Observation of the BreitWheeler Process in HeavyIon Collisions

Daniel Brandenburg
BNL(CFNS)/SDU

$115^{\text {th }}$ Seminar : High Energy Nuclear Physics in China July $30^{\text {th, }} 2020$ (via ZOOM)

Outline of this talk

1. Quantum Electrodynamics

- Introduction \& some history
- Ultra-peripheral Heavy Ion collisions \rightarrow QED under extreme conditions
- Breit-Wheeler Pair Production \& Vacuum birefringence

2. A tool for studying Quantum Chromodynamics

- Mapping the initial Magnetic field
- Final state/Medium effects?

3. Conclusions

Fundamental Interactions : light \& matter
 Photo Electric Effect 1887 Hertz, Ann Phys (Leipzig) 31, 983

Fundamental Interactions : light \& matter
 Photo Electric Effect 1887 Hertz, Ann Phys (Leipzig) 31, 983

 Bremsstrahlung 1895 Röntgen, Ann Phys
 (Leipzig) 300, 1

 Compton Scattering 1906 Thomson, Conduction of Electricity through Gases

Breit-Wheeler Process, why so elusive?

Breit-Wheeler and Klein-Nishina cross-sections

Breit-Wheeler Pair Production Cross Section $\sigma_{\gamma \gamma}$:

$$
\begin{aligned}
\sigma_{\gamma \gamma}= & \pi r_{0}^{2}\left(\frac{m}{\omega}\right)^{2}\left\{\left[2\left(1+\left(\frac{m}{\omega}\right)^{2}\right)-\left(\frac{m}{\omega}\right)^{4}\right] \cosh ^{-1} \frac{\omega}{m}\right. \\
& \left.-\left(1+\left(\frac{m}{\omega}\right)^{2}\right) \sqrt{1-\left(\frac{m}{\omega}\right)^{2}}\right\}
\end{aligned}
$$

- Same peak cross section as Compton scattering and Dirac annihilation
- Cross section, $\sigma_{\gamma \gamma}$ peaks at $10^{-29} \mathrm{~m}^{2}$
\circ Creating matter from massless state, remember: $E=m c^{2}$
- center of mass energy must be $W \geq 2 m_{e}$

Breit and Wheeler, Phys Rev 46, I 087 (1934)
Jauch and Rohrlich, The Theory of Photons and Electrons (I959)

Breit-Wheeler Process, why so elusive?

\circ Already in 1934 Breit and Wheeler knew it was hard, maybe impossible?

Collision of Two Light Quanta

G. Breit* and John A. Wheeler,** Department of Physics, New York University (Received October 23, 1934)

As has been reported at the Washington meeting, pair production due to collisions of cosmic rays with the temperature radiation of interstellar space is much too small to be of any interest. We do not give the explicit calculations, since the result is due to the orders of magnitude rather than exact relations. It is also hopeless to try to observe the pair formation in laboratory experiments with two beams of x-rays or γ-rays meeting each other on account of the smallness of σ and the insufficiently large available densities of quanta. In the considerations of Williams,

Breit-Wheeler Process, why so elusive?

o Already in 1934 Breit and Wheeler knew it was hard, maybe impossible?

DECEMBER 15 , 1934
PHYSICAL REVIEW
VOLUME

Collision of Two Light Quanta

ohn A. Wheeler, ** Department of Physics, New York University (Received October 23, 1934)
o Or maybe not impossible!
of quanta. In the considerations of Williams, however, the large nuclear electric fields lead to large densities of quanta in moving frames of reference. This, together with the large number of nucleii available in unit volume of ordinary materials, increases the effect to observable amounts. Analyzing the field of the nucleus into quanta by a procedure similar to that of v . Weizsäcker, ${ }^{4}$ he finds that if one quantum $h \nu$
E. J. Williams Phys. Rev. 45, 729 (1934)
K. F. Weizsacker, Z. Physik, 612 (1934)

The Breit-Wheeler ($\gamma \gamma \rightarrow e^{+} e^{-}$) Process

- Breit-Wheeler process is by definition the lowest-order process
- Two Feynman diagrams contribute at lowest-order
- Specifically note:

$$
P_{\perp}=k_{1 \perp}+k_{2 \perp}
$$

Ultra-Peripheral Heavy Ion Collisions

Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic field

Weizäcker-Williams Equivalent Photon Approximation (EPA):
\rightarrow In a specific phase space, transverse EM fields can be quantized as a flux of real photons
Weizsäcker, C. F. v. Zeitschrift für Physik 88 (1934): 612

$$
n \propto \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \approx|\vec{E}|^{2} \approx|\vec{B}|^{2}
$$

$Z \alpha \approx 1 \rightarrow$ High photon density
Ultra-strong electric and magnetic fields:
\rightarrow Expected magnetic field strength $\overrightarrow{\mathbf{B}} \approx \mathbf{1 0}^{\mathbf{1 4}}-\mathbf{1 0}^{\mathbf{1 6}} \mathrm{T}$
Skokov, V., et. al. Int. J. Mod. Phys. A 24 (2009): 5925-32

Test QED under extreme conditions

STAR 2004: $d \sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right) / d P_{\perp}$

Actually, STAR tried to measured $\gamma \gamma \rightarrow e^{+} e^{-}$before, in 2004

Low statistics measurement
(only $52 e^{+} e^{-}$pairs)
Unable to definitively determine process

In that paper and subsequent papers from community, assume that difference between EPA and OED (near $P_{\perp} \approx 0$) results from significant photon virtuality

[^0]Sept. 2004, p. 031902. APS, doi:10.1103/PhysRevC.70.031902.

