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Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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2Physics Program of Jet Substructure

(1) (Beyond the) Standard model parameters
αss (including running), mtop, EFTs, Higgs self coupling, …

(2) Unique tests of fundamental physics, including unique probes 
of high energy / collective behavior of the strong force.

(4) General-purpose Monte Carlo generator development and tuning

interference & entanglement, dead cone, …

higher-order corrections, empower other measurements / searches, …

(3) Direct searches for new particles
Final states with boosted bosons, top quarks, …
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Today, I’ll give an example from each of these 
bullet points and then talk a bit about new 
tools that will help bring us into the future.



This makes observables on softdropped 
jets amenable to precision calculations 

for the ~first time at a pp collider.  

This is particularly important because JSS observables 
are dominated by resummation and not fixed-order! 

Grooming makes pp jets “look like” e+e- jets.

precision = 
beyond LL 

(e.g. Pythia)

4(1) Towards SM parameters

Particular grooming algorithms (soft 
drop / modified mass drop) have 
desirable properties to make the 
above statement quantitative.
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Figure 12: Comparison between soft-drop groomed e(2)
2

distributions with zcut = 0.1 and

� = 0 (top) and � = 1 (bottom) for matched and normalized NNLL, parton-level, and hadron-

level Monte Carlo. All curves integrate to the same value over the range e(2)
2

2 [0.001, 0.1].

The uncertainty band for soft drop with � = 1 at NNLL includes the variation of the two-loop

non-cusp anomalous dimension.

Fig. 12 also illustrates that soft drop grooming eliminates sensitivity to both hadroniza-

tion and underlying event until deep in the infrared. The parton-level and hadron-level dis-

tributions for each Monte Carlo agree almost perfectly until below about e(2)
2

. 10�3. That

hadronization e↵ects are small is expected from our e+e� analysis, but this also demonstrates

that underlying event e↵ects are negligible. A similar observation was made in Ref. [8], though

at a much higher jet pT (pT > 3 TeV). As in e+e� collisions, we expect that the hadronization

e↵ects that are observed in the Monte Carlo can be explained by a shape function, though

we leave this to future work.

– 41 –

Non-
Perturbative Resum Fixed

-order

9Groomed jet mass

C
. F

ry
e,

 A
. L

ar
ko

sk
i, 

M
. S

ch
w

ar
tz

, K
. Y

an
, J

H
EP

 0
7 

(2
01

6)
 0

64

(groomed mass /  jet pT)2

https://arxiv.org/find/hep-ph/1/au:+Frye_C/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Larkoski_A/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Schwartz_M/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Frye_C/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Larkoski_A/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Schwartz_M/0/1/0/all/0/1


1010Groomed jet mass for αs

sensitive to pileup; for example, the jet mass scales as O(A2) [94] for the jet catchment area A [95]
(whereas the jet pT scales linearly with A). The jet-area subtraction that works well for pT has been
extended to event shapes [96], but must be re-calibrated per observable. Constituent-based pileup sub-
traction schemes [97, 98, 99, 100, 101] show great promise and are actively being studied and adapted
to the actual experimental settings [102, 103, 104, 105, 106]. Even without constituent-based subtrac-
tion techniques, though, there is a large reduction in pileup sensitivity to jet substructure from groom-
ing [102, 107, 106, 3]. Grooming systematically removes soft and wide-angle radiation, which is exactly
the profile characteristic of pileup. Even with extreme levels of pileup (up to 300 collisions), grooming
can preserve the distribution of the jet mass distribution [108].

Despite the power of grooming for pileup suppression, there is still a residual degradation of reso-
lution with increased levels of pileup which makes precision jet substructure measurements challenging
at high instantaneous luminosity. Track-based observables are robust to pileup because their vertex of
origin can be well-distinguished from pileup vertices. Precision track-based substructure observables
have been calculated [109, 110, 111, 112], but typically require universal NP input. It may be interesting
to do a track- and jet-substructure-based extraction of ↵s, but this is left as a possibility for future work.

1.4 Observable Sensitivity to ↵s

In this subsection, we study the sensitivity of the groomed jet mass to variations in the value of ↵s. We
begin with a discussion based on the analytic formulae at LL accuracy. We then perform a PS study,
highlighting the interplay between the sensitivity of different parts of the distribution to variations in the
value of ↵s and NP effects. Finally, we discuss the issue of Casimir scaling and the related issue of using
normalized versus unnormalized distributions.

