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SMEFT
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in direct vicinity of the SM ST L e —~ A
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SMEFT
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single-top contribution increasingly important



Top EW couplings

Two-quark operators:

Scalar:  O,, = qu @ @',
<=2
Vector: O}pq = gvq goTi<D_u>cp
Ojq = 37'7'q 1Dy
Opu = @7"u ¢'iDy ¢
Ogoud = l—l’Yud @T’DIJJ ¥y
Tensor: Owp = go*’u @ gyB.,
Ow = cja“”T’ungWWli,,,
Ow = go"7'd g gw W,
O = go"’ TAu c,BgSGS,,.

Two-quark—two-lepton operators:

Scalar: Ofequ = le € qu,
O1edqg = le dgq,
Vector: O1, = Iy,1 gv*gq
O = Inum'l gy*7'q
Ow = 1v,1 uvy*u
O,y = e7%e gqmug
Oew = evyue u~v*u
Tensor: OlTequE loy,e € qotu.
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Top EW couplings

Two-fermion (vertex) Op

e t

(Axial-)Vector like | OY,, 04,

® Sensitivity independent of energy.

Dipole (CP-even) |ReOya, ReO,7

® ~ E in amplitude, but suppressed by
interference at tt level (cross section
and AFB)

® ~ E? sensitivity can be obtained with
0]0)

Dipole (CP-odd) |ImOya, ImO,7

Four-fermion Op

e t

Left-handed ee | O, Of

Right-handed ee | Oy, O%,

® FE2 dependence in general
observables.

® Similar to the V-A vertex operators.
Need at least two different CoM
energies to distinguish.



Sensitivity
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Sensitivity

\_

Gatrick Janot arXiv:1503.01325
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(without 4-fermion Ops.) “For four out of five
couplings, optimum precision is actually reached for
J s = 365 GeV, and for the fifth one the precision is

within 50% of optimum at this energy”
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Individual limits

2-fermion op.
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Figure 16. Individual statistical one-sigma constraints on the effective operator coefficients as func-
tions of the centre-of-mass energy, for either mostly left-handed and mostly right-handed electron
beam polarizations, and a fixed integrated luminosity of 1 ab~!. Different integrated luminosities
are trivially obtained through a (£ [ab~!])~1/2 rescaling.



Complementarity
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Figure 7. The 68% C.L. regions allowed by measurements of the cross section and forward-
backward asymmetry in ete~ — ¢ ¢ production. An integrated luminosity of 500 fb~! at a centre-
of-mass energy of 500 GeV is considered, with unpolarized beams. Central values are assumed to

confirm the standard model.
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Figure 8. The 68% C.L. regions allowed by measurements of the cross section and forward-
backward asymmetry in ete™ — ¢t production with unpolarized beams (left) and that of the cross
sections with two different configurations of the beam polarization (right). A total luminosity of
500 fb~! collected at 500 GeV is split evenly among two beam polarization configurations. The
central values of measurements are assumed to match standard model predictions.



Optimal observable

minimize the one-sigma ellipsoid in EF T parameter space
(joint efficient set of estimators, saturating the Cramér-Rao bound: V-1 =]like MEM)

For small C;, with a phase-space distribution o(®) = oo(®) + > _ G 0i(P),
the stat. opt. obs. are the average values of O;(®) = gi(P)/oo(P).

The associated covariance at C; =0, Vi is
7i(®)a;(®)
oo(P)

e.g. 0(¢) =14 cos(¢) + Cisin(¢) + Cosin(2¢)

1. asymmetries: O; ~ sign{sin(i¢)}

cov(Ci, C) P =L /dcb

2. moments: O; ~ sin(i¢)

sin(i¢)
1 + cos ¢

3. statistically optimal: O;

—> area ratios 1.9:1.7:1

Previous applications in ete™ — tt, on different distributions:
[Grzadkowski, Hioki '00] [Janot '15] [Khiem et al "15]
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Scenarios

e FCC-ee

1 . < Assume that threshold scan does not
* 200 fb_1 at 350 GeV; interfere with coupling measurements
e 1.5ab " at 365 GeV,;

® no polarization.

e |[LC

e 500 fb~" at 500 GeV;
e 1.0ab ' at 1 TeV (i.e. no luminosity upgrade);
e (-0.3,+0.8) and (+0.3,-0.8), equally shared.

e CLIC

500 fb~' at 380 GeV;

1.5ab 'at1.4TeV;

3.0ab ' at3.0 TeV;

(0,+0.8) and (0,-0.8), equally shared.