STAR 2004: $d \sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right) / d P_{\perp}$

Other experiments have also investigated the $\gamma \gamma \rightarrow e^{+} e^{-}$in UPCs before.

Problem:

Cross section alone cannot distinguish Breit-Wheeler Process from background from virtual photons

STAR Collaboration, et al. Physical Review C, vol. 70, no. 3,
Sept. 2004, p. 031902. APS, doi:10.1103/PhysRevC.70.031902.

A Novel Approach for the Breit-Wheeler Process

\rightarrow Perform a precision measurement of the differential cross sections

1. Photon Energy Spectrum

- Transverse Momentum distribution
- Invariant mass distribution
- Impact parameter dependence

2. Angular Distribution

- Distinctive polar angle distribution
- Azimuthal modulations predicted for real photon (transversely polarized)

General density matrix for the twophoton system:

Spin 1 Photon helicity $a=(-, 0,+)$

A Novel Approach for the Breit-Wheeler Process

\rightarrow Perform a precision measurement of the differential cross sections

1. Photon Energy Spectrum

- Transverse Momentum distribution
- Invariant mass distribution
- Impact parameter dependence

2. Angular Distribution

- Distinctive polar angle distribution
- Azimuthal modulations predicted for real photon (transversely polarized)

General density matrix for the twophoton system:

Spin 1 Photon helicity $a=(-, 0,+)$
Helicity 0 : Forbidden for real photon
Real photon: Allowed J^{P} states: $2^{ \pm}, 0^{ \pm}$

A Novel Approach for the Breit-Wheeler Process

\rightarrow Perform a precision measurement of the differential cross sections

Angular distribution allows identification of quantum numbers - e.g. Higgs Boson

SM Higgs boson

General density matrix for the twophoton system:

Spin 1 Photon helicity $a=(-, 0,+)$
Helicity 0 : Forbidden for real photon
Real photon: Allowed J^{P} states: $2^{ \pm}, 0^{ \pm}$

Signatures of the Breit-Wheeler Process

1. Exclusive $e^{+} e^{-}$pair production
2. Photon helicity $+/-1$ only

- Smooth invariant mass spectra (No vector mesons)
- Individual $e^{+} e^{-}$preferentially aligned along beam direction

3. Energy Spectrum:

- Production peaked at very low P_{\perp} (pair transverse momentum)
- Impact parameter dependence on P_{\perp}

4. Photon transverse polarization \& spatial distribution

$\gamma \gamma \rightarrow e^{+} e^{-}$Process in UPCs

Breit-Wheeler $\gamma \gamma \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-}$ pair production process

Mutual Coulomb excitation and nuclear dissociation

- Provides efficient trigger condition
\rightarrow Provides high statistics sample (>6,000 $e^{+} e^{-}$pairs) for multi-differential analysis

Total $\gamma \gamma \rightarrow e^{+} e^{-}$cross-section in STAR Acceptance

STARLight: S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258 gEPA \& OED : W. Zha, J.D.B., Z. Tang, Z. Xu arXiv:1812.02820 [nucl-th]

Pure QED $2 \rightarrow 2$ scattering:

$$
d \sigma / d M \propto E^{-4} \approx M^{-4}
$$

No vector meson production \rightarrow Forbidden for real photons with helicity ± 1 (i.e. 0 is forbidden)

```
\sigma}(\gamma\boldsymbol{\gamma}->\mp@subsup{\boldsymbol{e}}{}{+}\mp@subsup{\boldsymbol{e}}{}{-})\mathrm{ in STAR Acceptance:
```

Data: 0.261 ± 0.004 (stat.) ± 0.013 (sys.)
± 0.034 (scale) mb

STARLight	gEPA	QED
0.22 mb	0.26 mb	0.29 mb

Measurement of total cross section agrees with theory calculations at $\pm \mathbf{1 \sigma}$ level

$d \sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right) / d \cos \theta^{\prime}$

$\gamma \gamma \rightarrow e^{+} e^{-}$: Individual e^{+} / e^{-}preferentially aligned along beam axis [1]:

$$
G(\theta)=2+4\left(1-\frac{4 m^{2}}{W^{2}}\right) \frac{\left(1-\frac{4 m^{2}}{W^{2}}\right) \sin ^{2} \theta \cos ^{2} \theta+\frac{4 m^{2}}{W^{2}}}{\left(1-\left(1-\frac{4 m^{2}}{W^{2}}\right) \cos ^{2} \theta\right)^{2}}
$$

- Highly virtual photon interactions should have an isotropic distribution
- Measure θ^{\prime}, the angle between the e^{+}and the beam axis in the pair rest frame.