1.41 Analytic Understanding

To get an understanding of the sensitivity of the groomed mass distribution both to the value of ↵s as
well as to the quark and gluon composition, it is enlightening to study the LL distribution. Here, for
simplicity, we consider only the leading logs in the observable, in the resummation region; complete
expressions can be found in Refs. [52, 55, 54, 53]. For � = 0, the LL result at fixed coupling for the
cumulative distribution in the resummation region takes the schematic form

⌃(e(2)
2 ) = exp


�

↵sCi

⇡
[log(zcut) � Bi] log(e(2)

2 )

�
, (9)

where Bi = �3/4 for quarks and Bg = �
11
12 +

nf

6CA
for gluons (nf is the number of active quark flavors).

This highlights that for � = 0, the groomed jet mass is a single-logarithmic observable, contrasting with
the standard double-logarithmic behavior of plain jet mass. Differentiating the cumulative distribution,
we obtain the spectrum

e
(2)
2

�

d�

de
(2)
2

= �
↵sCi

⇡
[log(zcut) � Bi] exp


�

↵sCi

⇡
[log(zcut) � Bi] log(e(2)

2 )

�
. (10)

Here, we immediately see several interesting consequences. In the resummation region, the slope of
the distribution when plotted against log e

(2)
2 is set by the product ↵sCi, where Ci is the Casimir factor,

namely CF = 4/3 for quarks and CA = 3 for gluons. We therefore see that the groomed mass is indeed
sensitive to the value of ↵s. Due to the larger color charge of gluons, we expect that samples of pure
gluon jets would have a significantly higher sensitivity to the value of ↵s; this expectation will be born
out in our PS studies below. Because ↵s is always multiplied by a color factor, though, knowing the
precise quark/gluon composition of a sample is essential, as discussed in Sec. 1.43. In practice, the PS
studies and the analytic studies that follow (see Sec. 1.5) include higher-order effects, such as subleading
terms in the splitting functions, that violate Casimir scaling.
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Figure 12: Comparison between soft-drop groomed e(2)
2

distributions with zcut = 0.1 and

� = 0 (top) and � = 1 (bottom) for matched and normalized NNLL, parton-level, and hadron-

level Monte Carlo. All curves integrate to the same value over the range e(2)
2

2 [0.001, 0.1].

The uncertainty band for soft drop with � = 1 at NNLL includes the variation of the two-loop

non-cusp anomalous dimension.

Fig. 12 also illustrates that soft drop grooming eliminates sensitivity to both hadroniza-

tion and underlying event until deep in the infrared. The parton-level and hadron-level dis-

tributions for each Monte Carlo agree almost perfectly until below about e(2)
2

. 10�3. That

hadronization e↵ects are small is expected from our e+e� analysis, but this also demonstrates

that underlying event e↵ects are negligible. A similar observation was made in Ref. [8], though

at a much higher jet pT (pT > 3 TeV). As in e+e� collisions, we expect that the hadronization

e↵ects that are observed in the Monte Carlo can be explained by a shape function, though

we leave this to future work.
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[see e.g. A. Hoang et al., JHEP12 (2019) 002]

[Gehrmann et al., 
in preparation]

[P. Komiske, E. Metodiev, BPN, in preparation]

sensitive to pileup; for example, the jet mass scales as O(A2) [94] for the jet catchment area A [95]
(whereas the jet pT scales linearly with A). The jet-area subtraction that works well for pT has been
extended to event shapes [96], but must be re-calibrated per observable. Constituent-based pileup sub-
traction schemes [97, 98, 99, 100, 101] show great promise and are actively being studied and adapted
to the actual experimental settings [102, 103, 104, 105, 106]. Even without constituent-based subtrac-
tion techniques, though, there is a large reduction in pileup sensitivity to jet substructure from groom-
ing [102, 107, 106, 3]. Grooming systematically removes soft and wide-angle radiation, which is exactly
the profile characteristic of pileup. Even with extreme levels of pileup (up to 300 collisions), grooming
can preserve the distribution of the jet mass distribution [108].

