

Recent heavy-flavor results from ATLAS

Qipeng Hu (胡启鹏) HENPIC Seminar Jan 16, 2020

Ш

Π

Introduction — heavy flavor in HIC

Two of the most important and simplest phenomena in HIC: collective flow and jet quenching, quantified by v_n and R_{AA}

Open heavy flavors (charm and bottom) are produced early in the collision. *R*_{AA} and *v*_n of heavy flavor provide unique insights into entire evolution of QGP: transport property, energy loss, hadronization, etc.

Precise charm and bottom results in different systems would provide tighter constrains on various model calculations.

Introduction — quarkonium in HIC

Quarkonium states are clean and easy to trigger experimentally, can also be used to probe QGP medium evolution via two competing processes:

- (Sequential) Dissociation
- Recombination

Clear understanding requires: 1) proper medium modeling 2) simultaneous description of full set of quarkonium observations

ATLAS collaboration

ATLAS datasets related to this talk

Year	Species	CoM energy per nucleon pair [TeV]	Int. Luminosity [nb ⁻¹]	No. of collisions per bunch-crossing
2015	Pb+Pb	5.02	0.49	0.001-0.004
2016	p+Pb	8.16	170	0.05-0.2
2017	рр	13	150,000	2
2017	рр	5.02	260,000	2
2018	Pb+Pb	5.02	1.38	0.001-0.005

Active ATLAS member: ~5600 Active member on heavy ion: ~50 Heavy ion papers / ATLAS papers: 7% (63/910)

Boulder ATLAS heavy ion group:

- Jet/prompt photon
- HF/quarkonia
- Flow in small systems
- · UPC

ATLAS detector

Typical kinematic boundaries of reco. objects in heavy ion collisions:

- charged tracks: p_T > 400 MeV, $|\eta|$ < 2.5
- muon: $p_{\rm T} > 4$ GeV, $|\eta| < 2.0$
- e/γ : $p_T > 25$ GeV, $|\eta| < 1.37$ & $1.52 < |\eta| < 2.37$
- jet: $p_{\rm T} > 40 {
 m GeV}, |\eta| < 2.8$

For muon with $p_T = 5$ GeV, $\eta = 0$:

- d_0 resolution ~ 0.020 mm
- ID p_T resolution ~ 2%
- MS p_T resolution ~ 6%

Azimuthal anisotropy of heavy-flavor decay muons

- Pb+Pb analysis: <u>ATLAS-CONF-2019-053</u>
- pp analysis: <u>https://arxiv.org/abs/1909.01650</u>

HF muon identification

Background contributions:

- π/K punch-through (leading)
- π/K decay-in-flight
- muon from EW/quarkonium

Momentum imbalance: $\rho = (p_T^{ID} - p_T^{MS})/p_T^{ID}$ Transverse impact parameter: d_0

HF muon v₂ in Pb+Pb

 $\frac{1}{N_X^{\mu}} \frac{\mathrm{d}N_X^{\mu}}{\mathrm{d}(n(\phi - \Psi_n))} = 1 + 2v_n^{\mathrm{raw}} \cos\left(n(\phi - \Psi_n)\right)$

- 2015+2018 Pb+Pb data •
- $v_{\rm n}$ extracted from event-plane method, • corrected for resolution
- Good agreement with Run1 ATLAS results •

HF muon v₂ in Pb+Pb

- Separate charm and bottom muons in $\Delta \phi$, extract v_n for charm and bottom muon
- charm muon $v_2 >$ bottom muon $v_2 > 0$ at low p_T
- charm muon $v_2 \sim$ bottom muon v_2 at high p_T

HF flow V₃

- 2-5% charm muon v_3
- Bottom muon v₃ is consistent with 0 within uncertainties in all centralities

HF muon vs. HF hadron

Where does heavy quark go?

flavor	decay mode	Branching fraction	comments
	$b \to X l \nu$	11%	easy to trigger
h quark	$b \to c \to X l \nu$	8%	
<i>D</i> quark	$b \to X D^0$	60%	$BR\;(D^0\to K^-\pi^+)=4\%$
6. Y. 1	$b \to X \psi \to \mu^+ \mu^-$	0.07%	easy to trigger
a quark	$c \rightarrow X l \nu$	10%	easy to trigger
<i>c</i> quark	$c \to X D^0$	55%	BR $(D^0 \to K^- \pi^+) = 4\%$

