Study of Exotic Particles using High Energy Heavy Ion Collisions

Hideki Hamagaki (hamagaki_hideki@pilot.nias.ac.jp)

Institute for Innovative Science and Technology Nagasaki Institute of Applied Science (IIST@NIAS)

Menu

- Introduction
- Pentaquark and Tetraquark
- Dibaryon and Baryon Interactions
- Bound and Slightly Unbound Dibaryons?
- ALICE Upgrade during LS2 (Long Shutdown 2)
- Summary and Outlook

Recently at colliders, BNL RHIC and CERN LHC, interesting studies have been performed; one on the di-baryons with strangeness and the other on the tetraquarks and pentaquarks. In this seminar, after brief historical introduction of the old studies, I will mainly concentrate on the recent progress on these studies.

I will also mention on the possible studies at ALICE in near future.

INTRODUCTION

Baryons, Mesons and Beyond

- The quark model allows for the existence of exotic hadrons such as tetraquarks $(qq\bar{q}\bar{q})$ and pentaquarks $(qqq\bar{q}\bar{q})$
- Until very recently, we have had no evidence on the existence of hadrons beyond baryons (qqq) and mesons $(q\bar{q})$
- Further larger number of quarks together → dibaryons, strangelet, ..., core of neutron star
- Historically, in heavy ion collisions, we started research to find out exotic matter rather than exotic particles at LBL Bevalac.

antiblue

blue

Old History in Brief

- Studying exotic matter realized under extreme conditions has been the major goal of study with high-energy heavy-ion collisions since LBL-BEVALC (more than 40 years ago)
 - "Exotic Hadronic Matter", such as Lee-Wick matter
 - Interim of neutron star; Pion condensate, Color superconductor
- At BNL-AGS, attempts were made for searching strangelet,
 an ultimate form of dense nuclear matter.

- arXiv-9811049v1

Surprise Finding; X, Y, Z

- 20+ new states containing *cc* named as X, Y, Z, have been found since 2003, starting with X(3872) (Belle Collaboration, PRL 91 (2003) 262001)
 - High statistics e+e- collision data accumulated by Bfactory experiments, with original aim of comprehensive study of the CP violation in B meson decays.
- Some X, Y, Z states (red solid bars) and charmonium states (black solid bars) in comparison with a <u>conventional quark model</u> results for cc⁻states (blue dashed bars) (PTEP 2016 (2016) no.6, 062C01)

Possible Structure of Exotic $c\overline{c}$ States; XYZ

• X, Y, Z are thought to be candidates of exotic hadrons, which have been attracting a lot of attentions to reveal unvisited areas of QCD.

Compact tetraquark/pentaquark

Diquark-diquark PRD 71, 014028 (2005) PLB 662 424 (2008)

Hadrocharmonium/ adjoint charmonium PLB 666 344 (2008) PLB 671 82 (2009)

Hadronic Molecules

PLB 590 209 (2004) PRD 77 014029 (2008) PRD 100 0115029(R) (2019)

Mixtures of exotic + conventional states

$$X = a \ket{c ar{c}} + b \ket{c ar{c} q ar{q}}$$
 PLB 578 365 (2004)
PRD 96 074014 (2017)

PENTAQUARKS AND TETRAQUARKS

2020/07/23

Pentaquarks

- First claim of pentaquark Θ⁺ (*uudds*̄) (1540 MeV/c2 (4.6 σ)) from a LEPS experiment in Japan in 2003 (PRL 91, 012002, 2003)
- Several experiments in the mid-2000s also reported discoveries of other pentaquark states (J. of Phys. G. 33, 1–1232)
- Pentaquark with cc̄ (duucc̄), reported by LHCb in 2015 (PRL 115 072001 (2015); arXiv1507.03414)

HENPIC seminar on "Study of Exotic Particles using High Energy Heavy Ion Collisions"

 $\mathbf{P}_{\mathbf{C}}^{+}$

X(3872) at LHC

- Seen in both p+p and Pb+Pb collisions in the decay channel, $J/\psi \pi^+\pi^-$
- Same decay channel for $\Psi(2S)$

