

Probe the Quark Gluon Plasma with Quarkonia at the STAR Experiment

Rongrong Ma (马荣荣), BNL Aug. 5th, 2020

Why Quarkonia?

- **Early creation:** experience entire evolution of quark-gluon plasma
- Evidence of deconfinement: quark-antiquark potential color-screened by surrounding partons \rightarrow (*static*) *dissociation*

 J/ψ suppression was proposed as a direct proof of QGP formation

 $r_{q\overline{q}} \sim 1 / E_{binding} > r_D \sim 1 / T$

"Thermometer": different states dissociate at different temperatures → *sequential suppression*

	J/ψ	ψ(2S)	Y(1S)	Y(2S)	Y(3S)
E _b (MeV)	~ 640	~ 60	~ 1100	~ 500	~ 200

T. Matsui and H. Satz

PLB 178 (1986) 416

08/05/2020

The Complications

Other effects

- Dynamic dissociation
- (Re)generation
 - Deconfinement is a prerequisite
 - Depend on species, energy, p_T , etc
- Medium-induced energy loss
 - Color-octet states; parton fragmentation
- Formation time
 - High p_T hadrons fly out of medium faster
- Feed-down contributions
 - Depend on species, \sqrt{s} , p_T , etc

Rongrong Ma (BNL), HENPIC

- Modification to the particle production *due to the presence of a nucleus, not related to the creation of QGP*
 - Quantified via pA collisions
- nPDF: shadowing/anti-shadowing
- Coherent energy loss
- Nuclear absorption
- Interact with co-movers

- Modification to the particle production *due to the presence of a nucleus, not related to the creation of QGP*
 - Quantified via pA collisions
- nPDF: shadowing/anti-shadowing
- Coherent energy loss
- Nuclear absorption
- Interact with co-movers

- Modification to the particle production *due to the presence of a nucleus, not related to the creation of QGP*
 - Quantified via pA collisions
- nPDF: shadowing/anti-shadowing
- Coherent energy loss
- Nuclear absorption
- Interact with co-movers

- Modification to the particle production *due to the presence of a nucleus, not related to the creation of QGP*
 - Quantified via pA collisions
- nPDF: shadowing/anti-shadowing
- Coherent energy loss
- Nuclear absorption
- Interact with co-movers

Quarkonium Production in p+p

- Production mechanism still not fully understood
 - Process: perturbative (QQ) + *non-perturbative* (hadronization)
- Models on the market
 - (Improved) Color Evaporation Model: a fixed fraction of ccbar evolve into a given charmonium state
 - Color Singlet Model: same quantum state for ccbar and charmonium
 - Non-Relativistic QCD: relative contributions of different color-singlet and color-octet pairs encoded in LDMEs
 - Large discrepancies in LDMEs among different groups
 - CGC+NRQCD at low p_T
- More differential measurements of better precision are crucial
 - Cross-section; event activity; production in jets; polarization ...

The Solenoid Tracker At RHIC

• Mid-rapidity detector: $|\eta| < 1$, $0 < \phi < 2\pi$

- **TPC**: measure momentum and energy loss
- **TOF**: measure particles' flight time to extend PID to higher p_T
- **BEMC**: trigger on and identify high-p_T electrons
- MTD: trigger on and identify muons

•
$$p_T > 1.2 \text{ GeV/c}$$

Muon Telescope Detector

- **MRPC** with double readout
 - Resolution: timing (~100 ps) and position (~1-2 cm)
- Trigger based on timing
- Located outside of the STAR magnet, acting as an absorber to other hadrons
- 122 trays; 1439 readout strips

Detector	PID	Kinematics	Acceptance	Bremsstrahlung
MTD (µ)	Timing & Position	Low-high p _T	η <0.5, φ~45%	Reduced
BEMC (e)	Energy	High-p _T	$ \eta $ <1, full ϕ	

pp Collisions pA Collisions AA Collisions

p+p @ 510 GeV: Inclusive J/\u03c6 Cross Section

STAR: PRD 100 (2019) 52009

- Inclusive J/ψ cross section spanning from 0 – 20 GeV/c
 - Low p_T : muon channel
 - High p_T : electron channel
- Sizable polarization envelope for the muon channel with relatively small acceptance
- Comparison to theory
 - b-hadron feed-down calculated by FONLL
 - Low p_{T:} CGC+NRQCD and ICEM above data; consistent within polarization envelope
 - High p_T: NLO NRQCD and ICEM are consistent with data within uncertainties

p+p (a) 510 GeV: x_T scaling

STAR: PRD 100 (2019) 52009

- High $p_T J/\psi$ follows x_T scaling with $n = 5.6 \pm 0.1$
 - Close to the CO and CEM predictions of n ~ 6
 - Smaller than NNLO* CSM prediction of n ~ 8
- Scaling breaks up at low p_T