Despite the power of grooming for pileup suppression, there is still a residual degradation of reso-
lution with increased levels of pileup which makes precision jet substructure measurements challenging
at high instantaneous luminosity. Track-based observables are robust to pileup because their vertex of
origin can be well-distinguished from pileup vertices. Precision track-based substructure observables
have been calculated [109, 110, 111, 112], but typically require universal NP input. It may be interesting
to do a track- and jet-substructure-based extraction of ↵s, but this is left as a possibility for future work.

1.4 Observable Sensitivity to ↵s

In this subsection, we study the sensitivity of the groomed jet mass to variations in the value of ↵s. We
begin with a discussion based on the analytic formulae at LL accuracy. We then perform a PS study,
highlighting the interplay between the sensitivity of different parts of the distribution to variations in the
value of ↵s and NP effects. Finally, we discuss the issue of Casimir scaling and the related issue of using
normalized versus unnormalized distributions.

1.41 Analytic Understanding

To get an understanding of the sensitivity of the groomed mass distribution both to the value of ↵s as
well as to the quark and gluon composition, it is enlightening to study the LL distribution. Here, for
simplicity, we consider only the leading logs in the observable, in the resummation region; complete
expressions can be found in Refs. [52, 55, 54, 53]. For � = 0, the LL result at fixed coupling for the
cumulative distribution in the resummation region takes the schematic form

⌃(e(2)
2 ) = exp
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↵sCi

⇡
[log(zcut) � Bi] log(e(2)

2 )

�
, (9)

where Bi = �3/4 for quarks and Bg = �
11
12 +

nf

6CA
for gluons (nf is the number of active quark flavors).

This highlights that for � = 0, the groomed jet mass is a single-logarithmic observable, contrasting with
the standard double-logarithmic behavior of plain jet mass. Differentiating the cumulative distribution,
we obtain the spectrum
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Here, we immediately see several interesting consequences. In the resummation region, the slope of
the distribution when plotted against log e

(2)
2 is set by the product ↵sCi, where Ci is the Casimir factor,

namely CF = 4/3 for quarks and CA = 3 for gluons. We therefore see that the groomed mass is indeed
sensitive to the value of ↵s. Due to the larger color charge of gluons, we expect that samples of pure
gluon jets would have a significantly higher sensitivity to the value of ↵s; this expectation will be born
out in our PS studies below. Because ↵s is always multiplied by a color factor, though, knowing the
precise quark/gluon composition of a sample is essential, as discussed in Sec. 1.43. In practice, the PS
studies and the analytic studies that follow (see Sec. 1.5) include higher-order effects, such as subleading
terms in the splitting functions, that violate Casimir scaling.
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(
p
2⇥ erf�1(1� 2CLs)) instead of the CLs directly. For reference, the LEP limits from Ref. [10] are shown

in the lower left corner.
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neff = 3 for a gluino
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Precision 
measurements can 

also allow us to 
look for subtle 

deviations and are 
complementary to 

direct searches
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Figure 3. Limits on RPV decays of light gluinos, g̃ ! jjj. The recast performed in this
work of the UA2 study [43] is in blue, the CDF limit is in red [33], the lowest LHC constraint
from ATLAS is in green [37], and the robust lower bound of 51 GeV from LEP jet data is in
gold [5].

cross-section for R-parity violating decays to within 2-3 times the expected values across
the entire light gluino to three-jet gap.

4 Discussion

In this work, we illustrated that six-jet event data from UA2 constrains the allowed
cross-section for all-hadronic, three-body decays of gluinos in R-parity violating SUSY
with masses from 51–76 GeV, between the sensitivity of LEP and CDF. While unable
to close the light gluino to three-jet gap, the UA2 data does exlcude gluino production
cross-sections that are a factor of 2–3 larger than the expected values, setting what is
presently the strongest bound within this region.

As discussed in the introduction, high-multiplicity, all-hadronic gluino decays, g̃ !

n partons with n � 4, have been excluded for mg̃ & 300 GeV by LHC searches [1, 38,
42]. However, these states are not currently robustly constrained at lower masses, as
the decay products become too collimated for the existing multi-jet searches to have

– 7 –

J. Evans and D. McKeen, 1803.01880

There are also gaps!
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16(2) Probe of fundamental physics

Theme: Use correlations between jets as 
a way to expose quantum properties

We can study QCD 
entanglement from 

correlations in the radiation 
patterns of pairs of jets.