Puzzling X(3872)/ $\psi(2S)$ Yield Ratio in PbPb

- In pp: $X(3872)/\psi(2S)$ ratio ~ 0.1 or less; larger suppression at higher event activity
- In PbPb: The $X(3872)/\psi(2S)$ yield ratio ~ 1
 - − $R_{AA}(\psi(2S)) \sim 0.1 0.15 \rightarrow R_{AA}(X3872) \sim 1 1.5$ (= not suppressed or even enhanced)
 - $= \frac{\text{Please note that in } p_{1} > 10 \text{ GeV/c quark or hadron coalescence is NOT likely a dominant process} }{\text{BR}(C_{c1}(3872)) \text{BR}(C_{c1}(3872)) \text{R}(C_{c1}(3872)) \text{R}(C_{c1$ S_{y(2S)} 1.7 nb⁻¹ (2018 PbPb 5.02 TeV) BR(y(2S)® J/y p⁺ ́p⁻) 10 0.06 0.08 0.02 0.04 **CMS** Preliminarv pp (7 TeV, CMS) 6 |v| < 1.220 PbPb (5.02 TeV, CMS) Inclusive PbPb 368 ub⁻¹, pp 28.0 pb⁻¹ (5.02 TeV) |y| < 1.6, Cent. 0-90% pp (8 TeV, ATLAS) 10⊨ 40 r₹ 1.4 Cent. 0-100% Prompt |y| < 0.75 CMS LHCb Preliminary ള |v| < 1.6pp √s = 8 TeV Prompt 1.2 Nonprompt 8 r Prompt J/w ð HIN-16-025 0.8 Prompt ψ(2S) 120 0.6 - Prompt 140 b decays . > 5 GeV/c 0.4 10 6 0.2 NVELO tracks 8 0^L 0 15 20 p_ (GeV/c) 25 30 $10^{-10^{-1}}$ 20 30 50 60 70 40 10

p_T

New Tetraquark; X (6900)

- Tetraquark states comprising only bottom quarks, *T_{bbbb}*, have been searched for by LHCb (JHEP 10 (2018) 086, arXiv:1806.09707) and CMS (arXiv:2002.06393), with no significant signals so far.
- X(6900); four-charm state, T_{cccc}, was reported by LHCb (arXiv:2006.16957), which disintegrate into a pair of charmonium states such as J/ψ mesons, with each consisting of a cc pair.
- Mass and Width obtained with the two models:
 - m[X (6900)] = 6905 ± 11 ± 7 MeV/c2, with Γ[X(6900)] = 80 ± 19 ± 33 MeV,
 - m[X (6900)] = 6886 ± 11 ± 11 MeV/c2, with Γ[X(6900)] = 168 ± 33 ± 69 MeV.

DIBARYON AND BARYON INTERACTION

DiBaryon; a Type of Exotic Particle

- Deuteron = First and still a unique dibaryon so far confirmed
- H-particle: 6-quark state (uuddss = Λ + Λ or Ξ +N)
 - Predicted by Jaffe ('77))
 - Suggested to be a resonance by the experiment (Yoon+ ('07))
 - Could be a bound state of Ξ +N (by HAL QCD ('16))
- Di-Baryon search and studies of baryon-baryon interaction in the extended space of flavor SU(3), that is, ΛΝ, ΣΝ, ΛΛ, ΞΝ ..., is drawing strong attention recently
 - Large push coms from the recent lattice QCD; baryon interaction can be calculated at almost physical point
 - Pioneering works by STAR experiment at BNL RHIC
 - LHC ALICE experiment is catching up very quickly

Methods in Heavy Ion Collisions

- Direct method: Construction of Invariant mass from the possible daughter particles
 - Bound state
 - Unbound resonance state with small decay width
- Two particle correlation (femtoscopy)
 - Origin: HBT (Hanbury Brown and Twiss) Intensity Interferometry
 - "A TEST OF A NEW TYPE OF STELLAR INTERFEROMETER ON SIRIUS": Hanbury Brown & Twiss, Nature 10 (1956), 1047
 - Angular diameter of Sirius = 6.3 msec
 - Two particle correlation function provides the information of final state interaction of two particles at the kinetic freezeout stage
 - Wide variety of combinations including unstable hadrons