$p+p @ 510 GeV: \psi(2S) to J/\psi Ratio$

- Indication of rising trend for inclusive $\psi(2S)$ to J/ψ ratio as a function of p_T
- Consistent with world-wide data and ICEM calculation
- Constrain feed-down contribution to J/ψ

p+p (a) 200 GeV: J/ψ Polarization

STAR: arXiv: 2007.04732

- Inclusive J/ψ polarization parameters as a function of p_T
 - Helicity and CS frames
- J/ψ polarization consistent with 0 within uncertainties
 - CS, $p_T \sim 9 \text{ GeV/c: } 3\sigma \text{ deviation}$
- Comparison to theory calculation of prompt or direct J/ψ

TABLE III. List of χ^2/NDF and the corresponding *p*-values between data and different model calculations.

Model	$\chi^2/{\rm NDF}$	p-value
ICEM [7]	13.28/9	0.150
NRQCD1 40	48.81/32	0.029
NRQCD2 [13]	42.99/32	0.093
CGC+NRQCD [19]	32.11/46	0.940

08/05/2020

Rongrong Ma (BNL), HENPIC

p+p (a) 500 GeV: J/ψ in Jets

Z. Kang, et al, PRL 119 (2017) 032001 private communication

• Jet fragmentation patterns to J/ψ are different for different channels

$$z = p_T^{J/\psi} / p_T^{jet}$$

$p+p @ 500 GeV: J/\psi$ in Jets

- Jet fragmentation patterns to J/ψ are different for different channels
- First measurement of J/ψ in charged jets at RHIC
- No significant *z* dependence for z < 1
- Compared to Pythia, J/ψ in data is more likely to be produced in jets, and carries a smaller fraction of jet energy

pp Collisions pA Collisions AA Collisions

 $J/\psi R_{pAu}$ at 200 GeV

- $R_{pAu} \sim 0.65$ at 1 GeV/c and rises to 1 at high p_T
- Data agree with nPDF calculations at high p_T , but seem to favor additional nuclear absorption at low p_T

EPS09+NLO: Ma & Vogt, Private Comm. nCTEQ, EPS09+NLO: Lansberg Shao, Eur.Phys.J. C77 (2017) no.1, 1 Comp. Phys. Comm. 198 (2016) 238-259 Comp. Phys. Comm. 184 (2013) 2562-2570 Ferreriro et al., Few Body Syst. 53 (2012) 27

ΥR_{pAu} at 200 GeV

STAR: PLB 735 (2014) 127 PHENIX: PRC 87 (2013) 044909 R. Vogt, et. al, PoS ConfinementX 203 (2012) F. Arleo, S. Peigne, JHEP 1303 (2013) 122 K. J. Eskola, et. al, JHEP 0904 (2009) 065

- Indication of Υ suppression in p+Au collisions
 - $R_{pAu} = 0.82 \pm 0.10(stat) + 0.08(syst) 0.07(syst) \pm 0.10(global)$
 - A factor of two better precision than R_{dAu} measurement
- Additional suppression mechanism seems needed beyond nPDF effects

pp Collisions pA Collisions AA Collisions

Au+Au (a) 200 GeV: $J/\psi R_{AA}$ vs. p_T

STAR: PLB 797 (2019) 134917

- J/ψ is suppressed up to 15 GeV/c
- No strong p_T dependence; interplay of different effects
 - Dissociation: decrease with p_T due to formation time effects
 - Regeneration: mostly at low p_T
 - CNM: more profound at low p_T
 - b-hadron feed-down
- Transport and energy loss models can qualitatively describe data

Central: $R_{AA} \sim 0.4$ for $p_T > 5$ GeV/c \rightarrow dissociation in effect

 $J/\psi R_{AA}$: RHIC vs. LHC

- $p_T > 0$ GeV/c: more suppressed at RHIC in central events \rightarrow smaller regeneration contribution due to lower charm cross-section
- $p_T > 5$ GeV/c: less suppressed at RHIC in semi-central events \rightarrow smaller dissociation rate due to lower temperature

- $p_T > 0$ GeV/c: describe centrality dependence quite well
 - SHM: no CNM

L. Yan, et al, PRL 97 (2006) 232301 K. Zhou, et al, PRC 89 (2014) 054911 X. Zhao, et al, PRCC 82 (2010) 064905

• $p_T > 5$ GeV/c: Tsinghua model overshoots data while TMAU model is below data in semi-central collisions