An exciting laboratory 
for this work is boosted 
W bosons, a copious 

source of singlet → jets.

Example 1: Jet pull
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θP = How much the radiation from 
one jet “leans” toward the other.

W boson → two jets

Eur. Phys. J. C 78 (2018) 847Example 1: Jet pull
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W boson → two jets

Here is an observable 
where we can’t 

distinguish between 
“entanglement” turned 

“on” and “off” !

Theory predictions are 
challenging, but in 

development 
(see A. Larkoski, S. Marzani, C. 

Wu, PRD 99 (2019) 091502)

Eur. Phys. J. C 78 (2018) 847Example 1: Jet pull
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Example 2: g → bb

Gluon splitting to bottom 
quarks gives us the only 
~pure access to QCD 

splitting functions.

(and of course, this is 
a very important 

process for Higgs)

instead of parton-splitting e�ects) and were limited in their kinematic reach due in part to small datasets
and low momentum transfers.

The high transverse momentum and low angular separation regime for g ! bb̄ can be probed at the LHC
using b-tagged small-radius jets within large-radius jets. This topology is used to calibrate b-tagging
in dense environments [50–52] and is studied phenomenologically [53, 54]. The measurement shown
in this paper builds on these studies by using data collected by the ATLAS detector from

p
s = 13 TeV

pp collisions in order to perform a di�erential cross-section measurement of g ! bb̄ inside jets at high
transverse momentum – see Figure 1 for a representative Feynman diagram. Small-radius jets built from
charged-particle tracks are used as proxies for b-quarks and can be used as precision probes of the small
opening-angle regime.

This paper is organized as follows. After a brief introduction to the ATLAS detector in Section 2, the
data and simulations used for the measurement are documented in Section 3. Section 4 describes the
event selection and Section 5 lists and motivates the observables to be measured. The key challenge
in the measurement is the estimation of background processes, which is performed using a data-driven
approach illustrated in Section 6. The data are unfolded to correct for detector e�ects to allow direct
comparisons to particle-level predictions. This procedure is explained in Section 7 and the associated
systematic uncertainties are detailed in Section 8. The results are presented in Section 9 and the paper
concludes with Section 10.

q

g

q

b

b̄

Figure 1: A representative diagram for the high-pT g ! bb̄ process studied in this paper.

2 ATLAS detector

The ATLAS detector [55] is a multipurpose particle detector with a forward/backward-symmetric cylindrical
geometry. The detector has a nearly 4⇡ coverage in solid angle1 and consists of an inner tracking detector,
electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner detector (ID) is surrounded
by a superconducting solenoid providing a 2 T magnetic field and covers a pseudorapidity range of |⌘ | < 2.5.
The ID is composed of silicon pixel and microstrip detectors as well as a transition radiation tracker. For
the LHC

p
s = 13 TeV run, the silicon pixel detector has been upgraded to include an additional layer

close to the beam interaction point [56]. The lead/liquid-argon electromagnetic sampling calorimeters
measure electromagnetic energies with high granularity for the pseudorapidity region of |⌘ | < 3.2. Hadron

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r , �) are used in the transverse plane, � being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle as ⌘ = � ln tan(polar angle/2).

3
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instead of parton-splitting e�ects) and were limited in their kinematic reach due in part to small datasets
and low momentum transfers.

The high transverse momentum and low angular separation regime for g ! bb̄ can be probed at the LHC
using b-tagged small-radius jets within large-radius jets. This topology is used to calibrate b-tagging
in dense environments [50–52] and is studied phenomenologically [53, 54]. The measurement shown
in this paper builds on these studies by using data collected by the ATLAS detector from

p
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pp collisions in order to perform a di�erential cross-section measurement of g ! bb̄ inside jets at high
transverse momentum – see Figure 1 for a representative Feynman diagram. Small-radius jets built from
charged-particle tracks are used as proxies for b-quarks and can be used as precision probes of the small
opening-angle regime.

