The 145th HENPIC Seminar

Reconstruction of Heavy-Flavor Potential from Bottomonium Spectrum using DNN

Shuzhe Shi (Stony Brook Univ.)

with:

Kai Zhou, Jiaxing Zhao, Swagato Mukherjee, and Pengfei Zhuang

Date: 2021 - Oct - 8

Ref: (arXiv)2105.07862

Outline

- Methodology inverting the Schroedinger equation
 - what is Deep Neural Network
 - new algorithm using DNN to obtain V(r) from $\{E_n\}$

- Application
 - heavy flavor potential from Bottomonium mass & thermal width
 - phenomenological consequences

Schroedinger Equation $\hat{H}\psi_n = -\frac{\nabla^2}{2m}\psi_n + V(r)\psi_n = E_n\psi_n$

- $\psi_n(r)$ known $\Longrightarrow V(r)$:
- $\{E_n\}$ known $\Longrightarrow V(r)$:

• V(r) known $\implies \{E_n, \psi_n(r)\}$: numerical methods established.

$$\frac{\nabla^2 \psi_n}{2m \psi_n} = V(r) - E_n$$

01

How to learn V(r) from $\{E_n\}$?

parameterize the potential $V(r | \theta)$, scan the whole θ -space, minimize $\chi^2 \equiv \sum_{i} \left(\frac{E_{\theta,i} - E_i}{\delta E_i} \right)^2$

- a gradient-descent based method:
 - goal -- find the θ -point that $\nabla_{\theta} \chi^2 = 0$
 - update θ iteratively according to $\Delta \theta \propto \nabla_{\theta} \chi^2$

general unbiased parameterization scheme? Deep Neural Network!

What are Deep Neural Networks? example: approximate $y = x^2$ for $x \in [0,1]$

 ${\mathcal X}$

--- a general parameterization scheme to approximate continuous functions.

What are Deep Neural Networks? --- a general parameterization scheme to approximate continuous functions. example: approximate $y = x^2$ for $x \in [0,1]$

 ${\mathcal X}$

What are Deep Neural Networks? example: approximate $y = x^2$ for $x \in [0,1]$

 ${\mathcal X}$

--- a general parameterization scheme to approximate continuous functions.

What are Deep Neural Networks?

 ${\mathcal X}$

What are Deep Neural Networks?

 ${\mathcal X}$

What are Deep Neural Networks? example: approximate $y = x^2$ for $x \in [0,1]$

--- a general parameterization scheme to approximate continuous functions.

What are Deep Neural Networks? --- a general parameterization scheme to approximate continuous functions.

- At the first layer:

04

What are Deep Neural Networks? --- a general parameterization scheme to approximate continuous functions.

- At later layers:

How to learn V(r) from $\{E_n\}$ using DNN?

DNN potential V(r) $W_{i,j}^{(l)}, b_i^{(l)}$ update $-\Delta W_{i,j}^{(l)} \sim -\frac{\partial \chi^2}{2}.$

Schrödinger equation

 $E_n, \psi_n(r)$

Can we really learn V(r) from $\{E_n\}$? continuous \int discrete, finite

learn V(r) according to

$$\{E_n\} = \left\{\frac{3}{2}, \frac{7}{2}, \frac{11}{2}, \frac{15}{2}, \frac{19}{2}\right\} \text{ GeV}$$

target spectrum

Can we really learn V(r) from $\{E_n\}$? -- Yes! (for a certain *r* range)

learn V(r) according to

$$\{E_n\} = \left\{\frac{3}{2}, \frac{7}{2}, \frac{11}{2}, \frac{15}{2}, \frac{19}{2}\right\} \text{ GeV}$$

target spectrum

Deviate from the exact potential where all $\psi_n \to 0$,

 $\delta E_n = \langle \psi_n | \, \delta V(r) \, | \, \psi_n \rangle$

$\{E_n\} = \{ 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5 \} \text{ GeV}$

Application: Heavy Flavor Potential

Quarkonium in the QGP

- In heavy-ion collisions, quarkonium production serves as a probe of the QGP. Accurate understanding of the in-medium heavy-quark interaction?
- - Real potential modified by color-screening
 - Imaginary potential arises due to $(QQ)_1 \rightarrow (QQ)_8$, Landau damping, ...

