Observation of the Breit-Wheeler Process in Heavy-Ion Collisions

Daniel Brandenburg BNL(CFNS) / SDU 115th Seminar : High Energy Nuclear Physics in China July 30th, 2020 (via ZOOM)

Outline of this talk

- 1. Quantum Electrodynamics
 - Introduction & some history
 - Ultra-peripheral Heavy Ion collisions → QED under extreme conditions
 - Breit-Wheeler Pair Production & Vacuum birefringence
- 2. A tool for studying Quantum Chromodynamics
 - Mapping the initial Magnetic field
 - Final state/Medium effects?
- 3. Conclusions

Fundamental Interactions : light & matter

Photo Electric Effect **1887** Hertz, Ann Phys (Leipzig) 31, 983

Fundamental Interactions : light & matter

Photo Electric Effect **1887** Hertz, Ann Phys (Leipzig) 31, 983

Compton Scattering **1906** Thomson, Conduction of Electricity through Gases

Breit-Wheeler Process, why so elusive?

Rreit-Wheeler and Klein-Nishina cross-sections

Breit-Wheeler Pair Production Cross Section $\sigma_{\gamma\gamma}$:

$\sigma_{\gamma\gamma} = \pi r_0^2 \left(\frac{m}{\omega}\right)^2 \left\{ \left[2\left(1 + \left(\frac{m}{\omega}\right)^2\right) - \left(\frac{m}{\omega}\right)^4 \right] \cosh^{-1}\frac{\omega}{m} \right\} \right\}$
$-\left(1+\left(rac{m}{\omega} ight)^2 ight)\sqrt{1-\left(rac{m}{\omega} ight)^2} ight\}$

Same peak cross section as Compton scattering and Dirac annihilation Cross section, $\sigma_{\gamma\gamma}$ peaks at 10^{-29} m² Creating matter from massless state, remember : $E = mc^2$ \circ center of mass energy must be $W \ge 2m_e$

Breit-Wheeler Process, why so elusive?

• Already in 1934 Breit and Wheeler knew it was hard, maybe impossible?

DECEMBER 15, 1934

PHYSICAL REVIEW

VOLUME

Collision of Two Light Quanta

G. BREIT* AND JOHN A. WHEELER,** Department of Physics, New York University (Received October 23, 1934)

As has been reported at the Washington meeting, pair production due to collisions of cosmic rays with the temperature radiation of interstellar space is much too small to be of any interest. We do not give the explicit calculations, since the result is due to the orders of magnitude rather than exact relations. It is also hopeless to try to observe the pair formation in laboratory experiments with two beams of x-rays or γ -rays meeting each other on account of the smallness of σ and the insufficiently large available densities of quanta. In the considerations of Williams,

Breit-Wheeler Process, why so *elusive?*

• Already in 1934 Breit and Wheeler knew it was hard, maybe impossible?

DECEMBER 15, 1934

since the result is due to rather than exact relatio try to observe the pair experiments with two be meeting each other on a of σ and the insufficiently of guanta. In the considerations of winliams,

PHYSICAL REVIEW

VOLUME

Collision of Two Light Quanta

OHN A. WHEELER,** Department of Physics, New York University (Received October 23, 1934)

the Washington ns of lon of bf any tions. nitude ess to atory y-rays llness E. J. Williams isities

• Or maybe not impossible!

of guanta. In the considerations of Williams, however, the large nuclear electric fields lead to large densities of quanta in moving frames of reference. This, together with the large number of nucleii available in unit volume of ordinary materials, increases the effect to observable amounts. Analyzing the field of the nucleus into quanta by a procedure similar to that of v. Weizsäcker,⁴ he finds that if one quantum $h\nu$

> E. J. Williams Phys. Rev. 45, 729 (1934) K. F. Weizsacker, Z. Physik, 612 (1934)

The Breit-Wheeler ($\gamma\gamma \rightarrow e^+e^-$) Process

• Breit-Wheeler process is by definition the lowest-order process

- Two Feynman diagrams contribute at lowest-order
- Specifically note:

$$P_{\perp} = k_{1\perp} + k_{2\perp}$$

Ultra-Peripheral Heavy Ion Collisions

Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic field

Weizäcker-Williams Equivalent Photon Approximation (EPA): \rightarrow In a specific phase space, <u>transverse</u> EM fields can be quantized as a flux of **real photons** Weizsäcker, C. F. v. Zeitschrift für Physik 88 (1934): 612 $n \propto \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \approx |\vec{E}|^2 \approx |\vec{B}|^2$