[1] S. Brodsky, T. Kinoshita and H. Terazawa, Phys. Rev. D4, 1532 (1971) STARLight: S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258

$d \sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right) / d \cos \theta^{\prime}$

$\gamma \gamma \rightarrow e^{+} e^{-}$: Individual e^{+} / e^{-}preferentially aligned along beam axis [1]:

$$
G(\theta)=2+4\left(1-\frac{4 m^{2}}{W^{2}}\right) \frac{\left(1-\frac{4 m^{2}}{W^{2}}\right) \sin ^{2} \theta \cos ^{2} \theta+\frac{4 m^{2}}{W^{2}}}{\left(1-\left(1-\frac{4 m^{2}}{W^{2}}\right) \cos ^{2} \theta\right)^{2}}
$$

- Highly virtual photon interactions should have an isotropic distribution
- Measure θ^{\prime}, the angle between the e^{+}and the beam axis in the pair rest frame.
\Rightarrow Data are fully consistent with $G(\boldsymbol{\theta})$ distribution expected for $\gamma \gamma \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-}$
\Rightarrow Measurably distinct from isotropic

[1] S. Brodsky, T. Kinoshita and H. Terazawa, Phys. Rev. D4, 1532 (1971)
STARLight: S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258

$d \sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right) / d P_{\perp}$

- High precision data - test theory predictions
- STARLight predicts significantly lower $\left\langle P_{\perp}\right\rangle$ than seen in data
- Is the increased P_{\perp} observed due to significant virtuality?
- Let's look at how the calculation is done in the lowest order QED case

OED and STARLight are scaled to match measured $\sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right)$
STARLight: S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258
OED :W. Zha, J.D.B., Z. Tang, Z. Xu arXiv:1812.02820 [nucl-th]

Calculating Cross Section for $\gamma \gamma \rightarrow e^{+} e^{-}$Process

Generalized EPA \& OED Calculations:

- Use Woods-Saxson Form Factor for nuclear charge distribution
- Include production inside nucleus - absorption effects found to be negligible
- Predict impact parameter dependent P_{\perp} distribution

Photon virtuality and differential cross section

Note: gEPA1 vs. gEPA2 : gEPA2 includes phase term to approximate full OED result

B

OED (and gEPA parameterization) describe data Larger $\left\langle P_{\perp}\right\rangle$ from impact parameter dependence no evidence for significant photon virtuality

- Still only models, can we experimentally investigate impact parameter dependence : \rightarrow Compare UPC vs. same process in peripheral collisions

Classical Electromagnetism

- Maxwell's equations are linear
$>$ Superposition principle holds

$$
\begin{aligned}
& \mathcal{L}_{\text {classical }}=\frac{1}{2 \mu_{0}}\left(\frac{E^{2}}{c^{2}}-B^{2}\right) \vec{D}=\frac{\partial \mathcal{L}_{\text {classical }}}{\partial \vec{E}} \\
& \vec{H}=-\frac{\partial \mathcal{L}_{\text {classical }}}{\partial \vec{B}} \vec{E} \\
& \vec{H}=\frac{1}{\mu_{0}} \vec{B}
\end{aligned}
$$

\rightarrow Unique speed of light in vacuum:

$$
c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=299792458 \mathrm{~m} / \mathrm{s}
$$

Quantum Electrodynamics

Three important discoveries that alter the classical picture:

- Einstein's energy-mass equivalence: $E=m c^{2}$
- Uncertainty principle: $\Delta E \Delta t \geq \hbar / 2$
- Existence of positron : Dirac predicts negative electron energy states (1928), Anderson discovered positron in 1932

Quantum Electrodynamics

Three important discoveries that alter the classical picture:

- Einstein's energy-mass equivalence: $E=m c^{2}$
- Uncertainty principle: $\Delta E \Delta t \geq \hbar / 2$
- Existence of positron : Dirac predicts negative electron energy states (1928), Anderson discovered positron in 1932
\rightarrow Vacuum fluctuations
-1936: Euler \& Heisenberg present modified Lagrangian

$$
\mathcal{L}_{E H}=\frac{1}{2 \mu_{0}}\left(\frac{E^{2}}{c^{2}}-B^{2}\right)+\frac{A_{e}}{\mu_{0}}\left[\left(\frac{E^{2}}{c^{2}}-B^{2}\right)^{2}+7\left(\frac{\vec{E}}{c} \cdot \vec{B}\right)\right]+\cdots
$$

- Non-linear \rightarrow Super-position principle broken!