Two Particle Correlation

- $p-\Sigma^0$ interaction in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV
- $p-\Sigma^0$ correlation function is consistent with the $p-(\Lambda\gamma)$ baseline ((0.2-0.8) σ) \rightarrow indicating the presence of an overall shallow potential
- Present data cannot discriminate between the different models
- \rightarrow Two orders of magnitude larger data samples (expected from Run3&4) will provide tighter constraint to the models on the N– Σ sector

S = -2 System: $p-\Xi^{-}$ Correlation

$$\begin{split} C_{\mathbf{p}-\Xi^{-}} &= \frac{1}{8} C_{\mathbf{N}-\Xi} \ (\mathbf{I}=0,\,\mathbf{S}=0) + \frac{3}{8} C_{\mathbf{N}-\Xi} \ (\mathbf{I}=0,\,\mathbf{S}=1) \\ &+ \frac{1}{8} C_{\mathbf{N}-\Xi} \ (\mathbf{I}=1,\,\mathbf{S}=0) + \frac{3}{8} C_{\mathbf{N}-\Xi} \ (\mathbf{I}=1,\,\mathbf{S}=1). \end{split}$$

2020/07/23

S = -2 System: $p-\Xi^{-}$ Correlation

- ESC 16 may be excluded
- Data with higher statistics in RUN3

S = -3 System: STAR $p\Omega^{-}$ Correlation in Au+Au

- Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, by STAR collaboration
 - arXiv:1808.02511 [hep-ex]
- Correlation pattern depends on the collision centrality → The ratio between central to peripheral
 - K. Morita, A. Ohnishi, F. Etminan and T. Hatsuda, PRC 94, 031901(R) (2016)
- The ratio is less than 1 in k* < 40 MeV/c → Positive scattering length → Suggesting bound state of pΩ

S = -3 System: ALICE $p\Omega^{-}$ Correlation

- $p\Omega^{-}$ correlation in p+p collisions at $\sqrt{s} = 13$ TeV
- Compared with the two theoretical calculations: HAL-QCD (PLB 792 (2019) 284)
 & meson exchange (by Sekihara; PRC 98, 015205 (2018))
- More attractive than $p\Xi^{-}$
- Theoretical uncertainty due to ³S₁

BOUND AND SLIGHTLY UNBOUND DIBARYONS?

Direct Search of $\Lambda\Lambda$ and ΛN Bound State

HENPIC seminar on "Study of Exotic Particles using High Energy Heavy Ion Collig. (P/NP PIal)

Hadron Production in Pb+Pb at LHC

Yields are described rather well with the statistical hadronization (thermal) model,

• Chemical freeze-out temperature, $T_{CF} \sim 155$ MeV, for $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb

 $N_A \approx g_A V (\pi T_{CF} m_A/2)^{3/2} \exp[(A \mu_B - m_A)/T_{CF}]$

- Blast-Wave fit (with T_F = 100 115 MeV) describe simultaneously the momentum spectra of π, K, p,Λ, Ξ, Ω, d, ³He, ³_ΛH, and ⁴He in central Pb+Pb collisions
- It is not obvious why the light nuclei and ³_AH follows the trend of hadron yield

Chemical Freezeout Hypothesis

- Hadron yields are fixed at a certain time in the space-time evolution of heavy ion collisions (chemical freezeout = end of inelastic scattering)
 - thermalized system complying hadrons with u, d, s quarks
 - hadron yields are determined with the few global parameters

$$ho_i = \gamma_s^{|s_i|} rac{g_i}{2\pi^2} T_{ch}^{-3} \left(rac{m_i}{T_{ch}}
ight)^2 K_2(m_i/T_{ch}) \left. \lambda_q^{Q_i} \right. \lambda_s^{s_i} \left. \begin{array}{c} \lambda_q = \exp(\mu_q/T_{ch}), \ \lambda_s = \exp(\mu_s/T_{ch}), \ \lambda_s = \exp(\mu_s/T_{ch}), \end{array}$$

- Q_i : 1 for u and d, -1 for u and d
- s_i : 1 for s, -1 for s
- g_i : spin-isospin freedom
- m_i : particle mass

global parameters

- T_{ch} : chemical freeze-out temperature
- μ_q : light-quark chemical potential
 - : strangeness chemical potential
 - : strangeness saturation factor

Hadron Yields \rightarrow Determine Temperature (T_{cf}) and Chemical Potential (μ_{cf}) at Chemical Freezeout

 μ_{s}

 $\gamma_{\rm S}$

Hadron Yields and Chemical Freezeout

- Hypothesis of "Chemical Freezeout" works reasonably well to describe hadron yields for nuclear collisions in wide colliding energies.
- This property can be utilized to predict yield of specific particles

Why Thermal Model works for light nuclei yields?

