From Open Quantum System to Quarkonium Transport inside Quark-Gluon Plasma

Xiaojun Yao

HENPIC Online Talk Feb. 6, 2020

XY B.Müller, 1709.03529, 1811.09644

XY W.Ke Y.Xu S.Bass B.Müller, 1807.06199, 1812.02238

XY T.Mehen, 1811.07027

Introduction: Quarkonium

• 1974 discovery of J/Ψ at BNL and SLAC: bound state of charm anticharm —> Nobel prize in 1976

 Ground and lower excited states spectrum can be understood from nonrelativistic potential models:

Cornell potential (modified Coulomb)

$$V(r) = -\frac{A}{r} + Br$$

 Static screening: suppression of color attraction —> melting at high T —> reduced production —> thermometer

$$T = 0: V(r) = -\frac{A}{r} + Br \longrightarrow T \neq 0:$$
 Confining part flattened

- Static screening: suppression of color attraction —> melting at high T —> reduced production —> thermometer
- **Dynamical screening**: dissociation induced by dynamical process, imaginary potential

- Static screening: suppression of color attraction —> melting at high T —> reduced production —> thermometer
- Dynamical screening: dissociation induced by dynamical process, imaginary potential
- Recombination: unbound heavy quark pair forms quarkonium, can happen below melting T

- Static screening: suppression of color attraction —> melting at high T —> reduced production —> thermometer
- Dynamical screening: dissociation induced by dynamical process, imaginary potential
- Recombination: unbound heavy quark pair forms quarkonium, can happen below melting T, crucial for phenomenology and theory consistency

Phenomenological Success of Transport Theory

Evolution of distribution in phase space

$$(\partial_t + \boldsymbol{v} \cdot \nabla) f(\boldsymbol{x}, \boldsymbol{p}, t) = -C^{(-)}(\boldsymbol{x}, \boldsymbol{p}, t) + C^{(+)}(\boldsymbol{x}, \boldsymbol{p}, t)$$

Dissociation Recombination

X.Du, R.Rapp, M.He,1706.08670 B.Krouppa, M.Strickland,1605.03561

Why transport equation successful? Connection to QCD?

Phenomenological Success of Transport Theory

Evolution of distribution in phase space

$$(\partial_t + \boldsymbol{v} \cdot \nabla) f(\boldsymbol{x}, \boldsymbol{p}, t) = -C^{(-)}(\boldsymbol{x}, \boldsymbol{p}, t) + C^{(+)}(\boldsymbol{x}, \boldsymbol{p}, t)$$

Dissociation Recombination

Two screening effects from thermal loops

quarkonium propagator in QGP

Real & imaginary parts —> static screening & dissociation

Recombination modeled, calculate from QCD consistently with dissociation?

Put screening and recombination into same framework?

Open Quantum System

 $H = H_S + H_E + H_I$

Two Limits of Open Quantum System Evolution

Two Limits of Open Quantum System Evolution

Two Limits of Open Quantum System Evolution

During system relaxation, environment correlation has lost —> Markovian process

During system relaxation, heavy quark pair has revolved many periods, then it makes sense to use the concept of a well-defined bound state in the calculation

 $\tau_S \gg \tau_E$

System only feels low frequency part of environment correlation

Separation of Scales

Separation of Scales

Separation of Scales

Quantum Optical Limit

Separation of scales $M \gg Mv \gg Mv^2 \gtrsim T$

NR & multipole expansions of QCD

$$\begin{array}{lll} \mbox{Relaxation rate} & (grT)^2T \lesssim \alpha_s v^2T \ll T \lesssim Mv^2 & \mbox{So} & \tau_R \gg \tau_E \\ & \tau_R \gg \tau_S \end{array} \end{array}$$

Arguments breakdown if (1) large log: Mv —> T, VA has no running at one loop (2) large pT: medium boosted in rest frame of quarkonium, constrain to low pT

Lindblad equation:

$$\rho_{S}(t) = \rho_{S}(0) - i \left[tH_{S} + \sum_{a,b} \sigma_{ab}(t)L_{ab}, \rho_{S}(0) \right] + \sum_{a,b,c,d} \gamma_{ab,cd} \left(L_{ab}\rho_{S}(0)L_{cd}^{\dagger} - \frac{1}{2} \{ L_{cd}^{\dagger}L_{ab}, \rho_{S} \} \right)$$

Lindblad equation:

$$\rho_S(t) = \rho_S(0) - i \Big[t H_S + \sum_{a,b} \sigma_{ab}(t) L_{ab}, \rho_S(0) \Big] + \sum_{a,b,c,d} \gamma_{ab,cd} \Big(L_{ab} \rho_S(0) L_{cd}^{\dagger} - \frac{1}{2} \{ L_{cd}^{\dagger} L_{ab}, \rho_S \} \Big)$$

Markovian approximation

Wigner transform (smearing for positivity)

$$f_{nl}(\boldsymbol{x},\boldsymbol{k},t) \equiv \int \frac{d^3 k'}{(2\pi)^3} e^{i\boldsymbol{k}'\cdot\boldsymbol{x}} \langle \boldsymbol{k} + \frac{\boldsymbol{k}'}{2}, nl, 1 | \rho_S(t) | \boldsymbol{k} - \frac{\boldsymbol{k}'}{2}, nl, 1 \rangle$$