NB: in 1951 Shwinger derived the Lagrangian within OED

Vacuum Magnetic Birefringence

$c=\frac{1}{\sqrt{\epsilon \mu}}$ BUT $\epsilon_{\|} \neq \epsilon_{\perp}$ and $\mu_{\|} \neq \mu_{\perp}$
Light behaves as if it is traveling through a medium with an index of refraction $n_{v a c} \neq 1$

$$
\tilde{n}_{\mathrm{vac}}=1+\left(n_{\mathrm{B}}+i \kappa_{\mathrm{B}}\right)
$$

Guido Zavattini ICNFP2019

$$
A_{e}=\frac{2}{45 \mu_{0}} \frac{\alpha^{2} \lambda_{e}^{3}}{m_{e} c^{2}}
$$

Unmeasurably small

Optical Birefringence

Birefringent material: Different index of refraction for light polarized parallel $\left(n_{\|}\right)$vs. perpendicular $\left(n_{\perp}\right)$ to material's ordinary axis
\rightarrow splitting of wave function when $\Delta n=n_{\|}-n_{\perp} \neq 0$

Vacuum Birefringence

Vacuum birefringence : Predicted in 1936 by Heisenberg \& Euler. Index of refraction for γ interaction with \vec{B} field depends on relative polarization angle i.e. $\Delta \boldsymbol{\sigma}=\boldsymbol{\sigma}_{\|}-\boldsymbol{\sigma}_{\perp} \neq \mathbf{0}$

Empty space + R. P. Mignani, et al., Mon. Not. Roy. Astron. Soc. 465 (2017), 492

Ultra-strong Magnetic Field

> Linearly polarized (vertical)

Linearly polarized (horizontal)

Birefringence of the OED Vacuum

Vacuum birefringence : Predicted in 1936 by Heisenberg \& Euler. Index of refraction for γ interaction with \vec{B} field depends on relative polarization angle i.e. $\Delta \boldsymbol{\sigma}=\boldsymbol{\sigma}_{\|}-\boldsymbol{\sigma}_{\perp} \neq \mathbf{0}$

Lorentz contraction of EM fields \rightarrow
Quasi-real photons should be linearly polarized $(\vec{E} \perp \vec{B} \perp \vec{k})$

Can we observe vacuum birefringence in ultra-peripheral collisions?

Feynman Diagram for Vacuum Birefringence

$\operatorname{Real}(n)=$ transmission process $\gamma \gamma \rightarrow \gamma \gamma$
$\operatorname{Imag}(n)=$ absorption process $\gamma \gamma \rightarrow e^{+} e^{-}$(diagram cut)
S. Bragin, et. al., Phys. Rev. Lett. 119 (2017), 250403
R. P. Mignani, et al., Mon. Not. Roy. Astron. Soc. 465 (2017), 492

Breit-Wheeler Process and Light-by-Light Scattering

Breit-Wheeler Process

Light-by-Light Scattering

[1] Budnev, V. M., Ginzburg, I. F., Meledin, G. V. \& Serbo, V. G. Physics Reports 15, 181-282 (1975).
[2] ATLAS Collaboration et al. Phys. Rev. Lett. 123, 052001 (2019).

The Breit-Wheeler process and Light-by-Light scattering are intimately connected

According to the optical theorem[1] the Breit-Wheeler process is the imaginary part of the forward scattering amplitude

In QED formalism, the BreitWheeler process is the imaginary part of the propagator - i.e. when the $e^{+} e^{-}$masses are real.

Light-by-Light recently observed by ATLAS [2] and CMS collaborations

Experimental Signature of Vacuum Birefringence

Optical Theorem

Recently realized, $\Delta \sigma=\sigma_{\|}-\sigma_{\perp} \neq 0$ leads to a $\boldsymbol{\operatorname { c o s }}(\mathbf{4} \Delta \boldsymbol{\phi})$ modulation in polarized $\gamma \gamma \rightarrow e^{+} e^{-}$[1]
The corresponding vacuum LbyL scattering[2] displays a $\boldsymbol{\operatorname { c o s }}(\mathbf{2 \Delta \phi})$ modulation = vacuum birefringence [1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)
[2] Harland-Lang, L. A., Khoze, V. A. \& Ryskin, M. G. Eur. Phys. J. C 79, 39 (2019).

$$
\begin{aligned}
\Delta \phi= & \Delta \phi\left[\left(e^{+}+e^{-}\right),\left(e^{+}-e^{-}\right)\right] \\
& \approx \Delta \phi\left[\left(e^{+}+e^{-}\right), e^{+}\right]
\end{aligned}
$$

Birefringence of the OED Vacuum

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019) OED calculation: Li, C., Zhou, J. \& Zhou, Y. Phys. Rev. D 101, 034015 (2020).

Recently realized, $\Delta \sigma=\sigma_{\|}-\sigma_{\perp} \neq 0$ leads to $\cos (\boldsymbol{n} \Delta \boldsymbol{\phi})$ modulations in polarized $\gamma \gamma \rightarrow e^{+} e^{-[1]}$

$$
\begin{aligned}
\Delta \phi= & \Delta \phi\left[\left(e^{+}+e^{-}\right),\left(e^{+}-e^{-}\right)\right] \\
& \approx \Delta \phi\left[\left(e^{+}+e^{-}\right), e^{+}\right]
\end{aligned}
$$

Ultra-Peripheral

Quantity	Measured	QED	χ^{2} / ndf
$-A_{4 \Delta \phi}(\%)$	16.8 ± 2.5	16.5	18.8/16
	Peripheral (60-80\%)		
Quantity	Measured	QED	χ^{2} / ndf
$-A_{4 \Delta \phi}(\%)$	27 ± 6	34.5	10.2 / 17

Birefringence of the OED Vacuum

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019) QED calculation: Li, C., Zhou, J. \& Zhou, Y. Phys. Rev. D 101, 034015 (2020).

