中国高能核物理网络论坛 (High Energy Nuclear Physics in China, HENPIC)

Charm-Hadron Production in pp & AA Collisions

Min He

Nanjing University of Sci. & Tech., Nanjing, China

Based on recent work done in collaboration with Ralf Rapp of Texas A&M University

Contents

1. Introduction

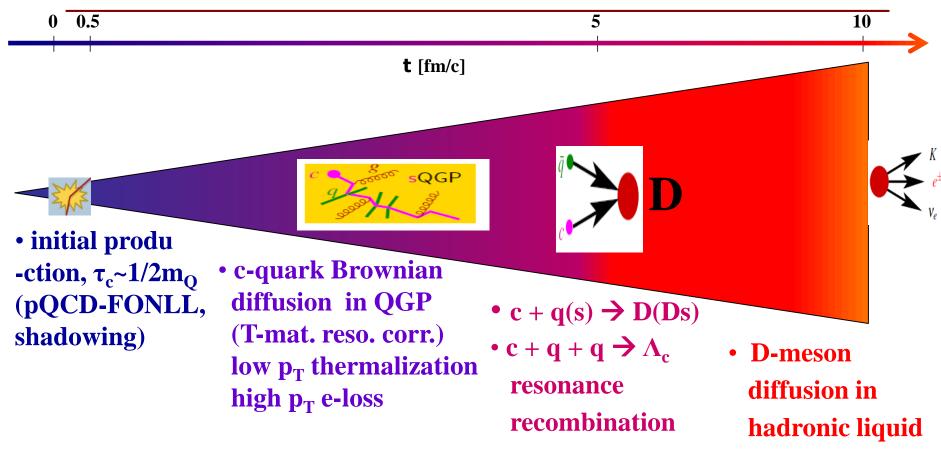
□ Heavy quark probes & charm hadronization

2. Charm-hadron production in pp

SHM augmented with RQM, vs PDG

Charm-baryon enhancement

3. Charm-hadron production in AA

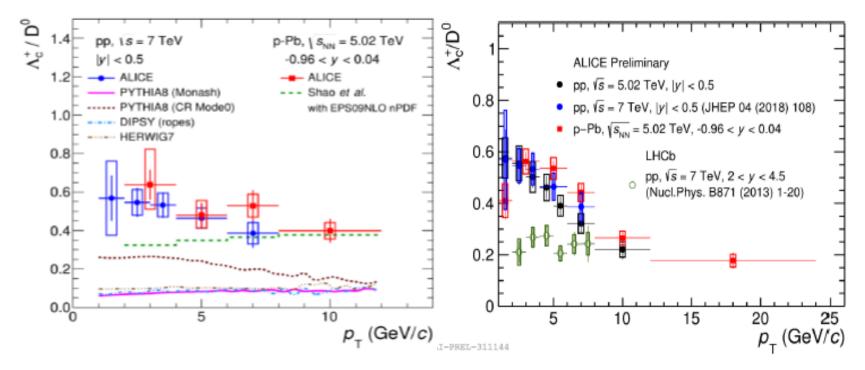

- **2- & 3-body RRM, equilibrium mapping**
- □ Space-momentum correlations
- **D** Event-by-event implementations of hydro-Langevin-RRM
- **RQM** augmented baryons

4. Results

□ Collectivity pattern:R_{AA}, v₂

 \square p_T-dependent charm hadro-chemistry:D_s⁺/D⁰, Λ_c^+/D^0

Heavy flavor transport in hot QCD matter



Calibrated & tagged probes preserving memory of interaction history

> Trans. coeffi. $\mathcal{D}_{s}(2\pi T)$: coupling strength > probe in-medium QCD force

Charm-hadron production in pp collisions

□ Enhanced Λ_c⁺/D⁰ w.r.t. pQCD based MC event generators □ Already a puzzle in pp? → statistical coalescence (SHM) in a quark-rich environment?!

□ Standard SHM (with PDG only spectra) $\Lambda_c^+/D^0 \sim 0.22$ too small P.B.-M. □ Tension between ALICE (mid-rapidity) vs LHCb (forward-rapidity)?

