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Statistical physics is the branch of physics that uses
methods of probability theory and statistics, and
particularly the mathematical tools for dealing with
large populations and approximations, in solving
physical problems. It can describe a wide variety of
fields with an inherently stochastic nature. Its
applications include many problems in the fields of
physics, biology, chemistry, neurology, and even
some social sciences, such as sociology. Its main
purpose is to clarify the properties of matter in
aggregate, in terms of physical laws governing atomic
motion.1l
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lescence

* Einstein returned to the

problem of thermodynamic
fluctuations, giving a treatment
of the density variations in a
fluid at its critical point.
Ordinarily the density
fluctuations are controlled by
the second derivative of the
free energy with respect to the
density. At the critical point, this
derivative is zero, leading to
large fluctuations. The effect of
density fluctuations is that light
of all wavelengths is scattered,
mr?}:ing the fluid look milky
white.
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Nature, 483,336 (2012)
Phase transitions in the assembly

of multivalent signalling proteins
Pilong Li et. Al.

Ecology Letters, (2018)21: 905-919
Indicators of transition in
biological systems

C. F. Clements et. al.

PNAS, 105,1786 (2008)

Tipping elements in the Earth’s
climate system

T. M. Lenton et al.
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https://www.nature.com/articles/nature10879#auth-1

Ziit4IEay). W. Gibbs (1839-1903) Z4FIHip

an ensemble (also statistical
ensemble) is an idealization consisting
of a large number of virtual copies
(sometimes infinitely many) of

a system, considered all at once, each
of which represents a possible state
that the real system might be in.

a microstate is a specific microscopic
configuration of a thermodynamic

system

Thermodynamic ensembles:
Statistical mechanics: statistical
ensemble, phase space, chemical *NVE Microcanonical
potential, Gibbs entropy, Gibbs paradox

*NVT Canonical

*uVT Grand canonical
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Eor an isolated system at equilibrium, all microstates are equally probable.

1 h
——— = const E—V0E<E<ZE
= pi(E) = QE) C
0 otherwise
IEN &R ER:
] _ﬁE‘ . M .
pi = fe | Boltzmann distribution

a— Z(_,—,BE,- partition sum

EIEN &R
p; = 7 ¢~ P(Ei—uNi) grandcanonical prob. distribution
G
where

7c = E.{‘ Ei—pNi) grandcanonical partition sum
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Sci. China Phys. Mech.&Astron. 62, 990511 (2019)
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In a complex system composed of N agents, the states
of agent can be measured from its experimental investiga-
tions or computer simulations. From the measurements
at times t = 1, 2,.., M in sequence, we obtain a series of
states S;(t) of agents i = 1,2, ...V,

The microstate of the complex system at ¢ can be de-
scribed by an N-dimensional normalized vector

- Sy(t) |
1 5a(t)

S(t) = r
\/E?:l S5i(t)?

(1)

5] rl[t]
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which satisfies the condition S(t)" - S(t) = 1. Using mi-
crostates S(t) at t =1,2,-+-, M, we can compose a sta-
tistical ensemble characterize by an N x M matrix A
with elements

L 5(t)
i \/ Vi St

which satisfies the condition Efil E:‘;l A =1.

2

Ait =
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The correlation between microstates at ¢ and ¢’ is de-
fined by their vector product as

T i ot Si(t)Si(t)
Cur = S(t)7 -8(t') = ST (3)

With Cyyr as its elements, we get an M x M correlation
matrix of microstate

C=MAT A, (4)

whose trace is equal to M.
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From A, we r:;m obtain also an N x N matrix
K=MA-A", (5)

whose trace is equal to M also.