Recently realized, $\Delta \sigma=\sigma_{\|}-\sigma_{\perp} \neq 0$ leads to $\cos (\boldsymbol{n} \Delta \boldsymbol{\phi})$ modulations in polarized $\gamma \gamma \rightarrow e^{+} e^{-[1]}$

$$
\begin{aligned}
\Delta \phi= & \Delta \phi\left[\left(e^{+}+e^{-}\right),\left(e^{+}-e^{-}\right)\right] \\
& \approx \Delta \phi\left[\left(e^{+}+e^{-}\right), e^{+}\right]
\end{aligned}
$$

Ultra-Peripheral
Quantity Measured QED χ^{2} / ndf
$-A_{4 \Delta \phi}(\%) \quad 16.8 \pm 2.5 \quad 16.5 \quad 18.8 / 16$

Quantity	Measured	QED	χ^{2} / ndf
$-A_{4 \Delta \phi}(\%)$	27 ± 6	34.5	$10.2 / 17$

\rightarrow First Earth-based observation (6.7 $\boldsymbol{\sigma}$ level) of vacuum birefringence

Connection to the Initial Magnetic Field

Li, C., Zhou, J. \& Zhou, Y. Phys. Rev. D 101, 034015 (2020).

Magnetic field strength and spatial distribution:

- Impact parameter dependence of P_{\perp}
- Amplitude of $\cos 4 \Delta \phi$ modulation

QED calculations for Breit-Wheeler ($\gamma \gamma \rightarrow e^{+} e^{-}$) process and vacuum birefringence (good agreement with all data) use this field density:

Peak value for single ion: $|B| \approx 0.7 \times 10^{15}$ Tesla $\approx 10,000 \times$ stronger than Magnetars

Connection to the Initial Magnetic Field

Magnetic field strength and spatial distribution:

- Impact parameter dependence of P_{\perp}
- Amplitude of $\cos 4 \Delta \phi$ modulation

QED calculations for Breit-Wheeler ($\gamma \gamma \rightarrow e^{+} e^{-}$) process and vacuum birefringence (good agreement with all data) use this field density.

Peak value for single ion: $|B| \approx 0.8 \times 10^{15}$ Tesla $\approx 10,000 \times$ stronger than Magnetars

Connection to the Initial Magnetic Field

Magnetic field strength and spatial distribution:

- Impact parameter dependence of P_{\perp}
- Amplitude of $\cos 4 \Delta \phi$ modulation

QED calculations for Breit-Wheeler ($\gamma \gamma \rightarrow e^{+} e^{-}$) process and vacuum birefringence (good agreement with all data) use this field density:

Peak value for single ion: $|B| \approx 0.8 \times 10^{15}$ Tesla $\approx 10,000 \times$ stronger than Magnetars

Applications for studying OCD

Predicted emergent magnetohydrodynamical phenomena of Quantum Chromodynamics

- Manifestations require ultra-strong magnetic fields
oE.g. Chiral Magnetic Effect
- Major goal of RHIC heavy-ion program
o Dedicated Isobar run in 2018
Dima Kharzeev's Quark Matter 2019 talk:

Chiro-genesis in Heavy Ion Collisions

Coefficient is fixed by the chiral anomaly, no
corrections K.Fukushima, DK, H.Warringa,
5
"Chiral magnetic effect" PRD'o8

What can we learn about final state, medium effects?

- Idea: Extremely small $P_{\perp} \rightarrow$ easily deflected by relatively small perturbations
- Two proposals from different groups:

1. Lorentz-Force bending due to long-lived magnetic field
2. Coulomb scattering through QGP medium

L. McLerran, V. Skokov, Nuclear Physics A 929 (2014) 184-190

UPC vs. Peripheral

In UPC we can measure the quasi-exclusive $\gamma \gamma \rightarrow e^{+} e^{-}$ process.

In peripheral collisions we can statistically isolate the spectra from the $\gamma \gamma \rightarrow e^{+} e^{-}$process.

STAR Collaboration, J. Adam, et al., Phys. Rev. Lett. 121, 132301 (2018).

Spectra from peripheral collisions is significantly broader than spectra from UPC, possible medium effect?

Long-lived Magnetic Field?

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

Assumptions:

1. Used STARLight P_{\perp} Spectra
2. All $e^{ \pm}$travers 1 fm through $|B| \approx$
 $10^{14} \mathrm{~T}(e B L \approx 30 \mathrm{MeV} / c)$

Coulomb Scattering through QGP
 [1] S. R. Klein, et. al, Phys. Rev. Lett. 122, (2019), 132301 [2] ATLAS Phys. Rev. Lett. 121 (2018), 212301

- Charged particles may scatter off charge centers in QGP, modifying primordial pair P_{\perp} ?