- Theoretical works:
 - Xu, Rapp, Eur. Phys. J. A55 (2019) no.5, 68
 - Vovchenko et al, arXiv:1903.10024
 - Oliinychenko, Pang, Elfner, Koch, PRC 99 (2019) 044907
- An isentropic expansion of a hadron resonance gas (HRG) in partial chemical equilibrium (PCE) at T < T_{ch}
 - Mesons play a similar role as the photons during the evolution of the early universe – they drive the entropy conservation during the expansion.
 - Nuclei are kept in partial (relative) equilibrium as long as the cross sections are large from CF stage to KF stage
- Small entropy production between T_{ch} to T_{KF} ?

20

40

t [fm/c]

60

80

100

DO, Pang, Elfner, Koch, PRC99 (2019) no.4, 044907

2020/07/23

28

Survival of Short-lived Hadrons

Understanding systematics of the yield of unstable hadrons as well as stable particles are important

K*(892)⁰, ϕ and Λ (1520) in Pb+Pb collisions

- K*(892)⁰ (т~3.9 fm/c): K*/К- ratio (PRC 91, 024609 (2015))
- φ(1020) (τ~46.5 fm/c): φ/K- ratio
- Λ(1520) (τ~12.6 fm/c): Λ(1520)/Λ ratio (PRC 99, 024905 (2019))
- Yield ratio of short-lived hadrons (with lifetime comparable to or shorter than collision lifetime) to stable hadrons changes with $dN_{ch}/d\eta$, while significant fraction still survives
- Further works are needed to understand fully the production of (stable and unstable) hadrons and nuclei

Dibaryons with Multi-strangeness

S = -2:

• Recent HAL-QCD suggests that H has ΞN configuration instead of $\Lambda\Lambda$, with mass slightly below ΞN or slightly unbound (arxiv 1912.08630)

S = -3:

- Ω -p is more attractive than Ξ -p:
- HAL-QCD predicts that ⁵S₂ is a bound state
- Coupling between Ω⁻p (S-state) and ΣΞ, ΛΞ (D-state) may not be big → small decay width
- They may survive the violent space-time evolution, if H behaves similar to other short-lived particles

ALICE UPGRADE DURING LS2 (LONG SHUTDOWN 2)

LHC Long Term Plan

- LS2: 2019 2021 May
 - Experiments upgrade phase 1
 - Injector upgrade
 - Civil engineering for HL-LHC at ATLAS, CMS
 - Magnet and cryogenics
- LS3 : 2025 2027(?)
 - Experiments upgrade phase 2
 - HL-LHC preparation

- Run3 : 2021Jun 2024
 - x2 p-p nominal luminosity
 - x6 Pb-Pb nominal luminosity = min.bias 50 kHz
- Run4 : 2028 HL-LHC RUN
 - x5 to x7 p-p nominal luminosity
 - x7 Pb-Pb nominal luminosity
- after
 - HE-LHC (27 TeV) and FCC at 100 TeV (~2040)

ALICE Upgrades during LS2

Purpose: Record minimum-bias Pb-Pb data at 50 kHz

- New Inner Tracking System (ITS)
 7 layers of MAPS
- New TPC Readout Chambers
 - 4-GEM detectors
- New Forward Muon Tracker (MFT)
 - vertex tracker at forward rapidity
- New trigger detectors (FIT, AD)
 centrality, event plane determination
- Upgraded read-out for TOF, TRD, MUON, ZDC, EMCal, PHOS
- Integrated Online-Offline system (O²)

Inner Tracking System (ITS)