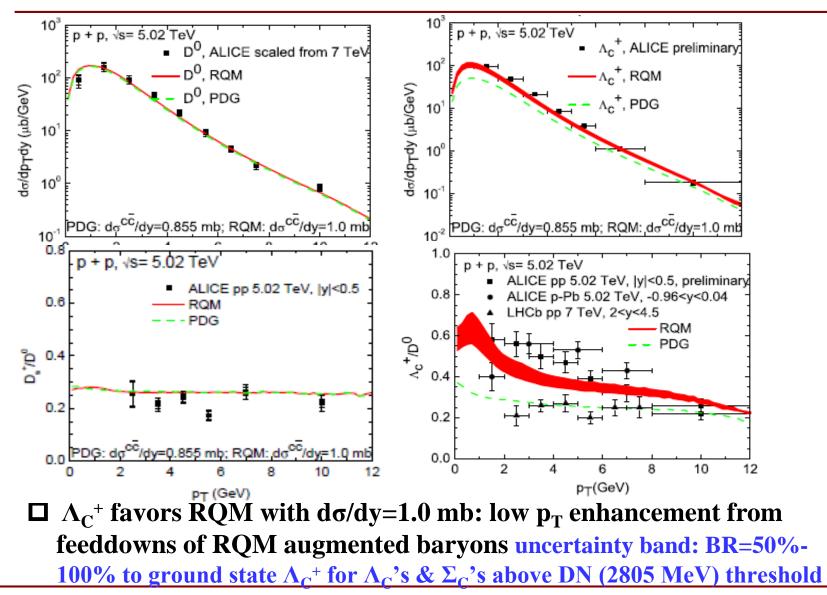
Charm-hadron production: pp SHM

□ PDG: $5 \Lambda_C$ (I=0), $3 \Sigma_C$ (I=1), $8 \Xi_C$ (I=1/2), $2 \Omega_C$ (I=0) → missing baryons?! <u>RQM</u>: 18 extra Λ_C , 42 extra Σ_C , 62 extra Ξ_C , 34 extra Ω_C up to 3.5 GeV → supported by lattice PRD 84 (2011) 014025; PoS LAT. 2014 (2015) 084; PLB 737 (2014) 210

D Statistical Hadronization Model (SHM): $T_{\rm H}=170 \text{ MeV} \ n_i = \frac{d_i}{2\pi^2} m_i^2 T_H K_2(\frac{m_i}{T_{\rm H}})$

$n_i (\cdot 10^{-4} \text{ fm}^{-3})$	D^0	D^+	D*+	D_s^+	Λ_c^+	$\Xi_c^{+,0}$	Ω_c^0
PDG(170)	1.161	0.5098	0.5010	0.3165	0.3310	0.0874	0.0064
RQM(170)	1.161	0.5098	0.5010	0.3165	0.6613	0.1173	0.0144

□ Strong feeddowns of excited states all included: BR=100% to $\Lambda_{\rm C}^+$ for all $\Lambda_{\rm C}$ & $\Sigma_{\rm C}$ even above DN (2805 MeV) threshold


-- Strangeness supp. $\gamma_s=0.6$

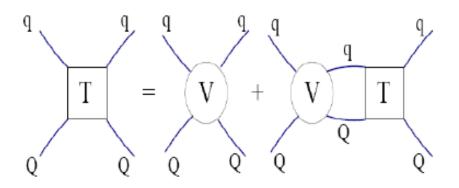
r _i	D^+/D^0	D^{*+}/D^{0}	D_{s}^{+}/D^{0}	Λ_c^+/D^0
PDG(170)	0.4391	0.4315	0.2736	0.2851
RQM(170)	0.4391	0.4315	0.2726	0.5696

FONLL fragmentation of charm quarks into all kinds of charm-hadrons relative weight: according to the SHM thermal densities