11



Uncertainties

Vs [GeV] 350 365 380 500 1000 1400 3000
~ 50 - 37-39  33-37

10 6 6 D

acceptance times efficiency [%)] - - 64-67°
equivalent ¢ event fraction (%] 10 10 10

Table 5. Summary of the efficiencies obtained in Refs. [1, 21] (first row) and effective rate fractions
available for analysis used in this study (second row). When multiplied by the ete™ — tt cross
section for the nominal centre-of-mass energy and the integrated luminosity, these yield the number

of events available for analysis.

e Full-detector simulation performed by ILC and CLIC collaborations.
e (Good reconstruction can be obtained with moderate quality cuts.

e Systematics expected to be controlled to the level of statistics.



FCC-ee

e 200 fb-1 at 350
e 1.5 ab-1 at 365
o No polarization

ILC
e 500 fb-1 at 500
e 1.0 ab-7 at 1000

o (-.3,+.8)&(+.3,-.8)

equally shared

CLIC
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FCC-ee

e 200 fb-1 at 350
e 1.5 ab-1 at 365
o No polarization

ILC
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FCC-ee

e 200 fb-1 at 350
e 1.5 ab-1 at 365
o No polarization

0.2

IL C )-0.8 0.1 -0.2 eq
-0.1 0.2 0.26 Co,
00 fb-1 at 500 oz 0.2 0.0016 Cly

¢ Individual sensitivity does not grow with
energy
Most efficiently constrained around 400/550
GeV
Correlation with four-fermion operators leads
to much weaker global (marginalized)
constraints
Beam polarization or angular distributions are
unable to disentangle
Higher energy runs improves the marginalized
constraints

A factor of three at least better than HL-LHC

V/A couplings
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Y 4
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| dipole couplings

0.71 C',“(‘J
0.62 CA :
s ed —
A
-1
| 20 Cgq
FCC'ee 0.3 -0.3 -0.1 0.1 0.29 C’l‘;

e 200 fb-1 at 350
o 1.5 ab1 at 365
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H : 0 905,4 -1
o No polarization o 200877 at /5 = 350 GeV
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statistically optimal observables
ILC-like run scenario
mm 500 b~ ! at /s = 500 GeV
lab™! at /s = 1TeV
P(et,e™) = (£30%, +80%)

ILC

o 500 fb-1 at 500

e 1.0 ab-1 at 1000

o (-.3,+.8)&(+.3,-.8)
equally shared

10° 10?
- CP-conserving part most efficiently statistically optimal observables
constrained at lower energy m 500007 2t e a0 GV

1.5ab! at /s = 1.4 TeV
3ab~! at /s =3TeV
P(et,e™) = (0%, F80%)

CP-violating part slightly easier to constrain at
large energy —

No correlation between CPV and other

operators.
 Two orders of magnitude better than HL-LHC

10° 10!
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FCC-ee

e 200 fb-1 at 350
e 1.5 ab1 at 365
e No polarization

I —|
[ ] statistically optimal observables

CC-like run scenario
| 200 fb~! at /5 = 350 GeV
N 1.5ab~! at /s = 365 GeV
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0.00032 Ceq
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Benefit greatly from large energy 005 R,
A factor of a few ~ 4 orders of o9t O
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GDP Global Determinant Parameter

[Durieux, Grojean, Gu, Wang, ’17]

In a n-dimensional Gaussian fit,

with covariance matrix V/,
GDP = ¥/det V

provides a geometric average

of the constraints strengths.

Interestingly, GDP ratios are operator-basis independent!

as the volume scales linearly with coefficient normalization
as the volume is invariant under rotations

—> conveniently assess constraint strengthening.

17



Optimization

How to split certain amount of luminosity onto
different energies/polarizations, to optimize the GDP?