Using eigenvectors Vi of C, we can get an M = M
unitary matrix

V=[VVy..Vy . (6)

The eigenvectors U; of K composes an N x N unitary
matrix as

U=[U,U,..Uy] . (7)
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A=U.2. vV, (10)
where 3 is an N x M diagonal matrix with elements

g; , l :.j é r,
Y= 11
g {O . otherwise, (1)

with » = min(N, M ). Now, we can rewrite the correla-
tion matrices C and K as

c=v.-2'x.vl (12)
K=U.xx'".Uu". (13)
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According to Eq.(10), we can decompose the ensemble
matrix A as

AZZU[U[@V}. (14)
I=1

The eigenvalues satisty the normalization condition
Tr(C)=Tr(K)=) o1 =1. (15)
I=1

We can interpret |o7]* as the probability of U; @ V; in
the statistical ensemble A.
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Using all microstates S(t) and an eigenvector Vi, we
can define an N-dimensional eigen microstate [6]

M
S¥(I)= > _ S(m)Vinr . (14)
m=1

The i-th component of S¥(I) is

M
SE(I) =Y AimVinr = (A- V), =(U-%),, . (15)

m=1

Theretore, we have

SE (1) = {G”UI » T=m, (16)

0, otherwise.

Between different eigen microstates, there is no corre-

tion since - = or ;
la sEyT -sE( N =0for I #J
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We can expand original microstates by eigen mi-
crostates as

Zvusﬂ thm; (17)

=1
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For a continuous phase transition, oy changes always

continuously. For a complex system with critical tem-
perature 1., we define the reduced temperature t =

(T' - T;)/T,.. In the asymptotic region with |t| < 1,
there is a finite-size relation of eigenvalues [6)

a1(T,N)= NPl f(tNY/ %) (18)

where [ is the critical exponent of order parameter and

v is the critical exponent of correlation length. The con-
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At a time t, the surface temperature of a grid 7 is T;(t).
Its average during a period M can be calculated as

1 M
<Ti>= ;Ti(t) . (25)

The grid ¢ has temperature fluctuations 07;(t) =
T;(t)— < T; >. It is more proper for us to consider
the normalized fluctuations

Si(t) = 0T5(t)/ Ai . (26)

where A; = /4 ST, (8T3(t))°.
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Our study is based on daily surface air temperature
(2 m) provided by the National Centers for Environmen-
tal Prediction-National Center for Atmospheric Research
(NCEP-NCAR) Analysis[12]. The dataset spans the time
period between 1950-01-01 and 2018-12-31. The Oceanic
Nino Index (ONI) is used to define El Nino and La Nina
events by the National Oceanic and Atmospheric Admin-
istration (NOAA). The ONI is defined as 3 month run-
ning mean of ERSST.v5 SST anomalies in the Nino 3.4
region (5°S-5°N, 190°E-240°E).

Using the dataset spaning from 1950-01-01 to 2018-
12-31, we can get an N X M ensemble matrix A with
elements

Ay = 05;(t) . (40)
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M—1
Vi(t) = a,,,{be’" "t (41)
n=0
where
| M—1 )
al = i Z VI(t)e_””%”t . (42)
t=0

In Fig.12, the Fourier power spectrum density
a,|”

M-1
2n—o lah|?

are plotted with respect to its period T, = M/n.

I, =
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(@) The 1st eigen microstate U; (54.38%)
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(@) The 1st eigen time evolution V; (54.38%)
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(a) Fourier power spectrum density of the 1st eigen time evolution [I;]
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As presented in Fig. 10(a), the first Eigen Microstate
(EM1) reveals a classic solstitial mode, explaining 54.38%
of the total variance. Its spatial pattern exhibits an inter-
hemisphere contrast. This asymmetry is roughly a mir-
ror image along the equator, although the slight shift is
evident over the African, South American and Eastern
Pacific sections. The spectrum analysis (Fig. 12(a)) of
the corresponding time series (Fig. 11(a)) shows a robust
peak of 1 year, following the annual variation of the so-
lar zenith angle. Further results (Fig. 14) show that the
maximum of EM1 often occurs in August and the min-
imum of EM1 occurs in Late January, implying the 1
month delay of air temperature after the solar forcing.



