Introduction to J-PARC muon facility, MUSE
 J-PARC MLF Muon Section/KEK IMSS
 Yasuhiro Miyake

- J-PARC \& J-PARC MUSE
- DC Muon \& Pulsed Muon
- Summary

Only material science,
Muon fundamental physics to Prof. Kuno

Muon Facilities in the world

J-PARC Facility @Tokai

MUSE, pulsed $(25 \mathrm{~Hz})$ muon source

Joint Project between KEK and JAEA

Proton Beam Transport from 3GeV RCS to MLF

On the way, towards neutron source

D-Line

Either Decay Muon or Surface Muon can be extracted!

Decay Muon 2.6-120 MeV/c
Muons from pion decay-in-flight

Pion: π^{+}, π^{-}

Confinement magnetic field (Large-scale superconducting solenoid)

Surface Muon (30 MeV/c)

Muons from positive pions stopped at the target surface

Maily for the materials science

Positive Muon
A kind of Lepton.

Charge				Spin Mass	Lifetime	
μ^{+}	+1	$1 / 2$	$106 ~ M e V / c^{2}$	$\left(1 / 9\right.$ of $\left.p^{+}\right)$	$2.2 \mu \mathrm{~s}$	$; 1 / 9$ of p^{+}, Spin Polarized!
μ^{-}	-1	$1 / 2$	$106{\mathrm{MeV} / \mathrm{c}^{2}}^{2}$	$\left(207\right.$ heavier $\left.\mathrm{e}^{-}\right)$	$2.2 \mu \mathrm{~s}$	$: 200$ times heavier e^{-}

Muon is 100% spin polarized inherently!

Pion

Like an atomic-scale compass
$\mu S R($ Muon Spin Rotation) Method

Muon Beam

(1)Muons are produced with 100% spin polarizaion and transported by a beamline for implantention to sample.
(3Muons emit positrons to the direction when their spins were pointing upon decay, which are detected by scintillation

(2)The implanted muons stop between atoms, where they start Larmor precession according to the local magnetic fields.

The signal of scintillation counters oscillates periodically due to the Larmor precession of muons

D1 uSR Spectrometer, Surface Muons

magnet inner bore: $\Phi 410$
magnet gap: 135 mm
vacuum duct diameter: $\Phi \mathbf{2 5 4} \rightarrow 10$ sets/round
$32 \mathrm{ch} \times 40=1280$ channels.

LF up to 4 kG GAP 135 mm
Can be inserted up to $\Phi 254$

Element-Strategy-Initiative: Materials for electronic devices

Bipartite magnetic parent phases in the iron oxypnictide superconductor

Industrial Use of Muon～Li Battery～

Clarify Li diffusion behavior in the cathode materials

【Motivation】In order to develop a new cathode material with high working voltage，we have measured a Li－diffusion coefficient of several olivine type compounds with muSR，since mSR provides information on Li－diffusion even in the materials containing magnetic ions．

【Impact】Such cathode material leads to a Li－ion battery with safe and high energy capacity，which is suitable for the future electric cars．

Figure 5: Log - \log plot of the π^{+}total inclusive cross section parameteriza solid line) of equation (1) versus experimental data (triangle symbols) of refe $6,7,9,14]$.

Figure 6: Same as figure 5, except for use of linear axes.

Figure 7: \log - \log plot of total inclusive cross section parameterization (blue, s equation (2) for the reaction $\mathrm{p}+\mathrm{p} \rightarrow \pi^{-}+\mathrm{X}$ versus experimental data (triang. of references $[3,4,7,9,14, ?]$. Also shown is the cross section data (solid squ Abdivaliev [10], for the reaction $n+p \rightarrow \pi^{-}+\mathrm{X}$, compared to the parameterizi dashed line) of equation (9).

Figure 8: Same as Figure 7, except for use of linear axes and $n+p$ reaction is

World Strongest Pulsed Negative Muon Source at J-PARC MUSE, Operated by KEK-IMSS

Larger Bore ($\phi \mathbf{1 2 c m} \rightarrow \phi 24 \mathrm{~cm}$), Warm Bore (No Window)

200 times heavier electron

μ^{-}(200 times heavier electron)
\rightarrow forming muonic atom

200 times larger binding energy
II
~ 200 times higher muonic X ray $\left\{\begin{array}{l}\text { Cu K } \alpha \text { X-ray } \\ \text { Electron: } 8 \mathrm{keV} \\ \text { Muon : } 1.5 \mathrm{MeV}\end{array}\right\}$ II
Deep penetration

Non-destructive element analysis using μ^{-}X-ray

Demonstration of bulk sensitive light-element-analysis on interstellar object

It is demonstrated on a carbon-rich meteorite that the element-specific muonic X-ray spectroscopy can provide information on the content of light elements deep within the specimen, paving a path to the application of the technique to the specimens brought back by the "Hyabusa II" mission in the future.

