

Coherent photoproduction in heavy-ion collisions

Wangmei Zha

University of Science and Technology of China

Collaborators: Daniel Brandenburg, Lijuan Ruan, Zebo Tang, Zhangbu Xu

The 142nd HENPIC seminar, June 16, 2021

Coherent photons as "partons" in heavy-ion collisions

Coherent limitation: $Q^2 \le 1/R^2 \Rightarrow$ quasi-real ! Photon four momentum: $q^u = (\omega, \vec{q}_T, \omega/\nu)$ $Q^2 = \frac{\omega^2}{\gamma^2} + q_T^2$ $\omega \le \omega_{max} \sim \frac{\gamma}{R}$

View photons as "partons" being present with fast moving ions!
 The extent of photons swarming about

the ions:

Physics Today 70, 10, 40 (2017)

The radius of nuclear matter $R_{Nuc} \sim 6.3$ fm (Au) $R_{photons} >> R_{Nuc}$

Take the photoproduction of ρ (Au+Au 200 GeV)in ultra-peripheral collisions (UPCs) as example: $< R_{producton} > \sim 40$ fm

Photon interactions in A+A

 This large flux of quasi-real photons makes a hadron collider also a photon collider!

- ✓ Photon-nucleus interactions: Vector meson
- ✓ Photon-photon interactions: dileptons ...
- Conventionally believed to be only exist in ultra-peripheral collisions (UPC) to keep "coherent"!

Vector meson photon-production

could be treated with pQCD: J/ψ , ψ ', Y(1S), Y(2S), Y(3S)...

Sensitive to the gluon distribution:

$$\frac{d\sigma(\gamma A \to VA)}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 \left[xG_A(x,Q^2) \right]$$

$$x = \frac{M_V e^{\pm y}}{\sqrt{s}} \quad Q^2 = M_V^2/4$$

J/ψ photoproduction in Pb+Pb UPCs

Various precise measurements! Powerful to constrain nPDF

The framework: impulse approximation

$$\frac{d\sigma_{AA\to AAJ/\psi}(y)}{dy} = N_{\gamma/A}(y)\sigma_{\gamma A\to J/\psi A}(y) + N_{\gamma/A}(-y)\sigma_{\gamma A\to J/\psi A}(-y)$$

Equivalent photon approximation

$$\sigma(\gamma A \to J/\psi A) = \frac{d\sigma(\gamma A \to J/\psi A)}{dt} \Big|_{t=0} \times \int |F_P(\vec{k}_P)|^2 d^2 \vec{k}_{P\perp} \qquad \vec{k}_P = (\vec{k}_{P\perp}, \frac{\omega_P}{\gamma_c})$$
$$\omega_P = \frac{1}{2} M_{J/\psi} e^{\pm y} = \frac{M_{J/\psi}^2}{4\omega_\gamma}$$

The results: impulse approximation

- The impulse approximation significantly overestimates the data => Significant shadowing effect
- The difference becomes smaller towards forward rapidity => Less shadowing effect towards high x

The Bayesian reweighting of nuclear PDFs

The PDFs replica f_k can be constructed by the Hessian error set:

$$f_k \equiv f_{S_0} + \sum_{i} \left(\frac{f_{S_i^+} - f_{S_i^-}}{2} \right) R_{ik}$$

JHEP**08** (2012) 052

Any quantity $\mathcal{O}[f]$ depending on PDFs can be determined via:

 ΛI

$$\langle \mathcal{O} \rangle = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \mathcal{O}[f_k]$$

For a new measurement, $y = \{y_1, y_2, ..., y_n\}$, the reweighted PDF could be evaluated by:

$$\langle \mathcal{O} \rangle_{\text{new}} = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} w_k \mathcal{O}[f_k]$$
$$w_k = \frac{(\chi_k^2)^{\frac{1}{2}(n-1)} e^{-\chi_k^2/2}}{\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} (\chi_k^2)^{\frac{1}{2}(n-1)} e^{-\chi_k^2/2}} \chi_k^2(y, f_k) = \sum_{i,j=1}^n (y_i - y_i[f_k]) \operatorname{cov}_{ij}^{-1}(y_j - y_j[f_k])$$

Nuclear shadowing from J/ψ measurements in UPCs

- The UPC measurements dramatically reduce the uncertainty band of EPPS16 and nCTEQ15 PDF sets.
- Significant shadowing effect has been observed in both PDF sets at small x.

- Significant enhancement of J/ψ yield observed in p_T interval 0 – 0.3 GeV/c for peripheral collisions (50 – 90%).
- Can not be described by hadronic production modified by the hot medium or cold nuclear matter effects!