Decay leptons in comparison to D^0 or non-prompt J/ψ :

- Easy to trigger but no easy access to low p_T in ATLAS, kinematic smearing due to the HF hadron semileptonic decay
- Probing c quark: Better precise in more central than prompt D^0
- Probing b quark: Similar systematic control as non-prompt J/ ψ , but more statistics; better systematic control than non-prompt D^0

meson/muon difference is consistent with model expectation¹¹

Comparison to model calculations

•

DREENA-B (1805.04786): 1+1D medium, dynamical radiative + collisional energy loss

Comparison to model calculations

•

•

DREENA-B (<u>1805.04786</u>): 1+1D medium, dynamical radiative + collisional energy loss **DAB-MOD** (<u>1906.10768</u>): 2+1D medium, TRENTO initial geometry, Langevin with $2\pi TD_s = 2.23$ (2.79) for charm (bottom), no energy loss included

Comparison to model calculations

•

•

Energy loss modeling seems to be the key to describe our data

DREENA-B (<u>1805.04786</u>): 1+1D medium, dynamical radiative + collisional energy loss **DAB-MOD** (<u>1906.10768</u>): 2+1D medium, TRENTO initial geometry, Langevin with $2\pi TD_s = 2.23$ (2.79) for charm (bottom), no energy loss included

POWLANG (<u>1712.00588</u>): 2+1D medium, Glauber-MC initial geometry, Langevin with $2\pi TD_s \sim 3$, collisional energy loss only

Correlations between c and b results

Due to the methodology of the b/c separation technics, the results are anticorrelated. Statistical correlation of the results are also provided by ATLAS for theorists to perform a simultaneous comparison to charm and bottom results

HF muon flow in small systems

In small systems (*pp* and *p*+Pb): 2PC + $\Delta \eta$ gap + non-flow subtraction

$$C(\Delta\phi) = FC^{\text{periph}}(\Delta\phi) + G\left\{1 + 2\sum v_{n,n}\cos(n\Delta\phi)\right\}$$

 $v_{n,n}$ factories and v_n is extracted.

Assumptions of non-flow subtraction:

- Universal jet-correlation shape
- Non-zero flow for low multiplicity (difference wrt. CMS)

HF muon flow extraction in pp

- Low pile-up pp collision data at 13 TeV collected in 2017
- Correlation coefficients v_{n,n} is additive, so a linear combination of different contributions:

$$v_{2,2} = f^{\text{sig}} v_{2,2}^{\text{sig}} + (1 - f^{\text{sig}}) v_{2,2}^{\text{bkg}}$$
$$v_{2,2}^{\text{sig}} = f^b v_{2,2}^b + (1 - f^b) v_{2,2}^c$$

- Intervals in momentum imbalance to allow variation on signal fraction
- Intervals in impact parameter to allow variations on b-fraction

Inclusive HF muon flow in pp

• Results cover $4 < p_{\rm T} < 7$ GeV and $60 < N_{\rm ch}^{\rm rec} < 120$

ATLAS

pp vs. p+Pb

- Smaller v_2 for muons than charged hadron in pp and p+Pb
- Similar difference between *pp* and *p*+Pb

charm/bottom muon flow in pp

- Charm muon $v_2 > 0$, approaching 0 at high p_T , no strong multiplicity dependence
- Bottom muon $v_2 \sim 0$
- HF muon flow in Pb+Pb with similar kinematic can be described by energy loss (useless in pp); Will IS correlation able to describe large charm v₂ and zero bottom v₂?