K. Terada, K. Ninomiya, T. Osawa, S. Tachibana, Y. Miyake, M. K. Kubo, N. Kawamura, W. Higemoto, A. Tsuchiyama, M. Ebihara \& M. Uesugi, Sci. Rep. 4, 5072 (2014).

Archeology by negative muons

Funded by collaborative research of Inter－University Research Institute Corporation，

Many Old Coins，Bronze bell－shaped vessel， swords，etc．，from 500 nm to 6 cm depth！

Broadcasted by NHK！

S-type; Operand Measurement of Li battery

Depth profile of Li signals shows difference between discharged and charged in OPERAND!

 Cathode(whole) $46 \rightarrow 21 \mathrm{mg}$ Anode $\underset{\text { Muon input from Anode }}{2.6} \mathbf{~ m g}$

(A) $\mathrm{Cd}-\mathrm{Te}$ detector
(3cm square)

Solid Angle: 50\% 8 mmp (2mmt)

Cd-Te detector

33MeV/c

$$
, 4 \mathrm{~mm} \varphi(2 \mathrm{mmt})
$$

Resolution
 : $5 \mathrm{~mm} \rightarrow 2 \mathrm{~mm}$

$\left(0.5 \mathrm{~mm}^{\mathrm{t}}\right)$ む̀ へ̀ $\frac{1}{\mathrm{a}}$
Coded Mas

- $\quad 7$ loyota crdl. inc. Jun Sugiyama $17 \mathrm{B0} 137$: μ-SR experiment on MgH_{2} and related compounds

Using a unique feature of J-PARC, we have successfully observed an internal nuclear magnetic field in MgH_{2} with a negative muon spin rotation and relaxation (μ SR) technique. This will clarify the dynamics of H in solids from the fixed lattice site, while a positive muon behaves as a light isotope of H^{+}and is sometimes delocalizing.

PHYSICAL REVIEW LETTERS 121, 087202 (2018)

Nuclear Magnetic Field in Solids Detected with Negative-Muon Spin Rotation and Relaxation

A01 Azuma et al.

Precision x-ray spectroscopy of muonic atoms with TES detector muonic atom ($\mu^{-}+\mathrm{N}^{Z+}$): exotic highly-charged hydrogen-like ions negative muon located very close to the nucleus feels an extremely strong electric field
(200^{2} times higher than normal hydrogen-like ions)

atomic physics

 an ideal probe to explore QED under an extremely strong electric field(avoiding the nuclear size effect by selecting high / states)

2-5 eV QED contribution for muonic $\mathrm{Ne} \mathrm{5f} \rightarrow 4 \mathrm{~d}, 5 \mathrm{~g} \rightarrow 4 \mathrm{f}(\sim 6 \mathrm{keV})$ (theoretical prediction)

Precision x-ray spectroscopy of muonic atoms with TES detector

Intense ultra-slow μ^{-}beam (J-PARC)

Energy: down to ~50 keV
Intensity: 10^{6} per pulse for $20 \mathrm{MeV} / \mathrm{c}$ Pulse repetition: 25 Hz

First experiment in April 2019
successfully observed very sharp peak within a half day !!

Basic Research of in-Flight Muon Catalyzed Fusion (IFMCF) in Mach Shock Wave Interference Region

Creation of In-flight Muon Catalyzed Fusion in Interference Region of Mach Shock Wave

New non-resonant in-flight muon catalyzed cycle has been proposeı

C02; Conversion from accelerator muon to micro beam

Muon generated by Acc.

Large $\Delta \mathbf{p}$ bad special coherence, and large $\Delta \mathrm{E}$ bad temporal coherence.

Flash-light

Muon beam like LASER

Coherent Muon Beam
Highly directive, and Monochromatic.
It can be focused into small spot.

Beam-cooling makes beam focusable into small spot!

Scanning Muon Microscopy
 3-dim Mapping of

Elements, Isotopes and Chemical-Status.

Revolution in Mat./Life Sc.

Principle of Beam-Cooling

- Momentum distribution is cleared by stopping.
- Volume in phase space (emittance) is shrunken.
- Beam is cooled down by this process (and iteration)

Generation of Negative Micro Muon Beam.