- CMOS Monolithic Active Pixel Sensor (MAPS)
 - 7 layers full pixel detector
 (old = combination of strip, drift, and pixel)
 - Light weight with carbon structure
 - Larger area (10 m²)
 - More pseudo rapidity coverage (–1.22 < η < 1.22)
 - First layer closer to interaction point (39 mm → 22 mm)
 - New beam pipe
- Improved features
 - Low material (1.44% \rightarrow 0.3% X₀)
 - Smaller pixel (50x425 μ m² \rightarrow 27x28 μ m²)
 - Faster readout (1 kHz (slowest) \rightarrow 100 kHz))

TPC Upgrade

- Most important and challenging upgrade
- Traditional wire chamber system \rightarrow 4 GEM system
 - Deadtime-less reading by getting rid of Gating Grid
 - Old readout: deadtime per event = 500 μ s
 - 530k channels, 200 ns sampling ADC data
 - continuous data rate = 3.5 TB/s
 - massive online computing power required
- CNS-Tokyo & NIAS from Japan

TPC Upgrade (cont.)

- LHC will provide ~50 kHz event rate in Pb+Pb collisions after LS2
- electron drift time in TPC =100 μ s
- Overlapping events
 - 50 kHz = collision every 20 μ s

MFT (Muon Front Tracker)

- MFT: New detector in ALICE
 - 5 layer silicon pixels (ITS technology)
 - 0.4 m² area
- Add vertex capability to Muon Spectrometer
 - background rejection
 - distinguish prompt/charm-decay/bottom-decay
 - improve momentum resolution

Hiroshima group is participating this project

2020/07/23

Data Taking Upgrade

- Triggering rare particles such as low p_T heavy flavor multiparticle decay from exotic particles in high multiplicity event is impossible
 - decreasing threshold \rightarrow trigger all garbage
 - non-simple threshold type trigger → full data analysis I required (a dilemma)
 - 50 kHz means always ~5 events overlapping in data for ALICE TPC
 = event-by-event data taking no longer possible
- The biggest decision for Run3 = Abandon "hardware trigger" in Pb+Pb collisions
 - TAKE ALL DATA, STORE ALL without trigger \rightarrow continuous readout
 - data compression & online analysis are key technology

Common Readout Unit (CRU)

- Common to at least "major" and "new" detectors
- Detector Control System
- Trigger and timing distribution
- Data readout & processing with O(10) faster than CPUs
 - sorting, online processing: clustering (large FPGA), tracking (commercial GPU)
- deploy ~350 for TPC (~6M CHF project)

Performance of Upgraded ALICE

Central Barrel: ITS + TPC + ...

	Run1+2	Run3	typical signals, physics
Minimum bias event Untriggerable rare event	~ 10 ⁹ events (recorded) ~ 0.1 nb ⁻¹	x100 statistics = 10 ¹¹ ~10 nb ⁻¹	 any kind of single particle analysis e⁺e⁻ low invariant mass anti-nuclei (/⁴He) (already visible) low-pT multi-particle decay open heavy flavor baryons: Λc, Ωc hyper-nuclei such as ³_ΛH dibaryons (muti-)hyper nuclei
Triggerable rare event	~10 ¹⁰ events (inspected) ~1 nb ⁻¹	x10 statistics = 10 ¹¹ ~10 nb ⁻¹	 high p_T jet related observables high p_T gamma, electron such as Υ and maybe top-quark related?

Performance after Upgrade: Light (anti-)nuclei

- ALICE can identify measure ALL charged particles, nuclei, and charged decay daughters, as well as photons
- Nuclei, anti-nuclei up to A=4 is measured in ALICE 2.76 TeV 40M Pb+Pb data in 2011
- In Run3: x2000 statistics (100 billion events) \rightarrow ~20,000 ⁴He and 6x10⁶ ³He

Expected Counts in Run3

³ He	6,000,000
⁴ He	20,000
$^{3}\Lambda H$	300,000
${}^{4}{}_{\Lambda}H$	800
${}^{4}_{\Lambda\Lambda}H$	34
[I] [I]	150,000
$\Omega\Omega$	3,000