N/

0 02040608 10 02040608 10 02040608 1

1 TeV 500 GeV+1TeV 500 GeV 500 GeV 1 TeV 1 TeV
LTV [ L00GeVHLTeV L s 0.8)/ £ Liv03,-0.8)/ L

p—d

v

e |LC: the optimal repartition of 1.5 ab™" in total is the following:

V'S =500GeV 610 fbo~' 57% with P(e*, e~ ) = (+30%, —80%)
1 TeV 890 fb~" 51% I

e |t requires about 4.6 ab~' shared between /s = 380 and 500 GeV runs
to achieve the same performance:

VS =380GeV 1.5 ab™" 57% with P(et,e™) = (+30%, —80%)
500 GeV 3.1 ab™’ 51% "



Optimization

1071 | | 1 1e
B 100 fb~! at /s = 350 GeV 12
[\ +500 b~ at /s= =z GeV :
i 100 fb~! at 350 GeV 1 \’T’r
[ 500 fb~! at 380 GeV 17
a¥ ) z fb~1 at z Gel +m“
R iR
L 100 tb~1 at 350 GeV ]
" +500 fb~! at 380 GeV I
- +15ablat14TeV ]
. + fl'b_1 at =z Ge\/I l
107 580 500 1000 1400 3000
Vs [GeV]
4

® Runs at two separate centre-of-mass energies are indispensable to
distinguish two- and four-fermion operators.

® Average constraint strength improves significantly with the separation
between available centre-of-mass energies.

e Four-fermion operators are the mostly affected.
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Top loops

Top operators entering at one loop lead to complication in future precision
Higgs measurements.

¢ We want to be able to disentangle

X
¢ H coupling tree level and b _‘i:: ) M M
e Top coupling loop level? Z: M >”‘®i

e At future CC even below ttbar threshold, it’s possible to probe top EW couplings
with good individual precision (better than HL-LHC).

e Strong correlation between top/H couplings -> top uncertainty will downgrade
precision on H couplings.

20



Automatic

Top coupling at one loop:

WH,ZH

H = e

H-bb

|
|
Il
|
|
h
+
|
|
! -
+
|
o
4

A

W,Z masses, oblique paretmers

1 decay

.
R ()
+ L + - -0
~eC, L

VW NLO with MadGraphs_aMC@NLO

[Vryonidou, CZ ’18]

All dim-6 top loop

contributions in Higgs

21


https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/HiggsSelfCoupling

Global fit

o

o

o

o

®

o

[Durieux, Gu, Vryonidou, CZ ’18]

Below tt threshold: CEPC 240 GeV 5 ab-1
Above tt threshold: FCC-ee 350 GeV 0.2 ab-1, and 365 GeV 1.5 ab-1

Higgs ZH, WW fusion, all decay channels.
Based on [Durieux, Grojean, Gu, Wang, '17]

Diboson Angular distributions.
Precision tests Assuming oblique new physics and a factor of 5 improvements.

Top ttbar with statistical optimal observable.
Based on [Durieux, Perello, Vos, CZ, '18]
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Global fit at future ee collider: H/top interplay

e How does the top-coupling uncertainties downgrade the H precision at future CC?
e Global H + top loop fit

light shades: 12 Higgs op. floated + 6 top op. floated
dark shades: 12 Higgs op. floated + 6 top op. — 0

u CC 240GeV circular collider with unpolarized beams §
- |l CC 240GeV + HL-LHC 240GeV (5/ab) + 350GeV (0.2/ab) + 365GeV (1.5/ab)]

L . CC 240/350/365GeV M light shade: marginalized over top parameters
. CC 240/350/365GeV + HL-LHC solid shade: all top parameters set to zero

| 1 ol | | i' |

699 6yt 6yc 6yb 6Yr 6Yp Az 6k A 02

precision

Uncertainties on the top have a big effect on the Higgs

- Higgsstr. run: insufficient

. Higgsstr. run @ e"e~ — tt: large y; contaminations in various coefficients
- Higgsstr. run @ top@HL-LHC: large top contaminations in Cyy gg,7+,2z