$Au+Au @ 200 GeV: \Upsilon R_{AA}$ vs. Centrality

- Improved precision for Y suppression
 - 2014+2016: dimuon
 - 2011: dielectron
- CNM plays a role
- $R_{AA}^{peri} > R_{AA}^{cent}$: increasing hot medium effects
- 0-10% central: $R_{AA}^{\Upsilon(2S+3S)} < R_{AA}^{\Upsilon(1S)}$ \rightarrow sequential suppression
 - Similar to that observed at the LHC

Au+Au (a) 200 GeV: ΥR_{AA} vs. p_T

- No significant p_T dependence
 - Similar to the J/ψ case
 - Possible explanation: CNM + correlated regeneration

$\Upsilon(1S) R_{AA}$: RHIC vs. LHC

• $R_{AA}^{0.2\text{TeV}} \sim R_{AA}^{2.76\text{TeV}}$: could be due to similar CNM (~20%) + suppression of excited states

 $\Upsilon(2S+3S) R_{AA}$: RHIC vs. LHC

• $R_{AA}^{RHIC} > R_{AA}^{LHC}$: hint of less melting at RHIC peripheral

Y Suppression: Data vs. TAMU model

• T-dependent binding energy; Kinetic rate equation; Include CNM and regeneration

- Good description of Y suppression from RHIC to LHC energies.
- Non-negligible regeneration, especially for $\Upsilon(2S)$

X. Du, M. He, R. Rapp PRC 96 (2017) 054901

08/05/2020

Rongrong Ma (BNL), HENPIC

Y Suppression: Data vs. lattice-potential model

• Complex potential (IQCD); aHydro medium; No regeneration or CNM

• Consistent with 200 GeV and 2.76 TeV data

• Lay below the 5.02 TeV data

08/05/2020

B. Krouppa, et al, PRD 97 (2018) 016017

Y Suppression: Data vs. Coupled HF Transport

Coupled Transport Equation; Correlated recombination; CNM

X. Yao, et al, arXiv: 2004.06746

- Describe RHIC and LHC data reasonably well
- Significant theoretical uncertainties

*Melting temperature at

 $1/m_{\rm D} = \gamma$ size

Summary

pp collisions

- It remains a challenge to fully understand quarkoinum production mechanism
- Measurements of improved precision; new measurements?

pA collisions

- Sizable suppression for low $p_T J/\psi \& \Upsilon$
 - Need to be taken into account when interpreting measurement in AA collisions

AA collisions

- High- $p_T J/\psi$ strongly suppressed in central collisions \rightarrow dissociation
- Ground and excited Υ exhibit different suppression \rightarrow sequential suppression
- Complementary RHIC & LHC measurements place stringent constraints on model calculations → *medium temperature*?
 - Pin down other knobs: CNM, feed-down, energy loss, recombination ...

Outlook

• STAR detector configuration

- 2017+: Heavy Flavor Tracker removed \rightarrow low material budget for electrons
- 2018+: Event Plane Detector at forward-y \rightarrow improve EP resolution; reduce non-flow
- 2019+: iTPC upgrade \rightarrow improved resolution; increased efficiency; extended acceptance
- 2022+: forward tracking + calorimetry \rightarrow event activity

Outlook

- Complementarity between electron and muon channels
- Greatly enhanced statistics \rightarrow improve precision

Year	System	Measurements
2017+2022	p+p @ 500 GeV	✓ J/ψ polarization
2024	p+p @ 200 GeV	✓ J/ψ in jets ✓ J/ψ vs. event activity
2024	p+Au @ 200 GeV	✓ <i>J/ψ</i> & Υ CNM
2023+2025	Au+Au @ 200 GeV	 ✓ J/ψ v₂, especially at low p_T ✓ J/ψ in jets ✓ Υ suppression (sample full L)

And the Feed-down Contribution

Woehri@Quarkonia'14

J/ψ feed-down		
χ _c	10-30% (vs. p _T)	
ψ(2S)	~ 8%	
B-hadron	0-50% (vs. p_{T}, \sqrt{s})	

Υ(1S) feed-down		
χ _b (1P)	10-30% (vs. p _T)	
χ _b (2P+3P)	~5%+1-2%	
Y(2S+3S)	8-13%+1-2%	

Rongrong Ma (BNL), HENPIC

p+p (a) 200 GeV: Y cross-section

R. Vogt Phys. Rept. 462 (2008) 125

- Y cross section
 - follows world-wide data trend and calculation from NLO CEM
 - exhibits narrower rapidity distribution than NLO CEM
- Improved reference for p+Au and Au+Au measurements

Y Suppression: Data vs. KSU model

Complex potential (Perturbative); aHydro medium; No regeneration or CNM

CMS: PLB 790 (2019) 270 CMS: PLB 770 (2017) 357

• Captures the LHC measurements quite well but over-predicts $\Upsilon(1S)$ R_{AA} at RHIC.

B. Krouppa, R. Ryblewski, M. Strickland NPA 967 (2017) 604