Origin from coherent photon-nucleus interactions?

The observations at STAR

- Significant enhancement of J/ψ yield observed at p_T interval 0 – 0.2 GeV/c for peripheral collisions.
- No significant difference between Au+Au and U+U collisions.

- Similar structure to that in UPC case!
 - Indication of interference!
 - ✓ Interference shape from calculation PRC 97 (2018) 044910
 - Similar slope parameter!
 - ✓ Slope from STARLIGHT prediction in UPC case - 196 (GeV/c)⁻²
 - ✓ Slope w/o the first point: 177 ± 23 (GeV/c)⁻² $\chi^2/NDF = 1.7/2$

A novel probe for QGP?

- Hot medium effects:
 - Color Screening

 "Smoking gun" signature
 for QGP PLB 178 (1986) 416
 - Regeneration
 -Recombination of charm quarks
- Cold Nuclear Matter effects:
 ✓ PDF modification in nucleus
 ✓ Initial state energy loss
 ✓ ...
 - The baseline?

A cleaner probe of color screening?

Comparison with model calculation

- Well described by the coherent photoproduction mechanism for peripheral collisions
- Hint of disruption from the medium
 - ✓ The observation effect W. Zha etal., P
 - ✓ The QGP swallowing
- W. Zha etal., PRC **99**, 061901 (2019)

Comparison with model calculation

ALICE: ALI-PREL-309953

- Well described by the coherent photoproduction mechanism for peripheral collisions
- Hint of disruption from the medium
 - ✓ More statistics at mid-rapidity
 - ✓ More precise measurements toward central collisions

The transverse linearly polarized photons

Extreme Lorentz contraction of EM fields $\vec{E} \perp \vec{B} \perp z$

✓ Linearly polarized in transverse plane

Polarization vector: follows the electrical vector of photons

Well defined in the position and momentum eigenstates

Aligned radially with the "emitting" source

The transverse linearly polarized photons

Extreme Lorentz contraction of EM fields $\vec{E} \perp \vec{B} \perp z$

✓ Linearly polarized in transverse plane

Polarized $\gamma + \gamma \rightarrow e^+ + e^-$

leads to $\cos 4\Delta \phi$ modulation

C. Li, J. Zhou, Y.-j. Zhou, PLB 795, 576 (2019)

Confirmed by STAR

Collaboration!

STAR Collaboration, arXiv1910.12400 Li, C., Zhou, J. & Zhou, Y. Phys. Rev. D101, 034015 (2020)

Polarized photon + gluon collisions

Polarization vector : aligned along the impact parameter

Helicity conservation: the produced vector meson inherits the polarization state of photon $\frac{d^2N}{d\cos\theta d\phi} = \frac{3}{8\pi} \sin^2\theta [1 + \cos 2(\phi - \Phi)]$

The interference in momentum space

Polarized photon + gluon collisions

Qualitative description of data

- Large first peak
- Approximate location of second peak

Second peak shows strong dependence on details of nuclear geometry

Xing, H. et.al. JHEP. 2020, 64 (2020)

A two-source interference pattern resulting from quantum spinmomentum correlations

Polarized photon + gluon collisions

Qualitative description of data

- Large first peak
- Approximate location of second peak

Second peak shows strong dependence on details of nuclear geometry

Zha, W., J.D. Brandenburg, Ruan, L. & Tang, Z. *PRD* **103**, 033007 (2021)

A two-source interference pattern resulting from quantum spinmomentum correlations

Align the reaction plane with linearly polarized photons

Could directly link the final flow to initial geometry!

Photon-photon interactions in UPC

• Test QED --- $\gamma\gamma \rightarrow$ Dileptons

 \checkmark Z α ~ 0.6, so perturbation theory might fail

 Data is in excellent agreement with lowest order QED

To study the meson spectroscopy

meson	mass [MeV]	$\sigma^{RHIC}~[{\rm mb}]$	σ^{LHC} [mb]
π_0	134	4.9	28
η	547	1.0	16
η'	958	0.75	21
$f_2(1270)$	1275	0.54	22
$a_2(1320)$	1318	0.19	8.2
η_c	2981	3.3×10^{-3}	0.61
χ_{0c}	3415	0.63×10^{-3}	0.16
χ_{2c}	3556	0.59×10^{-3}	0.15

 From "virtual" to "real"
 ✓ Light-by-light scattering seen by ATLAS

No measurements in UPCs yet!

Ann. Rev. Nucl. Part. Sci.**55**:271 (2005)

Nature Phys. 13 (2017) 852 PRL **123** (2019) 052001

The measurements in non-UPC collisions

- Significant excess in 60-80% central Au + Au and U + U collisions for the whole invariant mass range!
- The excess can be described by the coherent photon-photon process!