B _ARERMES O8faZE)

(b) The 2n

" ———r {
k -

0.02

0.01

0.0

0.01

0.02

20 SO" 60°E 120°E 180° 120°W 60°W



BEXPERRS

(b) The 2nd eigen time evolution V; (11.36%)
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variation of this mode. A remarkable land-sea contrast is
observed in EM2. In the southern (northern) hemisphere,
the surface air temperature warms up (cools down) faster
over the continents than that over the oceans due to the
land-sea thermal capacity difference. It should be noted
that this thermal contrast in the tropical-subtropical re-
gions drives the local monsoons over the South Asia ([14])
Australia [15], West Africa [16], North Americal[l7], and
South Americal[l8]. Bin Wang et al.[13] proposed the
concept of global monsoon system by considering the sea-
sonal contrast of precipitation globally. It is interesting
that the domain with the spatial absolute intensity above
40% of the maximum aboslute intensity in EM2 resem-
bles the global monsoon area derived by Wang et al. [13]
as is presented in Fig. 15, with the spatial matching de-
gree reaching 70%. ( Since the the land-sea thermal con-
trast is not the only cause of East Asia monsoon, the
monsoon area near Kast Asia is not very matched.[19])
We further compare the summer-winter difference in the
EM?2 eigen micorstate evolution with the global monsoon
index (Fig. 16). Again, a significant correlation 0.52 is
obtained. The above evidences reveal that EM2 rep-
resents the land-sea contrasts of SAT which is primary
driver for monsoon.
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. (a) The global monsoon index (GMI)
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(c) The 3rd elgen mu:rostate U3 (3 08%)
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(c) The 3rd eigen time evolution Vs (3.08%)
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ident. The 0.5-year period of EM3 follows the maximum
solar forcing due to the sun crossing the equator twice
a year, which is evident over the Indian Ocean. Mean-
while, due to the surface wind adjustment|[23], the SAT
and SST in the equatorial eastern Pacific and Atlantic
exhibit a distinct annual cycle despite of the occurrences
of the two equinoxes, which explains the 1-year period of
EM3. Fig. 11(c) shows the time series of EM3. A robust
upward trend is evident, implying the potential impact of
global warming on the tropical SST and convective pre-
cipitation. It is interesting that a tipping in mid-1970s is
detected by EM3. This is consistent with the well-known
1976-1977 climate shift [24].
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(d) The 4th eigen microstate U, (2.13%)
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(d) The 4th eigen time evolution V4 (2.13%)
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signal as the power spectrum showing (Fig. 12(d)). In
meteorology, this semiannual signal is called semiannual
oscillation (SAQO), which is component of the annual cy-
cle of a variable that consists of a sinusoidal oscillation
with a period of six months [25]. Strong semiannual sig-
nals in thermal and momentum fields of the troposphere
are found in both the Tropics and in Southern Hemi-
sphere middle and high latitudes. The SAO is detectable
as a significant contribution of the second harmonic to
the annual march of temperature, surface air pressure,
wind speed et al[26—29]; Here, we applied a harmonic
analysis method called NMD to extract its second har-
monic wave and showed its amplitude as seen in the Fig.
17(b), which is highly consistent with the results of Fig.
17(a), especially in Antarctic region. Previous studies
have pointed out that the mechanism of SAO in Antarc-
tic is mainly contributed to differ annual cycles of tem-
perature in the mid-latitude ocean and Antarctic regions
with the complex thermodynamics and dynamics of the
SH ocean-atmosphere system [30—32].
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(e) The 5th elgen mlcrostate U5 (1 34%)
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(e) The 5th eigen time evolution Vs (1.34%)
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N (@) The 5th eigen time evolution Vs (1.06%) (90 days running mean, step: 30 days)
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SE/REEREERILLE:

, (a) The 5th eigen time evolution Vs (with period less than half year filtered)
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the total variance. The most remarkable feature is evi-
dent over the tropical Pacific Ocean, with the warming
over the central to eastern Pacific and cooling over the
western Pacific. This pattern resembles the El- Nino and
Southern Oscillation (ENSO), which is the strongest cli-
mate fluctuation at internnual time scale|[33]. Spectrum
analysis is conducted (Fig.12(e)). Other than the semi-
annual cycle, the broad spectrum is evident at interan-
nual time scale from 2 to 7 years in EM5, which is con-
sistent with ENSO spectrum. Fig. 13 compares the time
series in EM5 with the observed ONI index. Significant
correlation of 89% is obtained after removing the semi-
annual and higher frequency component. Three super