Assumptions:

1. Primordial distribution given by STARLight
2. Daughters traverse medium

(a)

(b)

(c)

Characterize difference in spectra via $\sqrt{\left\langle P_{\perp}^{2}\right\rangle}$

$\sqrt{\left\langle P_{\perp}^{2}\right\rangle}(\mathrm{MeV} / \mathrm{c})$	$\mathrm{UPCAU}+\mathrm{Au}$	$\mathbf{6 0 - 8 0 \%} \mathbf{A u + A u}$
Measured	38.1 ± 0.9	50.9 ± 2.5
OED	37.6	48.5
\boldsymbol{b} range (fm)	≈ 20	$\approx 11.5-13.5$

- Best fit for spectra in $60-80 \%$ collisions found for OED shape plus 14 ± 4 (stat.) ± 4 (syst.) MeV/c broadening
- Proposed as a probe of trapped magnetic field or Coulomb scattering in QGP [1-3]

We have not yet compared QED calculation to the new, high precision data from ATLAS (from Quark Matter 2019)

Summary

1. Observation of the Breit-Wheeler process in HICs
2. First Earth-based observation of Vacuum Birefringence :

Observed (6.7 σ) via angular modulations in linear polarized $\gamma \gamma \rightarrow e^{+} e^{-}$process
3. First experimental evidence that HIC produce the strongest magnetic fields in the Universe $\approx 10^{15}$ Tesla over an extensive spatial distribution

A lot more work needed to further constrain magnetic field topology and to test for possible medium effects - Exciting opportunities lie ahead

Fundamental Interactions : light \& matter
 Photo Electric Effect 1887 Hertz, Ann Phys (Leipzig) 31, 983

 Bremsstrahlung 1895 Röntgen, Ann Phys
 (Leipzig) 300, 1

 Compton Scattering 1906 Thomson, Conduction of Electricity through Gases

Thank You

Additional Slides

External Field Approach

Derive impact parameter dependence using external field approach

- Based on work from M. Vidovi'c et al., Phys. Rev. C 47, 2308 (1993).

$$
\begin{aligned}
& A_{1}^{\mu}\left(k_{1}, b\right)=-2 \pi\left(Z_{1} e\right) e^{i k_{1}^{\tau} b_{\tau}} \delta\left(k_{1}^{\nu} u_{1 \nu}\right) \frac{F_{1}\left(-k_{1}^{\rho} k_{1 \rho}\right)}{k_{1}^{\sigma} k_{1 \sigma}} u_{1}^{\mu}, \\
& \longrightarrow \sigma=16 \frac{Z^{4} e^{4}}{(4 \pi)^{2}} \int d^{2} b \int \frac{d w_{1}}{w_{1}} \frac{d w_{2}}{w_{2}} \frac{d^{2} k_{1 \perp}}{(2 \pi)^{2}} \frac{d^{2} k_{2 \perp}}{(2 \pi)^{2}} \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \\
& A_{2}^{\mu}\left(k_{2}, 0\right)=-2 \pi\left(Z_{2} e\right) e^{i k_{2}^{\tau} b_{\tau}} \delta\left(k_{2}^{\nu} u_{2 \nu}\right) \frac{F_{2}\left(-k_{2}^{\rho} k_{2 \rho}\right)}{k_{2}^{\sigma} k_{2 \sigma}} u_{2}^{\mu} . \\
& \text { - Term relating impact parameter } \\
& \text { (b) and transverse momentum } q_{\perp} \\
& \text { - Integrating out the } b \text { dependence } \\
& \text { gives the standard EPA result used } \\
& \text { in literature (STARLight + other) } \\
& \text { F. Krauss, M. Greiner, and G. Soff, Progress in Particle } \\
& \text { and Nuclear Physics 39, } 503 \text { (1997). } \\
& \text { - } \operatorname{Pair} p_{T} \text { is sensitive to initial field } \\
& \text { strength function of (b) } \\
& \begin{aligned}
& \times \frac{F\left(-k_{1}^{2}\right)}{k_{1}^{2}} \frac{F\left(-k_{2}^{2}\right)}{k_{2}^{2}} \frac{F^{*}\left(-k_{1}^{\prime}\right)}{k_{1}^{\prime 2}} \frac{F^{*}\left(-k_{2}^{\prime}\right.}{k_{2}^{\prime 2}} \\
& \times\left[\left(\vec{k}_{1 \perp} \cdot \vec{k}_{2 \perp}\right)\left(\vec{k}_{1 \perp}^{\prime} \cdot \vec{k}_{2 \perp}^{\prime}\right) \sigma_{s}\left(w_{1}, w_{2}\right)\right. \\
& \int_{0}^{\infty} d b\left.+\left(\vec{k}_{1 \perp} \times \vec{k}_{2 \perp}\right)\left(\vec{k}_{1 \perp}^{\prime} \times \vec{k}_{2 \perp}^{\prime}\right) \sigma_{p s}\left(w_{1}, w_{2}\right)\right] \\
& \quad \text { Famous EPA result } \\
& \quad \sigma=16 \frac{Z^{4} e^{4}}{(4 \pi)^{2}} \int \frac{d w_{1}}{w_{1}} \frac{d w_{2}}{w_{2}} \frac{d^{2} k_{1 \perp}}{(2 \pi)^{2}} \frac{d^{2} k_{2 \perp}}{(2 \pi)^{2}}\left|\frac{F\left(-k_{1}^{2}\right)}{k_{1}^{2}}\right|^{2}
\end{aligned} \\
& \times\left|\frac{F\left(-k_{2}^{2}\right)}{k_{2}^{2}}\right|^{2} k_{1 \perp}^{2} k_{2 \perp}^{2} \sigma\left(w_{1}, w_{2}\right)
\end{aligned}
$$