- Higgsstr. run @& ete™ — tt @ top@HL-LHC: top contam. in Tz, only
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Summary

o Global EFT fit to assess the sensitivity to top-couplings.

e Individually, 2-fermion Ops are best constrained at lower energy, while 4-
fermion Ops are constrained at larger energy.

e Globally, some correlations between the two types of Ops can be resolved only
by using different energies.

e GDP parameter can be used to measure the overall constraining strength and
optimize the running parameters.

e Should keep in mind that
e A combination of two different energies is useful.

o We have assumed there is no interference between threshold scan and
coupling measurement.

e Apart from coupling strength, it is also important to maximize the number of top
quarks, e.g. for studying rare top decays etc.

e There is also some interplay between Higgs and top measurements.
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Thank you

25



Sackups
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TH robustness

Non-resonant and NLO QCD effects can be studied

€.8. 10
10

10°

10°
10~1

10~2

«—0.4%
_0'06+0.4%

|

da/d(};qu) [pb]
—0.045 resonant LO

0.049 non-resonant LO

|

| |

non-resonant NLO QCD

|

|

-0.08

-0.07 -0.06 —0.05

-0.04

—0.03

do /d(;04%) [pb]

0.19 resonant LO
0.2 non-resonant LO

0.25*04% non-resonant NLO QCD |
| | | | | | |
005 01 015 02 025 03 035

mostly flat k factor (24% at /s = 500 GeV)
couple-of-percent shape effects, excepted on axial operators (O(10)%)

102 [
10' -
10° da/d(%O;:q) [pb]
0.0097 resonant LO
0.0091 non-resonant LO
0.012’:8'23; non-resonant NLO QCD
10-1 1 L 1 1 !
—0.06 —0.04 —0.02 0 0.02
10' -1
10° - .
10- - do/d(£0!,) [pb] -
4.3 x 1079 resonant LO
10-2 0.00011 non-resonant LO
0.00036fé(c)70% non-resonant NLO QCD
] ] |

1 1
-0.1 —0.05 0 0.05 0.1

V/5 = 500 GeV, P(e™, e™) = (+30%, —80%),
quoted average values of distribution are O; /L in pb,
QCD scale variation from m¢ /2 to 2my¢
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Individual limits

Individual one-sigma reach, one at a time

precision of individual operator coefficients at LHC and CC (Ax?=1)

102 HL-LHC
; +g-;’m ‘2’20 GeV only / 2 Afofggé?ggé?(fes\(/;ev circular collider with unpolarized beams
i *e™— t1, 350/365GeV 240GeV (5/ab) + 350GeV (0.2/ab) + 365GeV (1.5/ab)
10— ombined 240GeV only / 240/350/365GeV

@ Good sensitivity to top couplings below tt threshold.

@ Loop suppression of top-quark operator contributions is compensated by the high precision

of lepton collider.
@ Still ee — tt above 350 GeV provides best sensitivity.
@ Diboson sensitivity increases with energy.
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Marginalized limits: Top

Global one-sigma precision reach on top-quark operators

precision of top operator coefficients (global fit, Ax2=1)

Bl HL-LHC circular collider with unpolarized beams

l CC 240GeV 240GeV (5/ab) + 350GeV (0.2/ab) + 365GeV (1.5/ab)
B CC 240GeV + HL-LHC solid shade: 6k, setto 0
Il CC 240/350/365 GeV light shade: &k, set free
Bl CC 240/350/365 GeV + HL-LHC

T llllllll T IIIIIIII

T
[T BRI SR ETIT B A RA i |

T T lIIIII,

@ Indirect bounds are much worse. In particular, large degeneracies if only run at 240 GeV.
@ Correlations between Top/Higgs, e.g. Ct,, Cig and Cy~; Ct,, Cig and Cgg.
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Marginalized limits: Higgs

Consider H — vy on Ciz and

H — ~~ imposes a strong constraint,

but also leaves a flat direction.

Including loop corrections to all other

measurements lift this flat direction,
but not strong enough to eliminate
the degeneracy.

HL-LHC is too weak.

ee — tt at 350/365 will fix Cis which

in turn improves C.~.
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