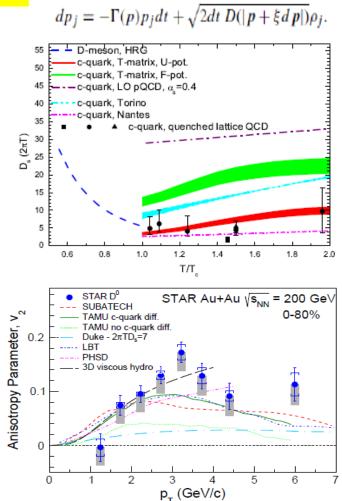
& Decay simulations of all excited states to ground state D⁰ , D⁺, D_s⁺, Λ_{C}^{+} , $\Xi_{C} \& \Omega_{C}$

Results: pp 5.02 TeV collisions

Charm-hadron production in AA collisions


Charm quark diffusion in QGP: T-matrix & Langevin

- □ Hadronization: 2- & 3-body RRM
- □ Space-momentum correlations (SMCs)
- □ Analysis: role of SMCs & RQM augmented baryons
- **Results & observables**


Charm in QGP: transport coeffi. & diffusion

Langevin + hydro simulation down to $T_c=170 \text{ MeV}$ fluid rest frame updates \rightarrow boost to lab frame

□ Lattice-contrained Q-q/g T-matrix

- **D** p- and T-dependent transport with $\mathcal{D}_{s}(2\pi T) \sim 2-4$ near T_{pc}
- Observed large D-meson v₂ --strong coupling of charm with QGP near T_{pc} He, Fries, Rapp

 $dx_j = \frac{p_j}{F} dt,$

Charm-hadron production in AA collisions

□ Charm quark diffusion in QGP: T-matrix & Langevin

- **Hadronization: 2- & 3-body RRM**
- □ Space-momentum correlations (SMCs)
- □ Analysis: role of SMCs & RQM augmented baryons
- **Results & observables**

Resonance Recombination Model (RRM)

□ Hadronization = Resonance formation $c\overline{q} \rightarrow Das$ the T-matrix resonant interaction between c-qbar strengthens towards T_c

Realized by Boltzmann eq. Ravagli & Rapp 2007

$$p^{\mu}\partial_{\mu}f_{M}(t,\vec{x},\vec{p}) = -m\Gamma f_{M}(t,\vec{x},\vec{p}) + p^{0}\beta(\vec{x},\vec{p})$$

→ conserving 4-mom. + recovering both kinetic & chemical equil. limit

 $\Box \text{ Generalized to 3-body } \Lambda_{c} \text{ taking advantage of light diquark correlations}$ $f_{B}(\vec{x}, \vec{p}) = \frac{E_{B}(\vec{p})}{\Gamma_{B}m_{B}} \int \frac{d^{3}p_{1}d^{3}p_{2}d^{3}p_{3}}{(2\pi)^{6}} \frac{E_{d}(\vec{p}_{12})}{\Gamma_{d}m_{d}} f_{1}(\vec{x}, \vec{p}_{1}) f_{2}(\vec{x}, \vec{p}_{2}) f_{3}(\vec{x}, \vec{p}_{3})$ $\times \sigma_{12}(s_{12}) v_{rel}^{12}(\vec{p}_{1}, \vec{p}_{2}) \sigma_{B}(s_{d3}) v_{rel}^{d3}(\vec{p}_{12}, \vec{p}_{3})|_{\vec{p}_{12} = \vec{p}_{1} + \vec{p}_{2}} \delta^{3}(\vec{p} - \vec{p}_{1} - \vec{p}_{2} - \vec{p}_{3})$