STAR Measurements of $\gamma \gamma \rightarrow e^{+} e^{-}$in Peripheral Collisions

Strong excess at low p_{T} over hadronic cocktail

Phys. Rev. Lett. 121, 132301 (2018)

- P_{\perp}^{2} slope significantly broader in peripheral $\mathrm{A}+\mathrm{A}$ than STARLight predicts.
- Compare with additional effect from trapped EM field in conducting QGP

Long-lived Magnetic Field?

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

Assumptions:

1. Used STARLight P_{\perp} Spectra as input
2. All $e^{ \pm}$travers 1 fm through $|B| \approx$ $10^{14} \mathrm{~T}(e B L \approx 30 \mathrm{MeV} / c)$

ATLAS Measurement of $\gamma \gamma \rightarrow \mu^{+} \mu^{-}$

arXiv:1806.08708
Phys. Rev. Lett. 121, 212301 (2018)

- ATLAS recently measured forward $\mu^{+} \mu^{-}$pairs
- Poor momentum resolution, better angular resolution

$$
\alpha=1-\frac{\left|\phi^{+}-\phi^{-}\right|}{\pi}
$$

$$
\begin{aligned}
& \text { ATLAS Measurements: } \\
& p_{T}^{\mu}>4 \mathrm{GeV} / \mathrm{c} \\
& 4<m_{\mu \mu}<45 \mathrm{GeV} / c^{2}
\end{aligned}
$$

- Significant broadening observed in central collisions w.r.t >80 \% data

Motivation From STAR and ATLAS

- Describe the broadening in terms of UPC curve + kick from Coulombic multiple scattering (in QGP)
- Fits to data: $k_{T}^{R M S} \approx 40-50 \mathrm{MeV}$
- No significant centrality dependence, maybe a hint in last bin
- Very different kinematics range than STAR dielectrons, \vec{B} field / coulomb scattering may not be mutually exclusive descriptions

Motivation From STAR and ATLAS

- Describe the broadening in terms of UPC curve + kick from Coulombic multiple scattering (in QGP)
- Fits to data: $k_{T}^{R M S} \approx 40-50 \mathrm{MeV}$
- No significant centrality dependence, maybe a hint in last bin
- Very different kinematics range than STAR dielectrons, \vec{B} field / coulomb scattering may not be mutually exclusive descriptions

Peripheral Data

- Peripheral data from both STAR and ATLAS are well described by QED calculation
$-\rightarrow$ No need for final state effects?

$d \sigma / d M$ for events with 1n1n events

$\boldsymbol{e}^{+} \boldsymbol{e}^{-}$Identification

- No hits in VPD and only 2 tracks: No TOF start time
- Use TOF without a start time (to), use relative time difference between tracks

Example : Light-by-Light Scattering

ATLAS Observed Light-by-Light Scattering in UPCs:

- Purely quantum mechanical process $\left(\alpha_{e m}^{4}\right)$
- Light-by-Light scattering involves real photons by definition

ATLAS, Nature Physics 13 (2017), 852

Motivation outside HIC / HEP

nature photonics
 photonics

A photon-photon collider in a vacuum hohlraum
o. J. Pike $\begin{aligned} & \text { W. F. Mackerroth, E. G. hill \& S. J. Rose }\end{aligned}$

Nature Photonics $\mathbf{8 , 4 3 4 - 4 3 6 (2 0 1 4) \ D o w n l o a d ~ C i t a t i o n ~} \underline{\underline{\nu}}$

Abstract

The ability to create matter from light is amongst the most striking predictions of quantum electrodynamics. Experimental signatures of this have been reported in the scattering of ultra-relativistic electron beams with laser beams ${ }^{1,2}$, intense laser-plasma interactions ${ }^{3}$ and laserdriven solid target scattering ${ }^{4}$. However, all such routes involve massive particles. The simplest mechanism by which pure light can be transformed into matter, Breit-Wheeler pair production $\left(\gamma \gamma^{\prime} \rightarrow e^{+} e^{-}\right)^{5}$, has never been observed in the laboratory. Here, we present the design has never been observed in the laboratory. Here, we present the design
of a new class of photon-photon collider in which a gamma-ray beam is of a new class of photon-photon collider in which a gamma-ray b
fired into the high-temperature radiation field of a laser-heated hohlraum. Matching experimental parameters to current-generation facilities, Monte Carlo simulations suggest that this scheme is capable of producing of the order of 10^{5} Breit-Wheeler pairs in a single sho
This would provide the first realization of a pure photon-photon