1) Muon Catalyzed Fusion ($\mu \mathrm{CF}$) is applied to the beam-cooling. Captured muon into atom is dissociated with low energy ~ 10keV after μ CF .
2) Accelerator muon is captured by solid H_{2} with mm -thickness. $\mathrm{p} \mu$ is converted into $\mathrm{d} \mu$, and $\mathrm{d} \mu$ diffuses in mm-range by Ramsauer-Townsend effect.
3) $\mu \mathrm{CF}$ on thin DT-layer on solid H_{2} dissociates the muon. The muon is transported into center by E field.
4) Muon beam is extracted, is cooled frictionally, and is focused on specimen.

$\mu^{+} \mu^{-}$

Soft error of semiconductor

A soft error is an issue that causes a temporary condition in RAM that alters stored data in an unintended way.
ICT supports base of Infrastructure
(Information and Communication Technology)

Qantas Flight 72, QF72
A steep dive(October, 2008)

> Automatic Controlled Drive:
> existing GPU(Graphic Processing Unit) 10^{8} sets

- 1 soft error/ (10^{7} hours)
- 10 accidents/ h in the world
$->80000$ accidents/year

High reliability is essential for automatic control for the automobile, railway, airplane etc.

Soft error of semiconductor

Radiation by Cosmic ray against Altitude

On the grounds, contribution of μ is dominant!

1) T. Nakamura et al., (2005) 2) M. Kowatari et al., (2005)

$\mu^{+} \mu^{-}$

Negative and Positive Muon-Induced Single Event Upsets in 65-nm SRAMs

- The problem of soft errors in semiconductor devices subjected to terrestrial radiation environment (e.g., muons: 75\%) has been recognized as a major threat for electronics used at ground .

■ The soft error means a temporary malfunction in semiconductor devices due to single event upsets (SEUs) induced by energetic ionizing radiation.

- The SEU cross sections for $65-\mathrm{nm}$ SOTB and Bulk SRAMs were measured with both low energy "positive" and "negative" muon beams.

The first experimental result :
The negative muon SEUs occur at about three times higher rate than the positive muon ones.

Super Computer

Automobile
High reliability of semiconductor devices is necessary for safety and stable use.

U-Line

dedicated to Ultra Slow Muon (0.1-30 keV)

Ultra Slow μ^{+}

$\mathrm{A} \mu \mathrm{SR}$ experiment was carried out with a sample made of 50 nm Ag-layer and SiO_{2} base using Ultra Slow Muon beam. As low as $100 \mathrm{eV}(1 \mathrm{~nm}$ in Au$)$

Kinetic energy vs. measured asymmetry

	Current state of USM
Maximum event rate by MCP	121 events/s
Size	$\sim 10 \mathrm{~mm}$ (FWHM)
Time distribution	$\sim 10 \mathrm{~ns}$ (FWHM)
Maximum hit rate by Kalliope	22 hits $/ \mathrm{s}$
Asymmetry	0.1
Polarization	At least 39%

Ultra Slow μ^{+}

Newly fabricate Nd:YSAG
 ($\mathrm{Nd}: \mathrm{Y}_{3} \mathrm{Sc}_{1.5} \mathrm{Al}_{3.5} \mathrm{O}_{12}$) ceramic

Better sinterina condition is searchina to make ø12. 80 mm Iona Nd:YSAG

Ultra Slow μ^{+}

Transmission muon

 microscope 3D ImagingApplying re-accelerated muons, utilizing its feature of "Wave", for a new type of "eye" !

Electron Microscope can observe sample less than $1 \mu \mathrm{~m}$ thickness, on the other hand, Muon Micoscope may be able to observe 200 times thicker samples, because of 200 times heavier mass, enabling us to observe alive cell through a window!

Ultra Slow μ^{+}
 Transmission Muon Microscope

FY2018: Detail design \& partial fabrication

SC Coil
140kAT
Meissner
Shield

FY2019: Full fabrication, FY2020: beam@MLF

Muon Cyclotron; now fabricating \rightarrow will be delivered soon

Magnet

- $\mathrm{B}_{\text {ave }}=0.4 \mathrm{~T}$
- \# of sectors = 4
- Extraction radius $\mathrm{R}_{\mathrm{ext}}=262 \mathrm{~mm}$ RF
- Harmonic number = 2
- RF frequency $=108 \mathrm{MHz}$
- Dee voltage $=50 \mathrm{kV}$
- Flat-top RF(3F) frequency $=324 \mathrm{MHz}$ Injection
- Spiral inflector $\pm 4.5 \mathrm{kV}$

Extraction

- Electrostatic deflector $\pm 7.5 \mathrm{kV} / \mathrm{mm}$
- Passive magnetic channel
- Accelerated up to 5 MeV by 59 turns $\sim 1 \mu \mathrm{~s}$
- Flat-top initial phase acceptance and
- $\Delta E / E=1 \times 10^{-4}$ is achieved

Ultra Slow μ^{+}

Layout @U1B area

S-Line

S-Line: dedicated to materials science

- Four experimental areas: S1, S2, S3, S4.
- Two kicker systems to direct singlepulsed muon beams to each areas simultaneously (12.5Hz).
- Double-pulsed beam capability to each area using switchyard magnets.