 $Z\alpha \approx 1 \rightarrow$ High photon density Ultra-strong electric and magnetic fields: \rightarrow Expected magnetic field strength $\vec{B} \approx 10^{14} - 10^{16} T$ Skokov, V., et. al. Int. J. Mod. Phys. A 24 (2009): 5925-32

Test QED under extreme conditions

STAR 2004: $d\sigma(\gamma\gamma \rightarrow e^+e^-)/dP_\perp$

Actually, STAR tried to measured $\gamma\gamma \rightarrow e^+e^-$ before, in 2004 Low statistics measurement (only 52 e^+e^- pairs) Unable to definitively determine process

In that paper and subsequent papers from community, assume that difference between EPA and QED (near $P_{\perp} \approx 0$) results from significant photon virtuality

STAR Collaboration, et al. *Physical Review C*, vol. 70, no. 3, Sept. 2004, p. 031902. *APS*, doi:10.1103/PhysRevC.70.031902.

STAR 2004: $d\sigma(\gamma\gamma \rightarrow e^+e^-)/dP_\perp$

- \rightarrow Perform a precision measurement of the differential cross sections
- 1. Photon Energy Spectrum
 - Transverse Momentum distribution
 - Invariant mass distribution
 - Impact parameter dependence
- 2. Angular Distribution
 - Distinctive polar angle distribution
 - Azimuthal modulations predicted for real photon (transversely polarized)

General density matrix for the twophoton system:

Spin 1 Photon helicity a = (-, 0, +)

12

July 30, 2020

A Novel Approach for the Breit-Wheeler Process

- \rightarrow Perform a precision measurement of the differential cross sections
- 1. Photon Energy Spectrum
 - Transverse Momentum distribution
 - Invariant mass distribution
 - Impact parameter dependence
- 2. Angular Distribution
 - Distinctive polar angle distribution
 - Azimuthal modulations predicted for real photon (transversely polarized)

General density matrix for the twophoton system:

$$\rho^{a,a'} = \begin{pmatrix} \rho^{++} & \rho^{+0} & \rho^{+-} \\ \rho^{+0} & \rho^{00} & \rho^{+0} \\ \rho^{+-} & \rho^{+0} & \rho^{++} \end{pmatrix}$$

Spin 1 Photon helicity $a = (-, 0, +)$

Helicity 0 : Forbidden for real photon Real photon: Allowed J^P states: 2^{\pm} , 0^{\pm} A Novel Approach for the Breit-Wheeler Process

 \rightarrow Perform a precision measurement of the differential cross sections

Angular distribution allows identification of quantum numbers - e.g. Higgs Boson

General density matrix for the twophoton system:

Spin 1 Photon helicity a = (-, 0, +)Helicity 0 : Forbidden for real photon Real photon: Allowed J^P states: 2^{\pm} , 0^{\pm}

Pietro Faccioli,

https://indico.cern.ch/event/246009/attachments/422282/586290/CERN_23_4_2013_no_animations.pdf

Daniel Brandenburg | BNL (CFNS) / SDU

Signatures of the Breit-Wheeler Process

- 1. Exclusive e^+e^- pair production
- 2. Photon helicity +/-1 only
 - Smooth invariant mass spectra (No vector mesons)
 - Individual e⁺e⁻ preferentially aligned along beam direction

3. Energy Spectrum:

- Production peaked at very low P_{\perp} (pair transverse momentum)
- Impact parameter dependence on P_{\perp}
- 4. Photon transverse polarization & spatial distribution

$$\gamma\gamma \rightarrow e^+e^-$$
 Process in UPCs

pair production process

nuclear dissociation

Provides efficient trigger condition

 \rightarrow Provides high statistics sample (>6,000 e^+e^- pairs) for multi-differential analysis

Total $\gamma\gamma \rightarrow e^+e^-$ cross-section in STAR Acceptance

STARLight: S. R. Klein, et. al. *Comput. Phys. Commun.* 212 (2017) 258 gEPA & QED : W. Zha, J.D.B., Z. Tang, Z. Xu arXiv:1812.02820 [nucl-th] Pure QED 2 \rightarrow 2 scattering : $d\sigma/dM \propto E^{-4} \approx M^{-4}$

No vector meson production \rightarrow Forbidden for real photons with helicity ± 1 (i.e. 0 is forbidden)

$$\sigma(\gamma\gamma
ightarrow e^+e^-)$$
 in STAR Acceptance:

Data : 0.261 ± 0.004 (stat.) ± 0.013 (sys.) ± 0.034 (scale) mbSTARLightgEPA0.22 mb0.26 mb0.29 mb

Measurement of total cross section agrees with theory calculations at $\pm 1\sigma$ level

 $d\sigma(\gamma\gamma \rightarrow e^+e^-)/d\cos\theta'$

 $\gamma\gamma \rightarrow e^+e^-$: Individual e^+/e^- preferentially aligned along beam axis [1]:

$$G(\theta) = 2 + 4\left(1 - \frac{4m^2}{W^2}\right) \frac{\left(1 - \frac{4m^2}{W^2}\right)\sin^2\theta\cos^2\theta + \frac{4m^2}{W^2}}{\left(1 - \left(1 - \frac{4m^2}{W^2}\right)\cos^2\theta\right)^2}$$

 Highly virtual photon interactions should have an <u>isotropic distribution</u>

 \circ Measure θ' , the angle between the e^+ and the beam axis in the pair rest frame.

[1] S. Brodsky, T. Kinoshita and H. Terazawa, Phys. Rev. D4, 1532 (1971)
 STARLight: S. R. Klein, et. al. *Comput. Phys. Commun.* 212 (2017) 258

 $d\sigma(\gamma\gamma \rightarrow e^+e^-)/d\cos\theta'$

 $\gamma\gamma \rightarrow e^+e^-$: Individual e^+/e^- preferentially aligned along beam axis [1]:

$$G(\theta) = 2 + 4\left(1 - \frac{4m^2}{W^2}\right) \frac{\left(1 - \frac{4m^2}{W^2}\right)\sin^2\theta\cos^2\theta + \frac{4m^2}{W^2}}{\left(1 - \left(1 - \frac{4m^2}{W^2}\right)\cos^2\theta\right)^2}$$

 Highly virtual photon interactions should have an <u>isotropic distribution</u>

- \circ Measure θ' , the angle between the e^+ and the beam axis in the pair rest frame.
- $\Rightarrow \text{Data are fully consistent with } G(\theta)$ distribution expected for $\gamma\gamma \rightarrow e^+e^-$
- ⇒Measurably distinct from isotropic distribution

[1] S. Brodsky, T. Kinoshita and H. Terazawa, Phys. Rev. D4, 1532 (1971)
 STARLight: S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258

 $d\sigma(\gamma\gamma \to e^+e^-)/dP_+$

High precision data – test theory predictions

 \circ STARLight predicts significantly lower $\langle P_{\perp} \rangle$ than seen in data

 \circ Is the increased P_{\perp} observed due to significant virtuality?

 Let's look at how the calculation is done in the lowest order QED case

QED and STARLight are scaled to match measured $\sigma(\gamma\gamma \rightarrow e^+e^-)$

STARLight: S. R. Klein, et. al. *Comput. Phys. Commun.* 212 (2017) 258 QED : W. Zha, J.D.B., Z. Tang, Z. Xu arXiv:1812.02820 [nucl-th]

July 30, 2020

Calculating Cross Section for $\gamma\gamma \rightarrow e^+e^-$ Process

Generalized EPA & QED Calculations:

- Use Woods-Saxson Form Factor for nuclear charge distribution
- Include production inside nucleus absorption effects found to be negligible
- Predict impact parameter dependent P_{\perp} distribution

Photon virtuality and differential cross section

Note: gEPA1 vs. gEPA2 : gEPA2 includes phase term to approximate full QED result QED (and gEPA parameterization) describe data Larger $\langle P_{\perp} \rangle$ from impact parameter dependence **no evidence for significant photon virtuality**

○ Still only models, can we experimentally investigate impact parameter dependence :
 →Compare UPC vs. same process in peripheral collisions

July 30, 2020

Classical Electromagnetism

Maxwell's equations are linear
 <u>Superposition principle holds</u>

$$\mathcal{L}_{classical} = \frac{1}{2\mu_0} \left(\frac{E^2}{c^2} - B^2 \right) \qquad \vec{D} = \frac{\partial \mathcal{L}_{classical}}{\partial \vec{E}} \qquad \vec{D} = \epsilon_0 \vec{E}$$
$$\vec{H} = -\frac{\partial \mathcal{L}_{classical}}{\partial \vec{B}} \qquad \vec{H} = \frac{1}{\mu_0} \vec{B}$$

 \rightarrow Unique speed of light in vacuum:

$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 299792458 \text{ m/s}$$

Quantum Electrodynamics

Three important discoveries that <u>alter the classical picture</u>: • Einstein's energy-mass equivalence: $E = mc^2$ • Uncertainty principle: $\Delta E \Delta t \ge \hbar/2$ • Existence of positron : Dirac predicts negative electron energy states (1928), Anderson discovered positron in 1932

Quantum Electrodynamics

Three important discoveries that <u>alter the classical picture</u>: \circ Einstein's energy-mass equivalence: $E = mc^2$ \circ Uncertainty principle: $\Delta E \Delta t \ge \hbar/2$

 Existence of positron : Dirac predicts negative electron energy states (1928), Anderson discovered positron in 1932

 \rightarrow Vacuum fluctuations

01936: Euler & Heisenberg present modified Lagrangian

$$\mathcal{L}_{EH} = \frac{1}{2\mu_0} \left(\frac{E^2}{c^2} - B^2 \right) + \frac{A_e}{\mu_0} \left[\left(\frac{E^2}{c^2} - B^2 \right)^2 + 7 \left(\frac{\vec{E}}{c} \cdot \vec{B} \right) \right] + \cdots$$

○Non-linear → Super-position principle broken!

NB: in 1951 Shwinger derived the Lagrangian within QED

Vacuum Magnetic Birefringence

$$c = \frac{1}{\sqrt{\epsilon\mu}}$$
 BUT $\epsilon_{\parallel} \neq \epsilon_{\perp}$ and $\mu_{\parallel} \neq \mu_{\perp}$

Light behaves as if it is traveling through a medium with an index of refraction $n_{vac} \neq 1$

Optical Birefringence

Birefringent material: Different index of refraction for light polarized parallel (n_{\parallel}) vs. perpendicular (n_{\perp}) to material's ordinary axis

ightarrow splitting of wave function when $\Delta n = n_{\parallel} - n_{\perp}
eq 0$

Vacuum Birefringence

Vacuum birefringence : Predicted in 1936 by Heisenberg & Euler. Index of refraction for γ interaction with \vec{B} field <u>depends on relative</u> <u>polarization angle</u> i.e. $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} \neq 0$

Birefringence of the QED Vacuum

Vacuum birefringence : Predicted in 1936 by Heisenberg & Euler. Index of refraction for γ interaction with \vec{B} field <u>depends on relative</u> <u>polarization angle</u> i.e. $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} \neq 0$

Lorentz contraction of EM fields \rightarrow

Quasi-real photons should be <u>linearly polarized</u> $(\vec{E} \perp \vec{B} \perp \vec{k})$

Can we observe vacuum birefringence in ultra-peripheral collisions?

Real(n) = transmission process $\gamma\gamma \rightarrow \gamma\gamma$ Imag(n) = absorption process $\gamma\gamma \rightarrow e^+e^-$ (diagram cut)

Breit-Wheeler Process and Light-by-Light Scattering

Breit-Wheeler Process

The Breit-Wheeler process and Light-by-Light scattering are intimately connected

According to the optical theorem[1] the Breit-Wheeler process is the imaginary part of the forward scattering amplitude

In QED formalism, the Breit-Wheeler process is the imaginary part of the propagator – i.e. when the e^+e^- masses are real.

Light-by-Light recently observed by ATLAS [2] and CMS collaborations

[1] Budnev, V. M., Ginzburg, I. F., Meledin, G. V. & Serbo, V. G. Physics Reports 15, 181–282 (1975).
[2] ATLAS Collaboration et al. Phys. Rev. Lett. 123, 052001 (2019).

Experimental Signature of Vacuum Birefringence

Recently realized, $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} \neq 0$ leads to a $\cos(4\Delta \phi)$ modulation in polarized $\gamma \gamma \rightarrow e^+e^-$ [1] The corresponding vacuum LbyL scattering[2] displays a $\cos(2\Delta\phi)$ modulation = vacuum birefringence [1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019) $\Delta \phi = \Delta \phi [(e^+ + e^-), (e^+ - e^-)]$ [2] Harland-Lang, L. A., Khoze, V. A. & Ryskin, M. G. Eur. Phys. J. C 79, 39 (2019). $\approx \Delta \phi [(e^+ + e^-), e^+]$

July 30, 2020

Daniel Brandenburg | BNL (CFNS) / SDU

Birefringence of the QED Vacuum

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019) QED calculation: Li, C., Zhou, J. & Zhou, Y. Phys. Rev. D 101, 034015 (2020).