Physics > Plasma Physics

Matter creation via gamma-gamma collider driving by 10 PW laser pulses

Jinging Yu, Haiyang Lu, T. Takahashi, Ronghao Hu, Zheng Gong, Wenjun Ma, Yongsheng Huang, Xueqing Yan

(Submitted on 12 May 2018

The nature of matter creation is one of the most basic processes in the universe. According to the quantum electrodynamics theory, matters can be created from pure light through the Breit Wheeler (BWW) process. The multi-photon BW process has been demonstrated in 1997 at the SLAC, yet the two-photon BW process has never been observed in the laboratory. Interest
has been aroused toind
 achieved with NIF and ELL, provided that the signal-to-nois (S / N) ratio of BW is high enough for observation. Here, we present a clean channel to observe the matter creation via a

gamma-gamma collider by using the collimated γ-ray pulses generated in the interaction between 10 - PW lasers and narrow tubes. More than 3.2×10^{8} positrons with a divergane | gamma-gamma collider by using the collimated γ-ray pulses generated in the interaction between 10 -PW lasers and narrow tubes. More than 3.2×10^{8} positrons with a divergence angle |
| :--- |
| of ~ 7 degrees can be created in a single pulse, and the $~$ |
| N | pave the developments of quantum electrodynamics, high-energy physics and laboratory astrophysics.

COMMUNICATIONS R888e

 PHYSICSArticle | OPEN | Published: 10 December 2018
Brilliant gamma-ray beam and electronpositron pair production by enhanced attosecond pulses

Yan-Jun Gu ${ }^{\text {E }}$, Ondrej Klimo, Sergei V. Bulanov \& Stefan Weber
Communications Physics 1, Article number: 93 (2018) Download Citation $\underline{\underline{1}}$

Abstract

Electron-positron pair production via Breit-Wheeler process requires

 laser intensities approaching $10^{24} \mathrm{~W} \mathrm{~cm}^{-2}$ due to the small crosssection. Here, we propose a mechanism for brilliant γ-ray emission and dense GeV pairs creation accompanied with high-harmonic generation by using plasma mirror and an ultra short pulse with the intensity of $3 \times$ $10^{23} \mathrm{~W} \mathrm{~cm}^{-2}$. The laser is reflected by the solid surface after propagating tens of microns in a near-critical density plasma and breaks into short wave packets. The intensity of the reflected high order harmonic field is enhanced by the focusing and compression effects from the deformed oscillating mirror. The radiation trapped electrons emit γ-photons
$d \sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right) / d P_{\perp}$

- Cross-section peaks at low $P_{\perp,}$ as expected for quasi-real photon collisionsData are well described by leading order OED calculation $\left(\gamma \gamma \rightarrow e^{+} e^{-}\right)$
- STARLight predicts significantly lower $\left\langle P_{\perp}\right\rangle$ than seen in data

OED and STARLight are scaled to match measured $\sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right)$
STARLight: S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258
OED :W. Zha, J.D.B., Z. Tang, Z. Xu arXiv:1812.02820 [nucl-th]

Connection to the Initial Magnetic Field

-OK but how sensitive are these measurements to the peak field? - How sensitive to the geometry of the fields?

QED: two-photon overlap probability

- Most $\gamma \gamma$ interactions in region where field from one ion is maximum

$$
n_{1} \times n_{2} \propto\left|B_{1}\right|^{2} \times\left|B_{2}\right|^{2} \approx\left|B_{1, \text { peak }}\right|^{2} \times \text { const (at large impact parameters) }
$$

Connection to the Initial Magnetic Field

- At large impact parameters

$$
n_{1} \times n_{2} \propto\left|B_{1}\right|^{2} \times\left|B_{2}\right|^{2} \approx\left|B_{1, \text { peak }}\right|^{2} \times \text { const }
$$

Numerical OED calculation using arbitrary Four-Potential as input
$A_{1}^{\mu}\left(k_{1}, b\right)=-2 \pi\left(Z_{1} e\right) e^{i k_{1}^{\tau} b_{\tau}} \delta\left(k_{1}^{\nu} u_{1 \nu}\right) \frac{F_{1}\left(-k_{1}^{\rho} k_{1 \rho}\right)}{k_{1}^{\sigma} k_{1 \sigma}} u_{1}^{\mu}$, $A_{2}^{\mu}\left(k_{2}, 0\right)=-2 \pi\left(Z_{2} e\right) e^{i k_{2}^{\tau} b_{\tau}} \delta\left(k_{2}^{\nu} u_{2 \nu}\right) \frac{F_{2}\left(-k_{2}^{\rho} k_{2 \rho}\right)}{k_{2}^{\sigma} k_{2 \sigma}} u_{2}^{\mu}$.

Assumptions:

- Spherically symmetric
- Woods-Saxon charge distribution

Connection to the Initial Magnetic Field

- At impact parameter $b \approx 0$

Most $\gamma \gamma$ interactions take place in region where
 both fields are maximal

[^0]: STAR Collaboration, et al. Physical Review C, vol. 70, no. 3,