Exp. Hall No. 1

M2

tunnel

S-Line

Steady operation at the S1 area is ongoing.

- A roughly half number of the approved exp. proposals by Muon PAC in 2018 has been carried out at the S1 area, including ONE urgent proposal and THREE P-type proposals.
- FOUR journal papers and TWO conference proceedings are published in 2018.
- K. Horigane et al., PRB 97, 064425; K. Kurashima et al., PRL 121, 057002; I. Yamauchi et al., PRB 97, 134410; H. Okabe et al., PRB 97, 075210.
- Press release: "Magnetic fluctuation of Bi-2201 high-Tc cuprates at the over-doped region" by Prof. Adachi, Sophia Univ.

Dr. Tanaka and students are mounting their sample on the cryostat.

The integrity of the $\mu \mathrm{SR}$ DAQ system was confirmed during the 1MW test operation in Jul. 2018. The above time spectra were obtained in ONE minute.

μ^{+}

On－going Science Activity at S－line －μ SR on bio－materials－

glycine $+\mathrm{H}(\mathrm{Mu}) \quad$ polyglycine $+\mathrm{H}(\mathrm{Mu})$

Dr．Yamamura of Kitasato Univ．，Dr．Nihimura of KEK，and Prof． Torikai of Yamanashi Univ．carry out measurements on bio－ materials at S－line．

Bio－material μ SR group

Kitasato Univ．：Sugawara，Yamamura
Yamanashi Univ．：Torikai，Shiraki，Fujimaki
Hokkaido Univ．：Miwa
Kwansei gakuin Univ．：Kusunoki，Yamaguchi Ibaraki Univ．：Pant，linuma，Yamaguchi，Kozuma KEK：Shimomura，Nagamine
JAEA：Higemoto

S-Line: μ-LCR test measurement @1MW

Muon decay events were accumulated for $\underline{2 \text { Sec. at each point. }}$ 400 points were measured with increasing or decreasing field. rouahlv takina 14 min.

5T μ SR spectrometer (CYCLOPS)

Dry-type superconducting magnet (max. 5T) cooled by 2 GM refrigerators.
3008ch. positron detectors consisting of 96 KALLIOPE modules.

$1 \times 1 \mathrm{~mm}^{2}$ scintillating fibers are aligned in a spiral to meet the e^{+} track under high fields.

H-Line

Mu-HF, DeeMe

Transmission Muon Microscopy 30-100 MeV@H2

J-PARC MUSE @H1 Mu-HF, DeeMe, Ultra Slow μ^{-}

3GeV Proton

High Intensity Muon Beam for Space-time Symmetry and Origin of Matter/Universe

DC Muon

DC Muon

Time

e^{+}

$$
\mathrm{e}^{+}
$$

$$
\mathrm{e}^{+}
$$

- High time-resolution
- Fast relaxation/precession
- Defining-/Veto-Counter
- Low BG

Limited time window

vs. Pulsed Muon

Pulsed Muon

- Virtually ${ }^{+}$unlimited time window
- Slow relaxation
- Fast fluctuation
- Pulsed condition

$10^{4}-10^{5}$ muon/pulse/1MW

DC Muon vs. Pulsed Muon (Complementary probe)

	DC muon	Pulsed muon
Time resolution	(\times
Detectors	$\sim 10 \mathrm{ch}$	Segmented ($\sim 1000 \mathrm{ch}$)
Event by event	(\triangle (pulse by pulse)
Slow relaxation	Δ	\bigcirc
Beam Intensity	\bigcirc	Pulsed muon beam Brems B.G:
Synchronization with perturbation	\triangle	D.C. muon beam \qquad Brems B.G.
DC BG	Δ	O Time

Summary

- D-Line, Operating User's Runs
$-\mu^{+}$SR
$-\mu^{-S R}$
- μ^{-}Non-destructive analysis
- U-Line, Under commissioning,
- nm- μ^{+}SR, 100 eV - 30 keV
- Transmission Muon Microscopy
- S-Line, Operating User's Runs
- μ^{+}SR @S1
- Mu, 1s-2s precision measurement@S2
- H-Line,
- Fundamental physics(g-2/EDM, DeeMe, Mu-HF etc.!)
- Transmission Muon Microscopy