Recently realized, $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} \neq 0$ leads to $\cos(n\Delta \phi)$ modulations in polarized $\gamma \gamma \rightarrow e^+ e^-$ [1]

Ultra-Peripheral

Quantity	Measured	QED	χ^2/ndf	
$-A_{4\Delta\phi}(\%)$	16.8 ± 2.5	16.5	18.8 / 16	
	Peripheral (60-80%)			
Quantity	Measured	QED	χ^2/ndf	
$-A_{4\Delta\phi}(\%)$	27 + 6	34.5	10.2 / 1′	

Birefringence of the QED Vacuum

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019) QED calculation: Li, C., Zhou, J. & Zhou, Y. Phys. Rev. D 101, 034015 (2020).

Recently realized, $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} \neq 0$ leads to $\cos(n\Delta\phi)$ modulations in polarized $\gamma\gamma \rightarrow e^+e^-$ [1] $\Delta \phi = \Delta \phi [(e^+ + e^-), (e^+ - e^-)]$

 $\approx \Delta \phi [(e^+ + e^-), e^+]$

Quantity	Measured	QED	χ^2/ndf
$-A_{4\Delta\phi}(\%)$	16.8 ± 2.5	16.5	18.8 / 16
	Peripheral (60-80%)		
Quantity	Measured	QED	χ^2/ndf
$-A_{4\Delta\phi}(\%)$	27 ± 6	34.5	10.2 / 17

 \rightarrow First Earth-based observation (6.7 σ level) of vacuum birefringence

Li, C., Zhou, J. & Zhou, Y. Phys. Rev. D 101, 034015 (2020).

Magnetic field strength and spatial distribution:

- Impact parameter dependence of P_{\perp}
- Amplitude of $\cos 4\Delta\phi$ modulation

QED calculations for Breit-Wheeler $(\gamma\gamma \rightarrow e^+e^-)$ process and vacuum birefringence (good agreement with all data) use this field density:

Peak value for single ion: $|B| \approx 0.7 \times 10^{15}$ Tesla $\approx 10,000 \times$ stronger than Magnetars

Magnetic field strength and spatial distribution:

- Impact parameter dependence of P_{\perp}
- Amplitude of $\cos 4\Delta\phi$ modulation

QED calculations for Breit-Wheeler $(\gamma\gamma \rightarrow e^+e^-)$ process and vacuum birefringence (good agreement with all data) use this field density.

Peak value for single ion: $|B| \approx 0.8 \times 10^{15}$ Tesla $\approx 10,000 \times$ stronger than Magnetars

Magnetic field strength and spatial distribution:

- Impact parameter dependence of P_{\perp}
- Amplitude of $\cos 4\Delta \phi$ modulation

QED calculations for Breit-Wheeler $(\gamma\gamma \rightarrow e^+e^-)$ process and vacuum birefringence (good agreement with all data) use this field density:

Peak value for single ion: $|B| \approx 0.8 \times 10^{15}$ Tesla $\approx 10,000 \times$ stronger than Magnetars

Applications for studying QCD

Predicted emergent magnetohydrodynamical phenomena of Quantum Chromodynamics

- Manifestations require ultra-strong magnetic fields
- oE.g. Chiral Magnetic Effect

Major goal of RHIC heavy-ion program
 Dedicated Isobar run in 2018
 <u>Dima Kharzeev's Quark Matter 2019 talk:</u>

Absent in Maxwell theory!

$$ec{J}=rac{e^2}{2\pi^2}\;\mu_5\;ec{B}$$

DK, L.McLerran, H.Warringa NPA'o

Chiro-genesis in Heavy Ion Collisions

Image: D. Leinweber

Coefficient is fixed by the chiral anomaly, no corrections K.Fukushima

K.Fukushima, DK, H.Warringa, "Chiral magnetic effect" PRD'08

NEED TO KNOW THE MAGNETIC FIELD FOR QUANTITATIVE STUDIES

What can we learn about final state, medium effects?

- Idea: Extremely small $P_{\perp} \rightarrow$ easily deflected by relatively small perturbations
- Two proposals from different groups:
- 1. Lorentz-Force bending due to long-lived magnetic field
- 2. Coulomb scattering through QGP medium

L. McLerran, V. Skokov, Nuclear Physics A 929 (2014) 184–190

UPC vs. Peripheral

In UPC we can measure the <u>quasi-exclusive</u> $\gamma \gamma \rightarrow e^+e^$ process.