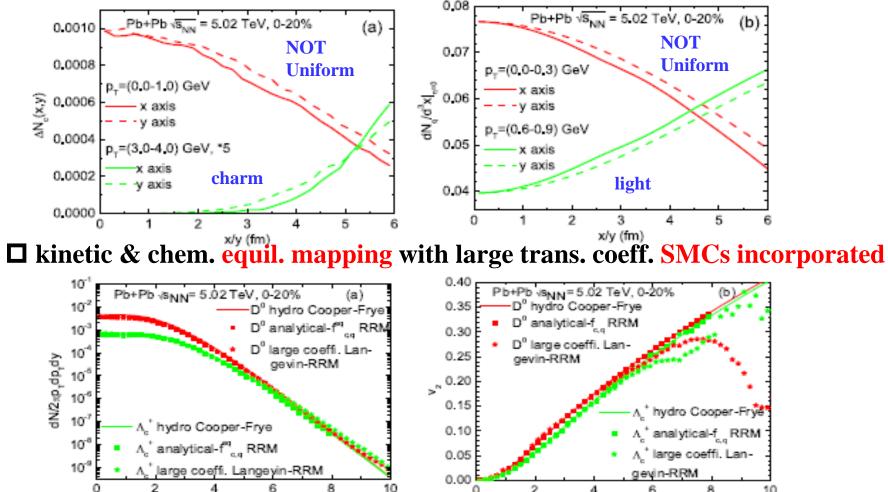
→ 3 quark distributions: 2 light thermal + Langevin c-quark

□ Charm-meson/baryon RRM implemented on hydro Cooper-Frye hadronization hypersuface at T_H=170 MeV

Charm-hadron production in AA collisions

□ Charm quark diffusion in QGP: T-matrix & Langevin

□ Hadronization: 2- & 3-body RRM


Space-momentum correlations (SMCs)

□ Analysis: role of SMCs & RQM augmented baryons

Results & observables

Space-momentum correlations (SMCs)

□ hydro-q & Langevin-c: low (high) p_T more populated in center (outer)

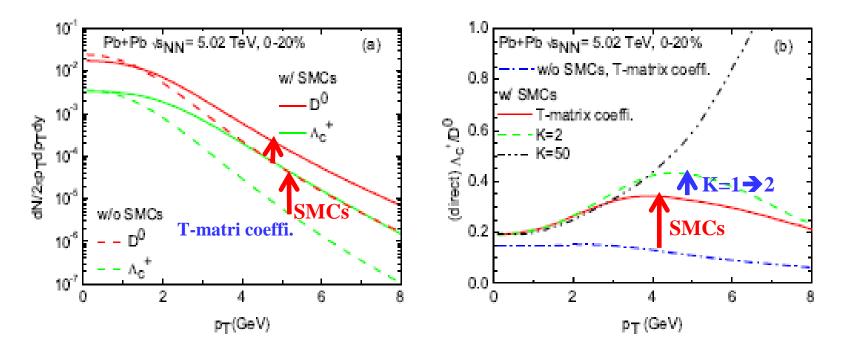
→ Observables come out as RRM predictions with realistic T-matrix coeffi.

HENPIC seminar Mar.5 2020

Charm-hadron production in AA collisions

□ Charm quark diffusion in QGP: T-matrix & Langevin

□ Hadronization: 2- & 3-body RRM

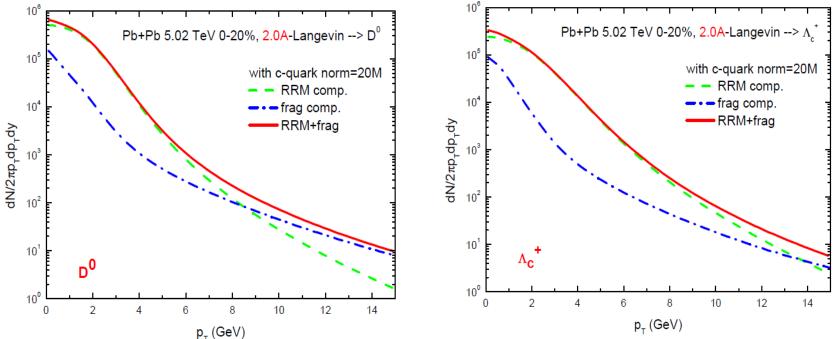

□ Space-momentum correlations (SMCs)

□ Analysis: role of SMCs & RQM augmented baryons

Results & observables

Direct D⁰ & Λ_c^+ **production via RRM**

\Box Including SMCs makes the spectra harder & enhances the ratio Λ_c^+/D_0



□ Fast-moving c-quarks [p_T~ 3-4 GeV] moving to outer part of fireball find higher-density of harder [p_T~ 0.6-0.9 GeV] light quarks for recombination