This paper is organized as follows. After a brief introduction to the ATLAS detector in Section 2, the
data and simulations used for the measurement are documented in Section 3. Section 4 describes the
event selection and Section 5 lists and motivates the observables to be measured. The key challenge
in the measurement is the estimation of background processes, which is performed using a data-driven
approach illustrated in Section 6. The data are unfolded to correct for detector e�ects to allow direct
comparisons to particle-level predictions. This procedure is explained in Section 7 and the associated
systematic uncertainties are detailed in Section 8. The results are presented in Section 9 and the paper
concludes with Section 10.
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Figure 1: A representative diagram for the high-pT g ! bb̄ process studied in this paper.

2 ATLAS detector

The ATLAS detector [55] is a multipurpose particle detector with a forward/backward-symmetric cylindrical
geometry. The detector has a nearly 4⇡ coverage in solid angle1 and consists of an inner tracking detector,
electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner detector (ID) is surrounded
by a superconducting solenoid providing a 2 T magnetic field and covers a pseudorapidity range of |⌘ | < 2.5.
The ID is composed of silicon pixel and microstrip detectors as well as a transition radiation tracker. For
the LHC

p
s = 13 TeV run, the silicon pixel detector has been upgraded to include an additional layer

close to the beam interaction point [56]. The lead/liquid-argon electromagnetic sampling calorimeters
measure electromagnetic energies with high granularity for the pseudorapidity region of |⌘ | < 3.2. Hadron

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r , �) are used in the transverse plane, � being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle as ⌘ = � ln tan(polar angle/2).
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See also Fischer, Lifson, Skands, 
EPJC 77 (2017) 719

Gluons seems “more 
polarized” in data than in 

our predictions.  Slight 
improvement from matrix 

element corrections 
(Sherpa 2 → 3).
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When a massive particle is 
boosted, its decay products can 
be contained inside a single jet.

Capturing boosted top quarks, 
W/Z bosons, and Higgs bosons 

is now very standard !

Hadronic W in 
inclusive multijets!

Hadronic 
top mass 

peak
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[Dreyer, Salam, Soyez, JHEP 12 (2018) 064]
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Key experimental 
challenge:  

tracking inside dense 
environments

First measurement  
of the Lund jet plane!   

…powerful tool for 
isolating hadronization, 
parton shower effects, 
and fixed-order effects
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Key experimental 
challenge:  

tracking inside dense 
environments

First measurement  
of the Lund jet plane!   

…powerful tool for 
isolating hadronization, 
parton shower effects, 
and fixed-order effects
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Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

In addition to new theoretical and experimental insights, 
machine learning holds great potential for jet substructure

The Future: Machine Learning
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Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

Parameter 
estimation / 
unfolding

Data curation

Classification to 
enhance sensitivity

calibration, clustering, 
tracking, noise mitigation, 

particle identification…

Fast 
simulation

Online 
processing & 
quality control

In addition to new theoretical and experimental insights, 
machine learning holds great potential for jet substructure

The Future: Machine Learning
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We detect these 
particles with 

O(100 M) 
readout channels

Not to scale!

Key challenge and opportunity: hypervariate phase space 
& hyper spectral data

Typical collision events 
at the LHC produce 
O(1000+) particles



36
1 1

1

1
1

1
1

1
1

1

1
1

1 1

1
1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1
1

1
1

1

1

1

1

1

1 1 1

11
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

Image inspired by JHEP 02 (2009) 007

We detect these 
particles with 

O(100 M) 
readout channels

Not to scale!

Key challenge and opportunity: hypervariate phase space 
& hyper spectral data

Typical collision events 
at the LHC produce 
O(1000+) particles

Hadronic Final States: A hyper challenge



37ML for Hadronic Final States

The rest of this talk will be about new ideas for ML for (1) 
measurements and (2) searches in hadronic final states.
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The rest of this talk will be about new ideas for ML for (1) 
measurements and (2) searches in hadronic final states.

For (1), I will use the example of unfolding.

What if we could measure a full event instead of 
projecting it into a single event/jet shape?
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The rest of this talk will be about new ideas for ML for (1) 
measurements and (2) searches in hadronic final states.

For (1), I will use the example of unfolding.

For (2), I will use the example of anomaly detection.

What if we could measure a full event instead of 
projecting it into a single event/jet shape?

What if we could look for new physics without 
having a particular model in mind?