- Upgrade of the ALICE Experiment: Letter Of Intent (J. Phys. G 41 (2014) 087001)
- 10¹⁰ central Pb-Pb collisions at $\sqrt{S_{NN}} = 5.5 TeV$
- Assume 8% efficiency per detected baryon

SUMMARY AND OUTLOOK

Summary & Outlook

- Pentaquark and Tetraquark
- Di-baryon and baryon interaction
- ALICE upgrade

Outlook -- only ALICE experiment

- Extensive study of multi-strange dibaryon system, ΩΩ, pΩ, pΞ, □, using femtoscopy and direct measurement with high statistics data;
- Extension to Heavy Flavour (not discussed in this presentation)

BACKUP

Exotica by ExHIC Collaboration

Particle	m (MeV)	g	Ι	J^{P}	2q/3q/6q	4q/5q/8q	Mol.	$\omega_{\text{Mol.}}$ (MeV)	Decay mode
Mesons									
$f_0(980)$	980	1	0	0+	$q\bar{q}, s\bar{s}(L=1)$	$q\bar{q}s\bar{s}$	ĒΚ	67.8(B)	$\pi\pi$ (Strong decay)
$a_0(980)$	980	3	1	0^{+}	$q\bar{q}(L=1)$	$q\bar{q}s\bar{s}$	ĒΚ	67.8(B)	$\eta\pi$ (Strong decay)
K(1460)	1460	2	1/2	0-	$q\bar{s}$	$q\bar{q}q\bar{s}$	ĒΚΚ	69.0(R)	$K\pi\pi$ (Strong decay)
D _s (2317)	2317	1	0	0^{+}	$c\bar{s}(L=1)$	$q\bar{q}c\bar{s}$	DK	273(B)	$D_s\pi$ (Strong decay)
T_{cc}^{1a}	3797	3	0	1+	_	$qq\bar{c}\bar{c}$	$\bar{D}\bar{D}^*$	476(B)	$K^{+}\pi^{-} + K^{+}\pi^{-} + \pi^{-}$
X(3872)	3872	3	0	$1^+, 2^{-c}$	$c\bar{c}(L=2)$	$q\bar{q}c\bar{c}$	$\bar{D}D^*$	3.6(B)	$J/\psi\pi\pi$ (Strong decay)
Z ⁺ (4430) ^b	4430	3	1	0 ^{-c}	_	$q\bar{q}c\bar{c}(L=1)$	$D_1 \bar{D}^*$	13.5(B)	$J/\psi\pi$ (Strong decay)
T_{cb}^{0a}	7123	1	0	0^{+}	_	$qq\bar{c}\bar{b}$	$\bar{D}B$	128(B)	$K^{+}\pi^{-} + K^{+}\pi^{-}$
Baryons									
Λ(1405)	1405	2	0	$1/2^{-}$	qqs(L=1)	$qqqs\bar{q}$	ĒΝ	20.5(R)-174(B)	$\pi \Sigma$ (Strong decay)
Θ ⁺ (1530) ^b	1530	2	0	1/2+c	_	$qqqq\bar{s}(L=1)$	_	_	KN (Strong decay)
$\bar{K}KN^{a}$	1920	4	1/2	$1/2^{+}$	_	$qqqs\bar{s}(L=1)$	ĒΚΝ	42(R)	$K\pi\Sigma$, $\pi\eta N$ (Strong decay)
$\bar{D}N^{a}$	2790	2	0	$1/2^{-}$	_	$qqqq\bar{c}$	$\bar{D}N$	6.48(R)	$K^+\pi^-\pi^- + p$
\bar{D}^*N^a	2919	4	0	$3/2^{-}$	_	$qqqq\bar{c}(L=2)$	\bar{D}^*N	6.48(R)	$\overline{D} + N$ (Strong decay)
Θ_{cs}^{a}	2980	4	1/2	$1/2^{+}$	_	$qqqs\bar{c}(L=1)$	_	_	$\Lambda + K^+\pi^-$
BN^{a}	6200	2	0	$1/2^{-}$	_	$qqqq\bar{b}$	BN	25.4(R)	$K^{+}\pi^{-}\pi^{-} + \pi^{+} + p$
B^*N^a	6226	4	0	3/2-	_	$qqqq\bar{b}(L=2)$	B^*N	25.4(R)	B + N (Strong decay)
Dibaryons									
Hª	2245	1	0	0+	qqqqss		ΞN	73.2(B)	$\Lambda\Lambda$ (Strong decay)
<i>Ē</i> N N ^b	2352	2	1/2	0 ^{-c}	qqqqqs(L=1)	qqqqqq sq	$\bar{K}NN$	20.5(T)-174(T)	ΛN (Strong decay)
ΩΩ ^a	3228	1	0	0+	\$\$\$\$\$\$		$\Omega\Omega$	98.8(R)	$\Lambda K^- + \Lambda K^-$
H_c^{++a}	3377	3	1	0+	qqqqsc		$\Xi_c N$	187(B)	$\Lambda K^-\pi^+\pi^+ + p$
$\bar{D}NN^{a}$	3734	2	1/2	0-	_	qqqqqq q c	ĐΝΝ	6.48(T)	$K^+\pi^- + d, K^+\pi^-\pi^- + p + p$
BNN ^a	7147	2	1/2	0-	_	qqqqqqqb	BNN	25.4(T)	$K^{+}\pi^{-} + d, K^{+}\pi^{-} + p + p$