Closure test in Pythia8

 Closure test in Generator level and reconstruction level Pythia events excludes obvious biases from selection/non-flow subtraction

HF muon vs. charged hadron in pp

- Inclusive HF muon $v_2 <$ inclusive charged hadron v_2
- Charm muon v₂ ~ inclusive charged hadron v₂, despite small kinematic smearing from hadron to muon; bottom muon v₂ ~ 0

What about *p*+Pb

- Inclusive HF muon v_2 < charged particle v_2
- prompt D⁰ v₂ ~ charged particle v₂
- charm $v_2 \sim$ charged particle $v_2 >$ bottom v_2 (?) 0

Non-prompt $D^0 v_2$ from CMS has large uncertainty. HF muon from bottom decays may be the only way to probe bottom with good precision without more data

	Yields	Flow			
Pb+Pb	<i>Phys. Rev. C</i> 98 (2018) 044905 To be updated with b/c separation	ATLAS-CONF-2019-053			
p+Pb	- To be analyzed	ATLAS-CONF-2017-006 To be updated with b/c separation			
pp	<i>Phys. Rev. C</i> 98 (2018) 044905 To be updated with b/c separation	<u>1909.01650</u>			

To be completed in 1~2 years

Upsilon Production in pp and Pb+Pb

ATLAS-CONF-2019-054

Upsilon yield extraction

- 2017 pp data and 2018 Pb+Pb data at 5.02 TeV. First Pb+Pb Upsilon results from ATLAS
- Cannot avoid overlapping between different states due to ID resolution
- pp data is used to constrain invariant mass fit in Pb+Pb
- No significant Upsilon(3S) contribution observed

Upsilon RAA

- pNRQCD + 3+1D hydro gives good descriptions of the data trends
- Cannot distinguish different η /s values due to limit experimental precision (systematics dominated)

Comparison to CMS

- Comparable with CMS within uncertainties while the central values are systematic lower
- Good confirmation of our control on the muon performance in 2018 Pb+Pb data, benefit future muon based analysis

Bottomonium vs. charmonium

- Upsilon(1S) $R_{AA} \sim \text{prompt J}/\psi R_{AA}$
- A coincidence of admixture of less suppressed ground state and more suppressed excited state?

Summary

- Pb+Pb: non-zero bottom muon v₂ and zero v₃ observed in Pb+Pb
- pp: zero bottom muon v₂ while charm muon v₂ is comparable with inclusive charged hadrons
- Upsilon RAA in agreement with CMS and model calculations

预祝各位老师、同仁新春快乐!

80

**

m

7

Backup

ATLAS ID performance

Eur. Phys. J. C 77 (2017) 332

Magnetic fields

Barrel Toroid

- = 25.3 m length
- = 20.1 m outer diameter
- = 8 separate coils
- = 1.08 GJ stored energy
- = 370 tonnes cold mass
- 830 tonnes weight
- 4 T magnetic field on superconductor
- = 56 km Al/NbTi/Cu conductor
- = 20.5 kA nominal current
- = 4.7 K working point temperature

= 100 km superconducting wire

End-cap Toroid

- = 5.0 m axial length
- = 10.7 m outer diameter
- = 8 coils 8 coils in a common cryostat each
- = 0.25 GJ stored energy in each
- = 160 tonnes cold mass each
- = 240 tonnes weight each
- = 4 T magnetic field on superconductor
- 13 km Al/NbTi/Cu conductor each
- = 20.5 kA nominal current
- = 4.7 K working point temperature

Central Solenoid Magnet

- Bends charged particles for momentum measurement
- 5.3 long, 2.4 m diameter, 4.5 cm thick
- = 5 tonne weight
- 2 tesla (T) magnetic field with a stored energy of 38 megajoules (MJ)
- = 9 km of superconducting wire
- Nominal current: 7.73 kiloampere (kA)

ATLAS muon system

Trigger chambers RPCs $|\eta| < 1.05$ (barrel) TGCs $1.05 < |\eta| < 2.4$ (end-ca)

Precision chambers MDTs $|\eta| < 1.05$ CSCs $1.05 < |\eta| < 2.4$

ATLAS RPC acceptance ~ 80% overall

DREENA-B

ATLAS

DAB-MOD — V_2

DAB-MOD — V₃

energy loss in DAB-MOD

Flow coefficient extraction in pp

$$v_{2,2} = f^{\text{sig}} v_{2,2}^{\text{sig}} + (1 - f^{\text{sig}}) v_{2,2}^{\text{bkg}}$$
$$v_{2,2}^{\text{sig}} = f^b v_{2,2}^b + (1 - f^b) v_{2,2}^c$$

PYTHIA Closure in pp

Hadron to muon smearing in Pythia

 p_{T} shift and smearing

azimuthal angle smearing