El Nino events in 1982/1983, 1997/1998 and 2015/2016
are all detectable by EM5, further confirming the linkage
between EM5 and ENSO. Further results (Fig. 18) show
that the maximum of EMS5 often occurs in November and
the minimum of EMS5 occurs in May after removing the
semi-annual and higher frequency component.
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tional example. The fluctuation of the stock price from
2010-1-4 to 2020-5-26 in Chinese mainland is studied.
The data comes from the public data published by Shang-
hai Stock Exchange and Shenzhen Stock Exchange. After
removing the stocks in the special treatment state, there
are 1460 mainland-listed stocks left in the dataset. At
time ¢, the price of the stock i can be denoted by P;(t).
The average price of the stock ¢ during the specified pe-
riod can be calculated as

Py =4S Pi) (43)

At any time t, the price fluctuation of the stock i

0P;(t) = P;(t) — (). (44)
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L {a) the 1st eigen time evolution v (48.79%0)
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FIG. 24. Comparison between the Uy in the stock price fluc-
tuation ensemble (black line) and the SSE100 Index (red line).
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FIG. 25. Comparison between the U in the stock price fluc-
tuation ensemble (black line) and the SSE Energy Sector In-
dex (red line).
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tuation ensemble (black line) and the SSE Materials Sector
Index (red line).



44

R R OB

Fig. 1 Schematic diagram of granular flow through an aperture
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The flow of granular solids through orifices
Chemical Engineering Science, 1061, Vol. 15, pp. 260 lo 260
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Beverloo Law (1961)

7 = Cpy/g(R-kd)>-2 )

where ¢ is the gravitational acceleration, p is the bulk
density, R is the orifice raius, d is the diameter of gran-
ule, and D is the dimensionality, respectively. (' and
k are two fitted parameters. The Beverloo law was re-
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Free fall arch
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we propose a size scaling relation of vertical velocity field as

v,(r,z;R)/v,(0,0;R) = £ (r/R,,2/R,), 2)

where R, =R —0.5d 18 the effective aperture radius and
R, = R - k,d 18 a vertical length scale to be determined.
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During a time period o6f, granules at position (7, z)
move 1n average to another position (r,z + v, (r, z; R)o1).
Their average vertical velocity has a change
ov, =v.(r,z+v.(r,z;R)ot; R) — v_(r,z; R)during ot. An effec-
tive acceleration can be calculated as

ov, 0v(r,z;R)

defy(r, 23 R) = lim T -

v.(r,z;R) . (3)
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According to the size scaling relation of v (r,z; R) in Eq.
(2), we obtain

aoi(r, 73 R) = [v2(0,0;R)/R.|0(r/R,.z/R.) (4)

where the scaling function

0(7.2) = f(7, 2 (F,2) , (5)
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At the center of aperture, the effective acceleration

a.;(0,0;R) = [v2(0,0; R)/R.]6(0,0). (6)

In the asymptotic case that H > R and R > d, the granules
at the center of aperture are assumed to fall freely. Then the
effective acceleration has the boundary condition

which results in

v,(0,0;R) = v/=g/6(0,0) R/ (8)

with 6(0,0) = fz(“(O, 0).
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The mass flow rate W of D-dimensional hopper can be
calculated as

R,
W = / pv.(r,0; R)S,_rP2dr. 9)
0

We have §; = 2 in two-dimensional and S, = 2x in three-
dimensional hoppers. Using the size scaling relation of
v.(r,z; R) and the boundary condition at » =0 and z = 0,
we can obtain

W = C,p\/3(R—0.5d)" (R — krd)'"? (10)

where C, =S, [=f"(0,0)] 1/2f0 f(x, 0)xP- zdx In the
limit R > d, our result becomes W =~ Clp\/_R 3 and is in
agreement with the Beverloo law.




S 3 ]S B < AR B TE SR UG 56

We simulate granular flows both in 3D and 2D hoppers
1n order to test the size scaling relation in general dimen-
sion. In the 3D hopper with radius H = 60d, there are
N = 4,400,000 granules which flow through the apertures

with radii R = 3d, 10d, 15d, 20d, 25d. We take the snapshots
of granules with their positions and velocities every 100,000
steps with a step 7 = 5.0 X 107" s. In the 2D hoppers with
radius H = 100d, we use N = 200,000 granules which flow
through the apertures with radii R = 8d, 10d, 15d, 20d, 23d.
The snapshots of granules with their positions and velocities
are taken every 20,000 steps.
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