Hard Thermal Loop potentials

$$\begin{split} V_R(T,r) &= \frac{\sigma}{\mu_D} \left(2 - (2 + \mu_D r) e^{-\mu_D r} \right) - \alpha \left(\mu_D + \frac{e^{-\mu_D r}}{r} \right) + B \,, \\ V_I(T,r) &= -\frac{\sqrt{\pi}}{4} \mu_D T \sigma r^3 G_{2,4}^{2,2} {\binom{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1}} \left| \frac{\mu_D^2 r^2}{4} \right) - \alpha T \phi(\mu_D r) \,. \end{split}$$

see e.g., Laine, Philipsen, Romatschke, and Tassler, JHEP 03, 054 (2007)

Bottomonium mass and thermal width, lattice QCD with finite m_Q

R. Larsen, S. Meinel, S. Mukherjee, and P. Petreczky: Phys.Rev.D100,074506(2019), Phys.Lett.B800,

Phys.Rev.D100,074506(2019), Phys.Lett.B800,135119(2020), Phys.Rev.D102,114508(2020)

R. Larsen, S. Meinel, S. Mukherjee, and P. Petreczky:

Phys.Rev.D100,074506(2019), Phys.Lett.B800,135119(2020), Phys.Rev.D102,114508(2020)

Can we understand the new lattice result using Hard Thermal Loop potential?

Can we understand the new lattice result using Hard Thermal Loop potential?

How to learn potential using DNN?

Test - Can we recover a known complex V(T, r)?

Start with a known potential (solid line)

$$V_R(T,r) = \frac{\sigma}{\mu_D} \left(2 - (2 + \mu_D r)e^{-\mu_D r} \right) - \alpha \left(\mu_D + \frac{e^{-\mu_D r}}{r} \right)$$
$$V_I(T,r) = -\frac{\sqrt{\pi}}{4} \mu_D T \sigma r^3 G_{2,4}^{2,2} \left(\frac{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1} \right) \left| \frac{\mu_D^2 r^2}{4} \right) - \alpha T \sigma r^3 G_{2,4}^{2,2} \left(\frac{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1} \right) \left| \frac{\mu_D^2 r^2}{4} \right)$$

- Compute $\{m_n, \Gamma_n\}$ at $T = \{0, 151, 173, 199, 251, 334\}$ MeV
- Learn the potential using DNN (dash + band) ≥ 0.1

-- Yes!

Test - Can we recover a known complex V(T, r)?

• Start with a known potential (solid line)

$$V_R(T,r) = \frac{\sigma}{\mu_D} \left(2 - (2 + \mu_D r)e^{-\mu_D r} \right) - \alpha \left(\mu_D + \frac{e^{-\mu_D r}}{r} \right)$$
$$V_I(T,r) = -\frac{\sqrt{\pi}}{4} \mu_D T \sigma r^3 G_{2,4}^{2,2} \left(\frac{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1} \right) \left| \frac{\mu_D^2 r^2}{4} \right) - \alpha T \sigma r^3 G_{2,4}^{2,2} \left(\frac{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1} \right) \left| \frac{\mu_D^2 r^2}{4} \right)$$

- Compute $\{m_n, \Gamma_n\}$ at $T = \{0, 151, 173, 199, 251, 334\}$ MeV
- Learn the potential using DNN (dash + band) ≥ 0.5

extrapolation is risky!

Results

What physics we have learned from $V_{\text{DNN}}(T, r)$?

What physics we have learned from $V_{\text{DNN}}(T, r)$? --- compare with HTL potential used in [1]

[1] A. Islam and M. Strickland, JHEP03(2021)235

[1] A. Islam and M. Strickland, JHEP03(2021)235

Summary and Outlook

• Develop new algorithm employing DNN to learn V(r) from $\{E_n\}$.

• Extract HF complex V(T, r) from LQCD results of bottomonium m and Γ .

Phenomenological consequences in heavy-ion collisions?