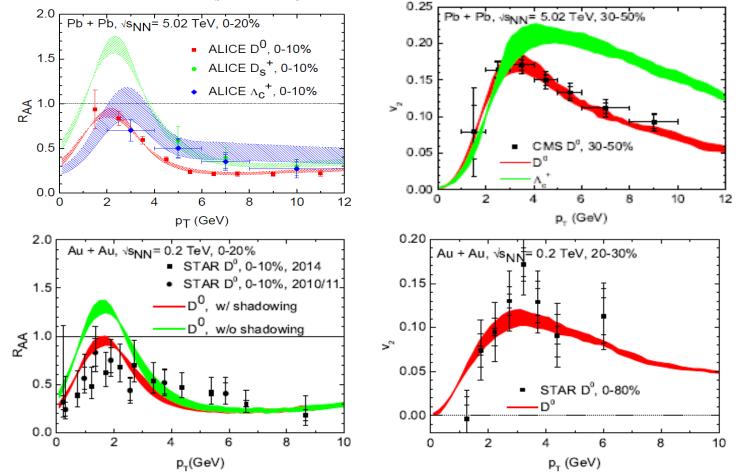
□ An effect entering squared for the recombination production of Λ_c^+ → larger enhancement for Λ_c^+ → Λ_c^+/D^0 ratio enhanced!

Recombinant vs fragmenting spectra

□ Hydro-Langevin-RRM(+fragmentation): for all charm-mesons/baryons
→ higher states decay into ground state D⁰, D⁺, D⁺_s, Λ⁺_C

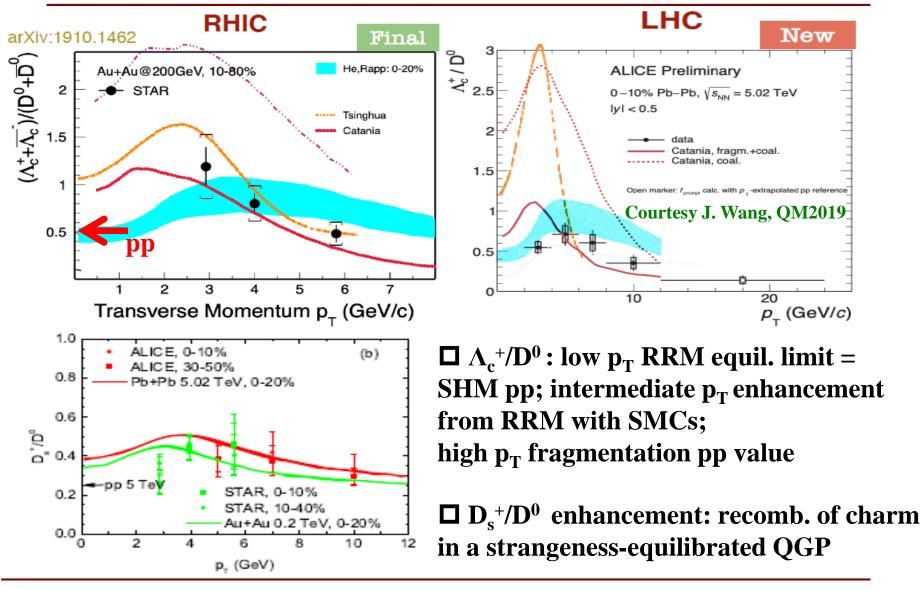
□ SMCs extend the recombination reach toward (much) higher p_T ; RQM augmented higher baryon states' RRM spectra even harder (also thanks to SMCs) → RRM & frag. cross at $p_T \sim 8.5$ (13) GeV for D⁰ (Λ_C^+)

□ Helpful for large total v₂ (weighted between RRM vs frag. components)


Charm-hadron production in AA collisions

□ Charm quark diffusion in QGP: T-matrix & Langevin

- □ Hadronization: 2- & 3-body RRM
- □ Space-momentum correlations (SMCs)
- □ Analysis: role of SMCs & RQM augmented baryons
- **Results & observables**