In peripheral collisions we can <u>statistically isolate</u> the spectra from the $\gamma\gamma \rightarrow e^+e^-$ process.

STAR Collaboration, J. Adam, et al., Phys. Rev. Lett. 121, 132301 (2018).

Coulomb Scattering through OGP [1] S. R. Klein, et. al, Phys. Rev. Lett. 122, (2019), 132301 [2] ATLAS Phys. Rev. Lett. 121 (2018), 212301

• Charged particles may scatter off charge centers in QGP, modifying primordial pair P_{\perp} ?

Assumptions:

- 1. Primordial distribution given by STARLight
- 2. Daughters traverse medium

$\gamma\gamma \rightarrow e^+e^-: UPC vs. Peripheral [1] STAR, Phys. Rev. Lett. 121 (2018) 132301$ [2] S. R. Klein, et. al, Phys. Rev. Lett. 122, (2019), 132301

[3] ATLAS Phys. Rev. Lett. 121 (2018) , 212301

Characterize difference in spectra via $\sqrt{\langle P_1^2 \rangle}$

$\sqrt{\langle P_{\perp}^2 angle}$ (MeV/c)	UPC Αυ+Αυ	6o-8o% Au+Au
Measured	38.1 ± 0.9	50.9 <u>+</u> 2.5
QED	37.6	48.5
<i>b</i> range (fm)	≈ 20	$\approx 11.5 - 13.5$

 Leading order QED calculation of $\gamma \gamma \rightarrow e^+ e^-$ describes both spectra ($\pm 1\sigma$)

• Best fit for spectra in 60-80% collisions found for QED shape plus 14 ± 4 (stat.) ± 4 (syst.) MeV/c broadening

• Proposed as a probe of trapped magnetic field or Coulomb scattering in QGP [1-3]

We have not yet compared QED calculation to the new, high precision data from ATLAS (from Quark Matter 2019)

Summary

- 1. Observation of the Breit-Wheeler process in HICs
- 2. First Earth-based observation of Vacuum Birefringence : Observed (6.7 σ) via angular modulations in linear polarized $\gamma\gamma \rightarrow e^+e^-$ process
- 3. First experimental evidence that HIC produce the strongest magnetic fields in the Universe $\approx 10^{15}$ Tesla <u>over an extensive</u> spatial distribution

A lot more work needed to further constrain magnetic field topology and to test for possible medium effects – Exciting opportunities lie ahead

Fundamental Interactions : light & matter

Photo Electric Effect **1887** Hertz, Ann Phys (Leipzig) 31, 983

Compton Scattering **1906** Thomson, Conduction of Electricity through Gases

Thank You

Additional Slides

External Field Approach

W. Zha, JDB, Z. Tang, Z. Xu arXiv:1812.02820

Derive impact parameter dependence using external field approach

Based on work from M. Vidovi'c et al., Phys. Rev. C 47, 2308 (1993).

$$A_{1}^{\mu}(k_{1},b) = -2\pi(Z_{1}e)e^{ik_{1}^{\tau}b_{\tau}}\delta(k_{1}^{\nu}u_{1\nu})\frac{F_{1}(-k_{1}^{\rho}k_{1\rho})}{k_{1}^{\sigma}k_{1\sigma}}u_{1}^{\mu},$$
$$A_{2}^{\mu}(k_{2},0) = -2\pi(Z_{2}e)e^{ik_{2}^{\tau}b_{\tau}}\delta(k_{2}^{\nu}u_{2\nu})\frac{F_{2}(-k_{2}^{\rho}k_{2\rho})}{k_{2}^{\sigma}k_{2\sigma}}u_{2}^{\mu}.$$

- Term relating impact parameter
 (b) and transverse momentum q_⊥
- Integrating out the b dependence gives the standard EPA result used in literature (STARLight + other)