ExHIC collaboration; PRC 84 (2011) 064910

2020/07/23

U(k) in Nuclear Matter by HAL-QCD

- PNM (pure neutron matter) & SNM (symmetric nuclear matter)
- Σ is repulsive in pure neutron matter (at normal nuclear density)

SPS (Single Parton Scattering) and DPS (Dual Parton Scattering)

Single Parton Scattering

Dual Parton Scattering

Λ_c /D Ratio in pp and Pb-Pb Collisions

- Sensitive to quark-quark correlation in baryons (and in QGP?)
- Large enhancement in pp and Pb-Pb collisions compared to those in ee and ep collisions
 - We need higher statistics for Pb+Pb collisions
- Multiplicity dependence in pp collisions is compared with Pythia
 - Default Pythia provides the ratio similar to ee and ep data
 - Pythia with color reconnection describe the data (ratio) well, while cross sections are not reproduced

Source Characteristics in Small Systems

- p+p and p+A collisions are also used for femtoscopy study
- Ansatz: The source is similar for all baryon pairs in small systems
 - The size of the source core is determined from the p-p correlation function, since the p-p interaction is well known
 - The p-p femtoscopic analysis is performed differentially in <m_T> bins
 - Another assumption: All baryon-baryon pairs have the same <m_T> dependence -- this may not be correct, in case where hydro effect is on
 - Effect of strong short-lived resonances are taken into account for all baryons (using statistical hadronization model)
- Cross-checked by p-A analysis

A Short Comment on Small System

- p+p and p+A collisions have been used in the study of baryon interaction via femtoscopy
- Behavior consistent to hydrodynamical fluid is seen in violent (high-multiplicity) p+p and p+A collisions
- Understanding the dynamics of small systems are relevant to the study of baryon interaction via femtoscopy

Hypertriton (and anti-hypertriton)

- Weakly bound state of Λ , p and n, with m = 2.991 GeV/ c^2 and $B_{\Lambda} = 130$ keV; with rms-radius = 10.6 fm
- $-{}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-} \dots 25\%$ B.R.
- $\ _{\Lambda}^{3} H \rightarrow \ ^{3} H + \pi^{0}$
- $$\label{eq:horizontal} \begin{split} & \frac{3}{\Lambda} H \rightarrow d + p + \pi^- \\ & \frac{3}{\Lambda} H \rightarrow d + n + \pi^0 \end{split}$$

B. Dönigus, Nuclear Physics A 904–905 (2013) 547c–550c Phys. Lett. B 754 (2016) 360-372

Lifetime of Hypertriton ${}^{3}_{\Lambda}$ H

- Determination of lifetime of ³_AH has been made by the several groups using the heavy Ion collisions
 - Heavy-ion experiments had provided consistently a shorter lifetime than free Λ lifetime, although the error bar was not small; deviations were less than 3 sigma.
- Recent ALICE measurement (red) is the most precise determination of hypertriton lifetime
- And the lifetime is consistent with the free Λ lifetime

8

Theoretical prediction