Semiclassical limit

Boltzmann transport equation

$$\frac{\partial}{\partial t} f_{nls}(\boldsymbol{x}, \boldsymbol{k}, t) + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} f_{nls}(\boldsymbol{x}, \boldsymbol{k}, t) = \mathcal{C}_{nls}^{(+)}(\boldsymbol{x}, \boldsymbol{k}, t) - \mathcal{C}_{nls}^{(-)}(\boldsymbol{x}, \boldsymbol{k}, t)$$

Success of transport equation in quarkonium phenomenology

Separation of scales

 $M \gg M v \gg M v^2 \gtrsim T$

Coupled with Transport of Open Heavy Flavor

21 **time**

Coupled with Transport of Open Heavy Flavor

22 **time**

Detailed Balance and Thermalization

Setup:

- QGP box w/ const T=300 MeV, 1S state & b quarks, total b flavor = 50 (fixed)
- Initial momenta sampled from uniform distributions 0-5 GeV
- Turn on/off open heavy quark transport

Dissociation-recombination interplay drives to detailed balance

Heavy quark energy gain/loss necessary to drive kinetic equilibrium of quarkonium

Collision Event Simulation

• Initial production:

PYTHIA 8.2: NRQCD factorization

Sjostrand, et al, Comput. Phys.Commun.191 (2015) 159 Bodwin, Braaten, Lepage Phys. Rev. D 51, 1125 (1995)

Nuclear PDF: EPS09 (cold nuclear matter effect) Eskola, Paukkunen, Salgado, JHEP 0904 (2009) 065

Trento, sample position, hydro. initial condition

Moreland, Bernhard, Bass, Phys. Rev. C 92, no. 1, 011901 (2015)

Medium background: 2+1D viscous hydrodynamics (calibrated)

Song, Heinz, Phys.Rev.C77,064901(2008) Shen, Qiu, Song, Bernhard, Bass, Heinz, Comput. Phys. Commun.199,61 (2016) Bernhard, Moreland, Bass, Liu, Heinz, Phys. Rev. C 94,no.2,024907(2016)

 Study bottomonium (larger separation of scales); include 1S 2S; ~26% 2S feed-down to 1S in hadronic phase (from PDG); initial production ratio 1S : 2S
between 3:1 to 4:1 (PYTHIA)

Upsilon in 2760 GeV PbPb Collision

Fix $\alpha_s = 0.3$ Tune $T_{melt}(2S) = 210 \text{ MeV}$ Tune $V_s = -C_F \frac{0.42}{r}$

Upsilon in 5020 GeV PbPb Collision

Upsilon in 200 GeV AuAu Collision

Use same set of parameters

Cold nuclear matter effect ~ 0.72 (use p-Au data of STAR)

STAR measures 2S+3S

STAR Talks at QM 17&18

Upsilon(1S) Azimuthal Anisotropy in 5020 GeV PbPb

v2 from path dependence recombination from uncorrelated b-quarks negligible (different for charm)

Diffusion of Quarkonium

Elastic scattering

Second order in r : neglected in numerical calculations

Diffusion coefficient: square of momentum transferred per unit time

$$\frac{\kappa}{T^3} < 0.1$$

Conclusion

- Open quantum system approach for quarkonium inside QGP
 - Quantum optical limit
 - Separation of scales explains why transport equation works $M \gg Mv \gg Mv^2 \gtrsim T$
 - Lindblad equation —> Boltzmann transport equation
 - Quantum Brownian motion limit

Y.Akamatsu, M.Asakawa, A.Rothkopf... J-P Blaizot, M.A.Escobedo... N.Brambilla, M.A.Escobedo, A.Vairo... R.Katz, P-B Gossiaux...

- Phenomenological results from coupled transport equations
- Future: add 1P, 2P, 3S with more complete feed-down network

XY W.Ke Y.Xu S.Bass B.Müller, in preparation

Quantum Brownian Motion Limit

Quantum evolution of heavy quark pair density matrix (not necessarily Lindblad)

Y.Akamatsu, M.Asakawa, A.Rothkopf...

Diffusion Coefficient of Upsilon(1S)

$$\kappa = \frac{32}{729\pi^5} \alpha_s^2 \int dq \, q^8 n_B(q) (1 + n_B(q)) \left(\mathcal{P} \int dp_{\rm rel} \frac{p_{\rm rel}^2 |\langle \Psi_{\boldsymbol{p}_{\rm rel}} | \boldsymbol{r} | \psi_{nl} \rangle |^2 (|E_{nl} + \frac{\boldsymbol{p}_{\rm rel}^2}{M}|)^2}{(|E_{nl} + \frac{\boldsymbol{p}_{\rm rel}^2}{M}|)^2 - q^2} \right)^2$$

Neglect q^2 in denominator $\kappa'(1S) = \frac{T^3 (\pi T a_B)^6}{N_c^2} \frac{50176\pi}{1215} \frac{2}{C_F^2}$

arXiv:0808.0957, K.Dusling, J.Erdmenger, M.Kaminski, F.Rust, D.Teaney and C.Young

Expansion in q asymptotic