The puzzle: pair p_T broadening

- The equivalent photon approximation could not describe the pair p_T distribution
- Possible medium effects --- magnetic field trapped in the QGP?

The puzzle: pair p_T broadening

The spatial distribution of dileptons

EPA approach

The photon k_T spectrum for fixed k: The final-state p_T is the vector sum of the two photon.

$$\frac{dN}{dk_{\perp}} = \frac{2Z^2 \alpha F^2 (k_{\perp}^2 + k^2 / \gamma^2) k_{\perp}^3}{\pi [k_{\perp}^2 + k^2 / \gamma^2]^2}$$

No impact parameter dependence!

Fail to reproduce the pair p_T !

$$\sum_{s} |M|^{2} = (Z\alpha)^{4} \frac{4}{\beta^{2}} \int d^{2} \Delta q_{1} d^{2} q_{1} [N_{0}N_{1}N_{3}N_{4}]^{-1} \exp(i\Delta \vec{q}_{1} \cdot \vec{b}) \quad \text{QED approach}$$

$$\times \operatorname{Tr} \left\{ (\not p_{-} + m) \left[N_{2D}^{-1} \psi^{(1)}(\not p_{-} - \not q_{1} + m) \psi^{(2)} + N_{2X}^{-1} \psi^{(2)}(\not q_{1} - \not p_{+} + m) \psi^{(1)} \right] \right\}$$

$$\times (\not p_{+} - m) \left[N_{5D}^{-1} \psi^{(2)}(\not p_{-} - \not q_{1}^{\prime} + m) \psi^{(1)} + N_{5X}^{-1} \psi^{(1)}(\not q_{1}^{\prime} - \not p_{+} + m) \psi^{(2)} \right] \right\}$$

$$\stackrel{\circ}{\longrightarrow} 0$$

Successfully reproduce the centrality dependence of acoplanarity

Strong dependence on impact parameter and pair mass.

"Centrality" definition in UPCs

Neutron tagging!

Acoplanarity for different centralities in UPCs

Significant differences!

Initial broadening for different centralities in UPCs

J. D. Brandenburg etal., arXiv2006.07365

- The average impact parameters vary significantly!
- ✓ Strong dependence on the centralities!

The Sudakov effect

✓ Produce a tail at large p_T
 ✓ Small effect at small p_T

The Sudakov effect

✓ The effect is sizable

✓ More significant at large impact parameter.

The Sudakov effect

Evidence of semi-coherent production?

In OnXn, the tail contribution Larger n hemisphere >

Smaller n hemisphere

Quantitative calculation is in progress

Phys. Lett B454 (1999) 155

However:

$Z\alpha \sim 0.6$ for Au and Pb

The effect should be sizeable!

H. A. Bethe and L. C. Maximon, Phys. Rev. **93**, 768 (1954); Handel Davies, H. A. Bethe, and L. C. Maximon, Phys. Rev. **93**, 788 (1954).

In April 1990 a workshop took place in Brookhaven with the title 'Can RHIC be used to test QED?' [98]. We think that after about 17 years the answer to this question is 'no'. However, many theorists were motivated to deal with this

Phys. Rep. 453, 1 (2007)

M. Fatyga, M. Rhoades-Brown, and M. Tannenbaum, Can RHIC be used to test QED: Workshop summary, Workshop "Can RHIC be used to test QED?", Upton, N.Y., Apr 20-21, 1990, BNL 52247 Formal Report.

all orders in Za !

CDF collaboration, *Phys. Rev. Lett.* **102** (2009) 242001. [CDF collaboration,, *Phys. Rev. Lett.* **98** (2007) 112001. ATLAS collaboration, *Phys. Lett. B* **749** (2015) 242. ATLAS collaboration, *Phys. Lett. B* **777** *(2018) 303* CMS collaboration, *JHEP* **11** (2012) 080

W. Zha and Z. Tang, arXiv2103.04605

Consistent with Leading order results!

✓ 7σ deviation from Leading order results !
✓ Consistent with Full order results!

Summary

• The vector meson photoproduction in UPCs

- ✓ Significant shadowing effect
- The interference effect in spin-momentum correlation
- Excess of J/ ψ production at very low p_T in peripheral A+A collisions
 - ✓ Existence of coherent photoproduction in non UPCs
 - ✓ Novel probe for QGP?
- Dielectron photoproduction in UPCs
 - ✓ The baseline study
 - ✓ Higher order effects matter!
- Dielectron photoproduction in HHICs
 - ✓ Probe the EM property of QGP?

Outlook