F. Krauss, M. Greiner, and G. Soff, Progress in Particle and Nuclear Physics 39, 503 (1997).

 Pair p_T is sensitive to initial field strength function of (b)

$$\sigma = 16 \frac{Z^4 e^4}{(4\pi)^2} \int d^2 b \int \frac{dw_1}{w_1} \frac{dw_2}{w_2} \frac{d^2 k_{1\perp}}{(2\pi)^2} \frac{d^2 k_{2\perp}}{(2\pi)^2} \frac{d^2 q_{\perp}}{(2\pi)^2}$$

$$\times \frac{F(-k_1^2)}{k_1^2} \frac{F(-k_2^2)}{k_2^2} \frac{F^*(-k_1'^2)}{k_1'^2} \frac{F^*(-k_2'^2)}{k_2'^2} e^{-i\vec{b}\cdot\vec{q}_{\perp}}$$

$$\times \left[(\vec{k}_{1\perp} \cdot \vec{k}_{2\perp}) (\vec{k}_{1\perp}' \cdot \vec{k}_{2\perp}) \sigma_s(w_1, w_2) + (\vec{k}_{1\perp} \times \vec{k}_{2\perp}) (\vec{k}_{1\perp}' \times \vec{k}_{2\perp}') \sigma_{ps}(w_1, w_2) \right]$$

$$\sigma = 16 \frac{Z^4 e^4}{(4\pi)^2} \int \frac{dw_1}{w_1} \frac{dw_2}{w_2} \frac{d^2 k_{1\perp}}{(2\pi)^2} \frac{d^2 k_{2\perp}}{(2\pi)^2} \left| \frac{F(-k_1^2)}{k_1^2} \right|^2$$

$$\times \left| \frac{F(-k_2^2)}{k_2^2} \right|^2 k_{1\perp}^2 k_{2\perp}^2 \sigma(w_1, w_2)$$

STAR Measurements of $\gamma\gamma \rightarrow e^+e^-$ in Peripheral Collisions

Compare with additional effect from trapped EM field in conducting QGP

 $0.4 < m_{ee} < 2.6 \, {\rm GeV}/c^2$

- 1. Used STARLight P_{\perp} Spectra as input
- 2. All e^{\pm} travers 1fm through $|B| \approx 10^{14}$ T ($eBL \approx 30$ MeV/c)

 10^{-4}

0.006

0.004

 p^{2} ((GeV/c)²)

0.002

ATLAS Measurement of $\gamma\gamma \rightarrow \mu^+\mu^-_{arXiv:1806.08708}$

Phys. Rev. Lett. 121, 212301 (2018)

- ATLAS recently measured forward $\mu^+\mu^-$ pairs
- Poor momentum resolution, better angular resolution

$$\alpha = 1 - \frac{|\phi^+ - \phi^-|}{\pi}$$

ATLAS Measurements: $p_T^\mu > 4~{
m GeV/c}$ $4 < m_{\mu\mu} < 45~{
m GeV/c}^2$

• Significant broadening observed in central collisions w.r.t > 80 % data

Motivation From STAR and ATLAS

arXiv:1806.08708 Phys. Rev. Lett. 121, 212301 (2018)

Motivation From STAR and ATLAS

arXiv:1806.08708 Phys. Rev. Lett. 121, 212301 (2018)

Daniel Brandenburg | BNL (CFNS) / SDU

Centrality [%] 52

Peripheral Data

- Peripheral data from both STAR 1.2 < M_{ee} < 2. and ATLAS are well described by QED calculation
- \rightarrow No need for final state effects?

$d\sigma/dM$ for events with 1n1n events

1n1n: events with 1 neutron in each ZDC

e⁺e⁻ Identification

- No hits in VPD and only 2 tracks: No TOF start time
- Use TOF without a start time (to), use relative time difference between tracks

Example : Light-by-Light Scattering

ATLAS Observed Light-by-Light Scattering in UPCs:

ATLAS, *Nature Physics* 13 (2017), 852

Motivation outside HIC / HEP

photonics

Letter | Published: 18 May 2014

A photon-photon collider in a vacuum hohlraum

O. J. Pike 🖾, F. Mackenroth, E. G. Hill & S. J. Rose

Nature Photonics 8, 434–436 (2014) | Download Citation 🕹

Abstract

The ability to create matter from light is amongst the most striking predictions of quantum electrodynamics. Experimental signatures of this have been reported in the scattering of ultra-relativistic electron beams with laser beams^{1,2}, intense laser–plasma interactions³ and laser-driven solid target scattering⁴. However, all such routes involve massive particles. The simplest mechanism by which pure light can be transformed into matter, Breit–Wheeler pair production $(\gamma\gamma' \rightarrow e^+e^-)^5$, has never been observed in the laboratory. Here, we present the design of a new class of photon–photon collider in which a gamma-ray beam is fired into the high-temperature radiation field of a laser-heated hohlraum. Matching experimental parameters to current–generation facilities, Monte Carlo simulations suggest that this scheme is capable of producing of the order of 10⁵ Breit–Wheeler pairs in a single shot. This would provide the first realization of a pure photon–photon

collider, representing the advent of a new type of high-energy physics $\ensuremath{\mathsf{Physics}}$ $\ensuremath{\mathsf{Physics}}$