D⁰, **D**_s⁺ & Λ_c^+ suppression & elliptic flow

\Box Final total D⁰, D_s⁺ & Λ_c^+ , including feeddowns from all RQM baryons

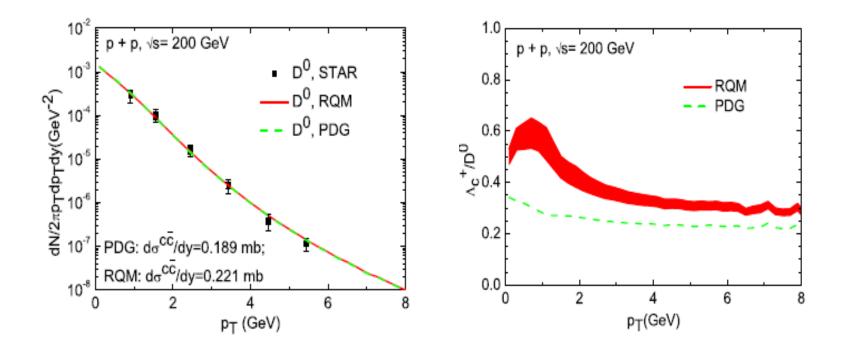
T-matrix coefficient*K-factor(=1.6), to compensate for radiative e-loss; uncertainty: **BR**=50-100% to $\Lambda_{\rm C}^+$ for $\Lambda_{\rm C}$'s & $\Sigma_{\rm C}$'s above DN (2805 MeV)

Charm-hadron ratios: $\Lambda_c^+/D_0 \& D_s^+/D^0$

Summary & outlook

>> Charm-hadron production in pp collisions

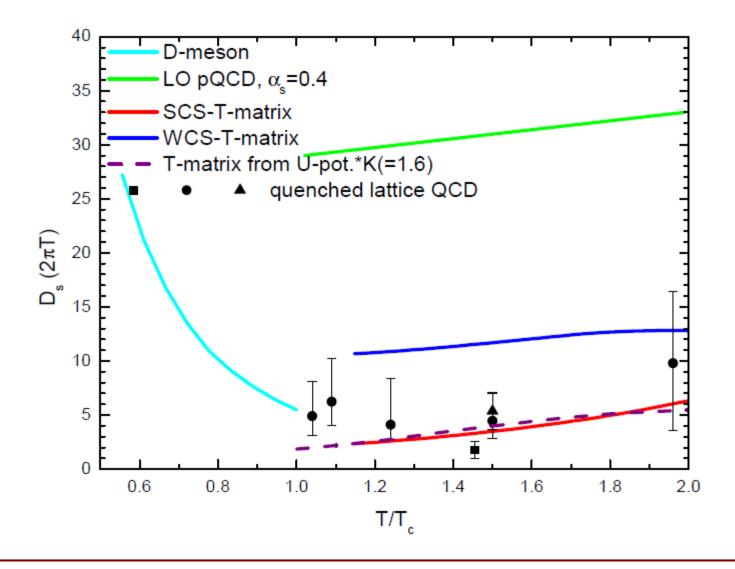
- **RQM** augmented SHM
- \Box Low p_T enhancement of Λ_c^{+} from "missing" charm-baryons feeddowns

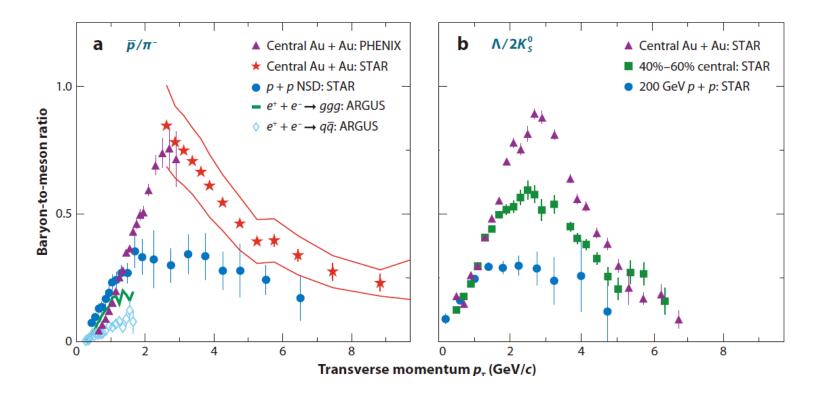

>> Charm-hadron production in AA collisions

- 3-body RRM developed, equilibrium mapping (both kinetic & chemical) ensured by 4-momentum conservation
- □ Genuine space-momentum correlations (SMCs) enhancing Λ_c^+/D^0 ; exact charm conservation implemented on an e-by-e basis

