisation? Radial flow?
- collisions

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

Total charm and beauty cross sections in pp and p-Pb at different collision energies are described widely

Re-distribution of $p_{\rm T}$ that acts differently for baryon and mesons, no modification of overall $p_{\rm T}$ -integrated

Interesting to see charm baryon-to-meson production ratio in extremely low and high multiplicity in pp

Outlook: KF particle + Strangeness tracking (ITS2)

HENPIC - Jianhui Zhu

HF production and hadronisation with ALICE at the LHC

.