40(1) Unfolding (Deconvolution)1 1

1

1
1

1
1

1
1

1

1
1

1 1

1
1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1

1 1 1

11
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1
1

1
1

1
1

1

1
1

1 1

1
1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1

1 1 1

11
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

Measure thisWant this

i.e. remove detector distortions
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p(meas. | true) = “response matrix” or “point spread function”

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

(1) Unfolding (Deconvolution)
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p(meas. | true) = “response matrix” or “point spread function”

Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

(1) Unfolding (Deconvolution)
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p(meas. | true) = “response matrix” or “point spread function”

Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

However: we have simulators that we can 
use to sample from p(meas. | true) 

→ Simulation-based (likelihood-free) inference

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

(1) Unfolding (Deconvolution)
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I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.
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I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.

The solution will be built on reweighting

dataset 1: sampled from p(x) 
dataset 2: sampled from q(x)

Create weights w(x) = q(x)/p(x) so that when dataset 1 
is weighted by w, it is statistically identical to dataset 2.
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I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.

The solution will be built on reweighting

Create weights w(x) = q(x)/p(x) so that when dataset 1 
is weighted by w, it is statistically identical to dataset 2.

What if we don’t (and can’t easily) know q and p?

Reweighting

dataset 1: sampled from p(x) 
dataset 2: sampled from q(x)
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Solution: train a neural network to 
distinguish the two datasets!

Fact: Neutral networks learn to 
approximate the likelihood ratio = q(x)/p(x)

This turns the problem of density estimation 
(hard) into a problem of classification (easy)

(or something monotonically related to it in a known way)



Image: Linear Collider Detector Project

48Classification for reweighting

e- e+

Particularly useful for particle physics, where collisions may 
produce a variable # of particles which are interchangeable



49Example: electron-positron collisions

Learn a classifier on the full observable phase 
space (momenta + particle flavor) and then 

check with some standard observables.

Our events have a variable number of particles & due to 
quantum mechanics, are permutation invariant.  Thus, we 
use a deep-sets variant called particle flow networks. 

PFNs: Komiske, Metodiev, Thaler, JHEP 01 (2019) 121
Deep sets: Zaheer et al., NIPS 2017 



50Example: electron-positron collisions

Learn a classifier on the full observable phase 
space (momenta + particle flavor) and then 

check with some standard observables.

Our events have a variable number of particles & due to 
quantum mechanics, are permutation invariant.  Thus, we 
use a deep-sets variant called particle flow networks. 

PFNs: Komiske, Metodiev, Thaler, JHEP 01 (2019) 121
Deep sets: Zaheer et al., NIPS 2017 

Just to stress: this gives you a 
new simulation with all the 4-

vectors that is statistically 
indistinguishable.
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54Unfold by iterating: OmniFold
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

OmniFold is:
- Unbinned
- Maximum likelihood
- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features
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67(2) Model agnostic searches

One strategy is to learn directly from data 
without training on a particular signal model.  



68(2) Model agnostic searches

One strategy is to learn directly from data 
without training on a particular signal model.  

However, the data do not have labels.  How can 
we train a classifier without labels??



69Learning from unlabeled data

The data are unlabeled and in the best case, come to us  
as mixtures of two classes (“signal” and “background”).
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Weak supervision: 
Classification Without Labels

Can we learn 
without any label 

information?
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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How can we use CWoLa to hunt for new particles?

Anomaly detection
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How can we use CWoLa to hunt for new particles?

*Image from The Courier Mail.  Koala is actually being freed - I do not condone violence against these animals!

CWoLa Hunting
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.
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Figure 8. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
mJJ ' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with mJ A ' 400 GeV and
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set new limits
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Phys. Rev. Lett. 121 (2018) 241803
J. Collins, K. Howe, BPN
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ATLAS Collaboration, 2005.02983 
Analysis Team: A. Cukeriman, BPN

First round, keep it simple: feature space is 2D (jet masses)
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Deep learning has a great 
potential to enhance, 

accelerate, and 
empower HEP analyses

The full phase space of our experiments is now explorable 
& combined with deep physics insight, we will be able to 

learn something new and fundamental about nature !

106Conclusions and outlook

1 1

1

1
1

1
1

1
1

1

1
1

1 1

1
1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1

1 1 1

11
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

Jet substructure offers a 
rich physics program at 
the LHC, and elsewhere
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