Negative muon beam @H-line

2011MS-01 Precise Measurement of Mu HFS and magnetic moment

- Most precise check of bound QED
- Most precise measurement of muon mass and magnetic moment \rightarrow Basic parameter for fundamental physics $g-2, \mu^{-} p$ Lamb shift
- Exotic particle Search
- Search of Lorentz and CPT symmetry breaking
To improve the previous measurement at LAMPF, Intense pulsed muon beam (108/S) is necessary. H line is a unique beam line in the world for this measurement!

$$
\begin{array}{lc}
\Delta v & \text { 12ppb } \rightarrow 2 p p b \\
\mu_{\mu} l \mu_{p} & 120 p p b \rightarrow 20 p p b
\end{array}
$$

2011MS-03 μ-e Conversion Search:

$$
\begin{aligned}
& \text { DeeMl } \\
& \mu^{-}+A(Z, N) \rightarrow e^{-}+A(Z, N)
\end{aligned}
$$

Forbidden in the Standard Model of particle physics

- Observation \Leftrightarrow Clear Proof of physics beyond the SM
- Hints to: neutrino oscillation, matter-antimatter asymmetry
- Current upper bounds(TRIUMF, SINDRUM-II@PSI)
$-\quad \mathrm{BR}\left[\mu^{-} \mathrm{Ti} \rightarrow \mathrm{e}^{-\mathrm{Ti}]}<4.3 \times 10^{-12}, \mathrm{BR}\left[\mu^{-} \mathrm{Au} \rightarrow \mathrm{e}^{-} \mathrm{Au}\right]<7 \times 10^{-13}\right.$
- Theoretical Predictions: $B R=10^{-13} \sim 10^{-16}$

DeeMe: unique idea utilizing J-PARC features
Update the sensitivity by more than 10 to find a signal.

- Utilize high-power highpurity pulsed proton beam from RCS.
- Make use of a generic muon beam line.
- No beam-time conflicts with T2K and Hadron-Hall programs.
- Diversity: different method from COMET and Mu2E
- It is critically important to utilize J-PARC as much as

2014MS04 Measurement of the proton radius from the hypє @H1 splitting energy in the ground-state muonic hydrogen

Proton radius puzzle

From Lamb shift (2s-2p energy) of muonic hydrogen (PSI 2010)
Proton charge radius was smaller by 7 sigma from other measure New proposal
Determine proton magnetic radius using muon spin
Method : measure hyperfine splitting energy of muonic hydroge laser resonant pumping of polarized spin state and probe with muon decay

Keys:
High power $6.7 \mu \mathrm{~m}$ infra-red laser and Hydrogen target system (by RIKEN)
High intensity negative muon beam (J-PARC)

Motivation of Mu Laser Experiment at S2-area

- Present uncertainty of muon mass limits theoretical 1S-HFS frequency
m_{μ}
mass uncertainty
$u_{r}\left[m_{\mu}\right]=120 \mathrm{ppb}(\exp)$
> Electroweak and Hadronic contribution has been predicted and they are sufficiently large to observe the actual experiment
> However, they cannot be evaluated under the present $u_{\text {theo }}$ of 515 Hz \rightarrow Reduce the mass uncertainty is very important
- $u_{r}\left[m_{\mu}\right]$ can be reduced by precise measurement of 1S-2S transition frequency
$>$ Since the reduced mass contribution is large, the mass can be determined precisely from the precise $\Delta v_{1 S 2 S}$ measurement
e.g. $u\left[\Delta v_{1 S 2 S}\right]_{\text {exp. }}=10 \mathrm{kHz} \Rightarrow u_{r}\left[m_{\mu}\right]_{\text {exp. }}=1 \mathbf{~ p p b}$

Uncertainty in transition frequency of Muonium $u\left[\Delta v_{1 S-H F S}\right]_{\text {theo. }} 515 \mathrm{~Hz}$ $\Delta v_{1 S}$-HFS $\simeq \frac{16}{3} \alpha^{2} R_{\infty} \frac{\mu_{\mu}}{\mu_{B}}\left(1+\frac{m_{e}}{m_{\mu}}\right)^{-3}$

Theoretical prediction of frequency shift in $\Delta v_{1 S \text {-HFS }}$

Electroweak: -65 Hz
Hadronic: 232.7 Hz
$\Delta v_{1 \mathrm{~S} 2 \mathrm{~S}} \simeq \frac{3 \alpha^{2}}{8 h} m_{e} c^{2}\left(1+\frac{m_{e}}{m_{\mu}}\right)^{-1}$
Reduced mass contribution: 0.48\%