→Both have been challenging within conventional instantaneous coalescence models

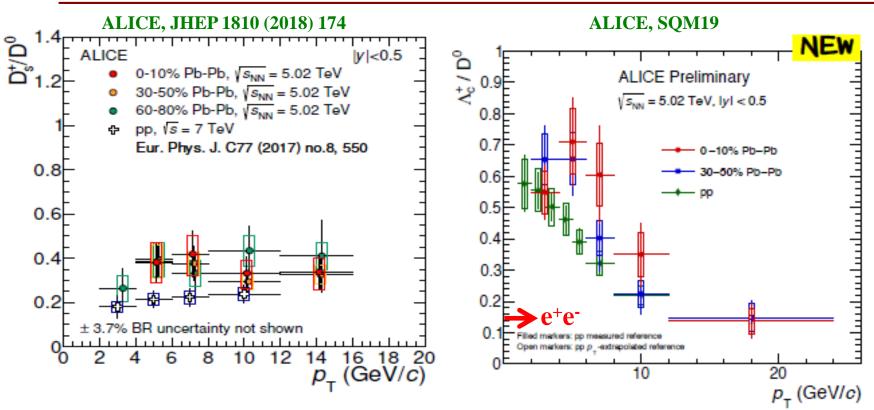
□ p_T-dependent Λ_c⁺/D⁰ & D_s⁺/D⁰ enhancement emerge from hydro-Langevin-RRM(+fragmentation) simulations; data trend largely reproduced within BR's uncertainties


Back-up: pp 200 GeV collisions


D Low pT enhancement from feeddowns of RQM augmented baryons

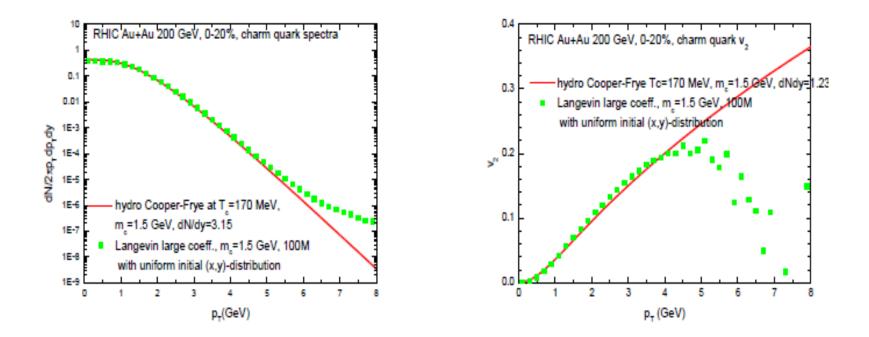
□ Uncertainty band: BR=50-100% to Λ_{C}^{+} for $\Lambda_{C} \& \Sigma_{C}$ above DN (2805 MeV) threshold