COMMUNICATIONS XX & COMMUNICATIONS

Article | OPEN | Published: 10 December 2018

Brilliant gamma-ray beam and electronpositron pair production by enhanced attosecond pulses

Yan-Jun Gu 🔀, Ondrej Klimo, Sergei V. Bulanov & Stefan Weber

Communications Physics 1, Article number: 93 (2018) | Download Citation 🛓

Abstract

Electron–positron pair production via Breit–Wheeler process requires laser intensities approaching 10^{24} W cm⁻² due to the small crosssection. Here, we propose a mechanism for brilliant γ -ray emission and dense GeV pairs creation accompanied with high-harmonic generation by using plasma mirror and an ultra short pulse with the intensity of 3×10^{23} W cm⁻². The laser is reflected by the solid surface after propagating tens of microns in a near-critical density plasma and breaks into short wave packets. The intensity of the reflected high order harmonic field is enhanced by the focusing and compression effects from the deformed oscillating mirror. The radiation trapped electrons emit γ -photons

Matter creation via gamma-gamma collider driving by 10 PW laser pulses

Jinqing Yu, Haiyang Lu, T. Takahashi, Ronghao Hu, Zheng Gong, Wenjun Ma, Yongsheng Huang, Xueqing Yan

(Submitted on 12 May 2018)

The nature of matter creation is one of the most basic processes in the universe. According to the quantum electrodynamics theory, matters can be created from pure light through the Breit Wheeler (BW) process. The multi-photon BW process has been demonstrated in 1997 at the SLAC, yet the two-photon BW process has never been observed in the laboratory. Interest has been aroused to investigate this process with lasers due to the developments of the laser technology and the laser based electron accelerators. The laser based proposals may be achieved with NIF and ELI, provided that the signal-to-noise (S/N) ratio of BW is high enough for observation. Here, we present a clean channel to observe the matter creation via a gamma-gamma collider by using the collimated γ -ray pulses generated in the interaction between 10-PW lasers and narrow tubes. More than 3.2×10^8 positrons with a divergence angle of ~ 7 degrees can be created in a single pulse, and the S/N is higher than 2000. This scheme, which provides the first realization of gamma-gamma collider in the laboratory, would pave the developments of quantum electrodynamics, high-energy physics and laboratory astrophysics.

Physics Reports Volume 487, Issues 1–4, February 2010, Pages 1-140

Electron-positron pairs in physics and astrophysics: From heavy nuclei to black holes Remo Ruffini ^{a, b, c} A B, Gregory Vereshchagin ^a B, She-Sheng Xue ^a B Show more https://doi.org/10.1016/j.physrep.2009.10.004 Get rights and content

Breit-Wheeler process has never been (definitely)achieved

Impact on photonics, laser physics, plasma physics, study of QED under extreme conditions

Just demonstrating Breit-Wheeler process is a very important result

 $d\sigma(\gamma\gamma \to e^+e^-)/dP_+$

 \circ Cross-section peaks at low P_{\perp} , as expected for quasi-real photon collisions

◦ Data are well described by leading order QED calculation (γγ → e⁺e⁻)

 \odot STARLight predicts significantly lower $\langle P_{\perp} \rangle$ than seen in data

QED and STARLight are scaled to match measured $\sigma(\gamma\gamma \rightarrow e^+e^-)$

STARLight: S. R. Klein, et. al. *Comput. Phys. Commun.* 212 (2017) 258 QED : W. Zha, J.D.B., Z. Tang, Z. Xu arXiv:1812.02820 [nucl-th]

OK but how sensitive are these measurements to the **peak** field?
 How sensitive to the geometry of the fields?

QED: two-photon overlap probability 10 8 6 4 2 0 y (fm) -4 -6 -8 -10 -50 -30 -20 10 20 30 -40 -10 0 40 50 x (fm)

 \circ Most $\gamma\gamma$ interactions in region where field from <u>one</u> ion is maximum $n_1 \times n_2 \propto |B_1|^2 \times |B_2|^2 \approx |B_{1,peak}|^2 \times const$ (at large impact parameters)

• At large impact parameters $n_1 \times n_2 \propto |B_1|^2 \times |B_2|^2 \approx |B_{1,peak}|^2 \times const$

July 30, 2020

Daniel Brandenburg | BNL (CFNS) / SDU