Ds(2piT): K=1.6 vs updated SCS T-matrix



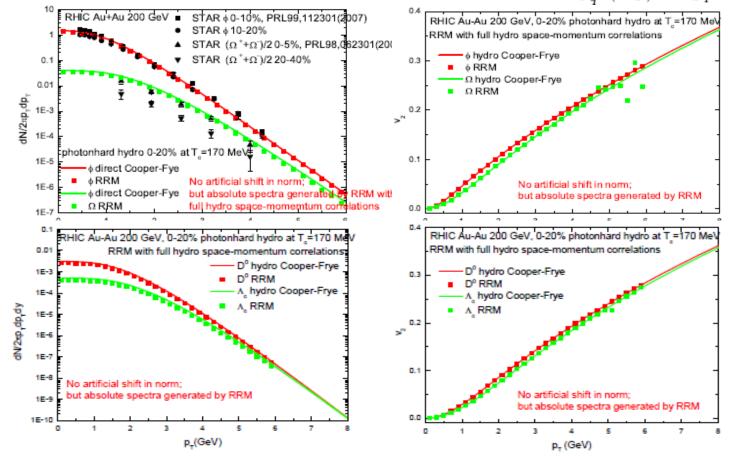
Baryon to meson ratio enhancement

- **D** B/M enhanced at intermediate **p**_T in central AA collisions
- □ Nicely (straightforwardly) explained by coalescence models Ko, Fries, Hwa
- □ A direct indication of the working of coalescence hadronization $f_M(p_T) \sim f_q(p_T/2) * f_{qbar}(p_T/2)$ VS $f_B(p_T) \sim f_q(p_T/3) * f_q(p_T/3) * f_q(p_T/3)$


Does it carry over to the HF sector?

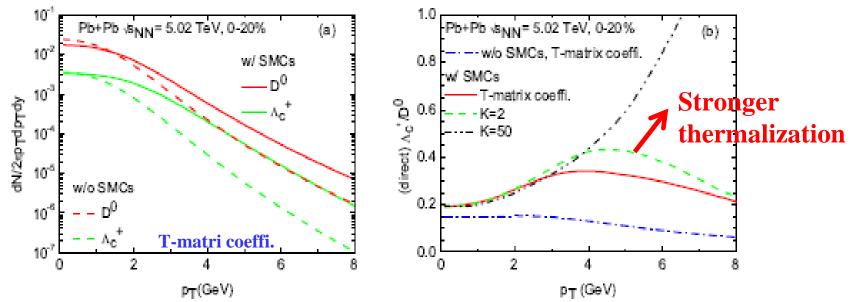
□ e⁺e⁻ : vacuum fragmentation, costly to excite ssbar-pair or diquarkantidiquark pair from vacuum → Ds and Λ_c much suppressed

- \Box high-energy pp: likely coalescence for Λ_c in a quark-rich environment!
- □ AA: recombination hadronization in QGP → modifying charm hadro-chemistry


Langevin equil. Limit with large coeffi.

IFE 9. Langevin charm quark p_T spectra and v_2 with large coefficient.

RRM: equilibrium mapping


D RRM on hydrofreezeout hypersurface at T_c with $f_q^{eq}(\vec{x}, \vec{p}) = g_q e^{-p \cdot u(x)/T(x)}$

□ Equilibrium mapping: ensured by 4-momentum conservation in RRM m_q =0.3, m_s =0.4, m_c =1.5, Γ_M ~0.1 GeV, Γ_d ~0.2 GeV, Γ_B ~0.3 GeV

Direct D⁰ & Λ_c^+ **production via RRM**

I Including **SMCs** makes the spectra harder & enhances the ratio Λ_c^+/D_0

 $\square Consider RRM formation of D^0 (3.5+0.7) \& \Lambda_c^+ (3.0+0.6+0.6) of p_T ~4.2 GeV: enhancement of density of light-q of p_T ~ 0.6-0.7 GeV \& c of p_T ~3.0-3.5 GeV$

$$\Delta N_{D^0}(4.2) \sim \frac{\Delta N_c(3.0 - 3.5)}{V_{\rm c,eff}} \cdot \frac{\Delta N_q(0.6 - 0.7)}{V_{\rm q,eff}}$$
(15)
$$\Delta N_{\Lambda_c^+}(4.2) \sim \frac{\Delta N_c(3.0 - 3.5)}{V_{\rm c,eff}} \cdot \frac{\Delta N_q(0.6 - 0.7)}{V_{\rm q,eff}} \cdot \frac{\Delta N_q(0.6 - 0.7)}{V_{\rm q,eff}} - \frac{\Delta N_q($$

- --- Rencombinant quark density enhanced vs w/o SMCs: V_{eff}<V_{fb}
- -- Enhanced light-q density entering D⁰ RRM only once vs twice (squared) for Λ_c⁺ RRM → the ratio Λ_c⁺/D⁰ enhanced!