Nucleon spin structure study at RHIC -Overview & Outlook

徐庆华,山东大学

华中师范大学粒子物理研究所论坛 2020.10.14

What is SPIN?

As a fundamental observable of (sub)-atomic physics,
 "spin" was introduced by Goudsmit & Uhlenbeck (1925)

"This is a good idea. Your idea may be wrong, but since both of you are so young without any reputation, you would not loose anything by making a stupid mistake."

-Ehrenfest upon receiving the paper by Goudsmit & Uhlenbeck

- Original measurement (1922) by Stern & Gerlach
- In non-relativistic theory: operator \mathbf{S}_i : $\mathbf{\hat{s}} \equiv (\hat{s}_x, \hat{s}_y, \hat{s}_z)$ $[\hat{s}_j, \hat{s}_k] = i\epsilon_{jkl}\hat{s}_l$
- In relativistic theory, spin is a consequence of space-time symmetry!

Uhlenbeck , Ehrenfest, Goudsmit

Λ Global polarization in heavy ion collisions

• Λ global polarization observed at STAR (Nature cover), as predicted by Z.T. Liang and X.N. Wang in 2004.

Λ Global polarization in heavy ion collisions

• Λ global polarization observed at STAR (Nature cover), as predicted by Z.T. Liang and X.N. Wang in 2004.

but I will talk about the proton spin today

Spin structure of nucleon

In the naive Quark Model, the nucleon is made of three quarks - p(uud) The quark spins make up the nucleon spin, since the quarks are in the s-orbit:

$$\Delta \Sigma = 1 \qquad \left\{ \begin{array}{l} \left| p^{\uparrow} \right\rangle = \sqrt{\frac{2}{3}} u^{\uparrow} u^{\uparrow} d^{\downarrow} - \sqrt{\frac{1}{3}} \sqrt{\frac{1}{2}} (u^{\uparrow} u^{\downarrow} + u^{\downarrow} u^{\uparrow}) d^{\uparrow} \\ \Delta U = \frac{4}{3}, \ \Delta D = -\frac{1}{3} \end{array} \right.$$

1974: With Parton Model (sea quark, gluon) but assumes strange quarks carry no net polarization (Ellis-Jaffe sum rule):

ΔΣ≈0.6

1988: European Muon Collaboration (polarized Deep Inelastic Scattering) "Spin Crisis"--- proton spin carried by quark spin is rather small: $\Delta\Sigma \sim 0.2$

Spin structure of nucleon

• Spin sum rule (longitudinal case):

 $\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$

$$[\Delta q = \int_0^1 \Delta q(x) dx]$$

• Polarized parton densities:

$$\Delta q(x,Q^2) = q^+(x,Q^2) - q^-(x,Q^2)$$
$$q(x,Q^2) = q^+(x,Q^2) + q^-(x,Q^2)$$

World data on pol. and unpol. deep-inelastic scattering

polarized

Detailed knowledge on $\Delta q(x)$, $\Delta g(x)$ - global fit using DIS and pp data

World efforts for spin physics

- Finished experiments: SLAC, EMC, SMC, HERMES
- Current running
 - Lepton-nucleon scattering:
 COMPASS, JLab
 - Polarized protonproton scattering, RHIC
- Future facilities
 - EIC (US, BNL)
 - EicC (China)
 - JPARC (Japan)
 - GSI-FAIR(Germany)
 - NICA (Russia)

-Courtesy of Feng Yuan

RHIC- 1st polarized proton-proton collider

- World's only polarized hadron-hadron collider: longitudinal & transverse
- Spin direction changes from bunch to bunch
- Two main experiments: PHENIX (till 2016) & STAR

RHIC performance with pp collisions

- Long runs with long. polarization at 200 GeV in 2005, 2006, 2009, 2015.
- Collisions at 500
 GeV with long. pol.
 in 2009, 2012 and
 2013.
- Long runs with trans. pol. in 2006, 2008, 2012 at 200GeV and 2011 2017 at 500 GeV.

$\Delta q(x)$, $\Delta g(x)$ - global analysis of data

- Experimental aspects: RHIC
- **Recent highlights on RHIC/STAR spin:**
 - ✓ Gluon polarization (Jet, π^0 production): gluon polarization Δg
 - ✓ Quark/Anti-quark polarization (W/Z production): sea quark Δq
 - ✓ Hyperon spin transfer : strange quark polarization
 - ✓ Transverse spin asymmetry (Hadron production): Collins & Sivers
 - \checkmark Transverse spin asymmetry (W/Z production): Sivers function

-current focus of SDU group

□ Upgrade plans for cold-QCD physics in 2021+ at RHIC

STAR - Solenoid Tracker At RHIC

Magnet

• 0.5 T Solenoid

Triggering & Luminosity Monitor

- Beam-Beam Counters
 - $3.4 < |\eta| < 5.0$
- Zero Degree Calorimeters
- Vertex Position Detector

Central Tracking

- Large-volume TPC
 - |η| < 1.3

Calorimetry

- Barrel EMC (Pb/Scintilator)
 - $|\eta| < 1.0$
- Endcap EMC (Pb/Scintillator)
 - 1.0 < η < 2.0</p>
- Forward Meson Spectrometer
 - 2.5 < η < 4.0

Accessing $\Delta g(x)$ in pp collision

Jet Reconstruction in pp at STAR

Jet direction

1) Midpoint cone algorithm (Adapted from Tevatron II - hep-ex/0005012)

- Seed energy E_T^{seed} = 0.5 GeV
- Cone radius R = $\sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.7$
- Split/merge fraction f = 0.5

2) Anti-K_T algorithm ([arXiv:0802.1189])

- Successive Combination
- Radius R = 0.6

$$d_{ij} = \min\left(\frac{1}{k_{Ti}^2}, \frac{1}{k_{Tj}^2}\right) \frac{\Delta R_{ij}^2}{R^2}$$
$$d_{iB} = \frac{1}{k_{Ti}^2}$$

1) was used in previous years, now 2) is widely used.

STAR Run6 results on jet x-section and ALL

 Cross section well described by NLO pQCD+Hadronization

0.08 pp→jet+X 2006 STAR Data GRSV-std GRSV ∆g=0 0.06 |**η**|<1 GRSV ∆g=-g GS-C DSSV 0.04 A_{LL} 0.02 ±8.3% scale uncertainty from -0.02 polarization not shown 10 15 20 25 30 35 p_ (GeV/c)

•STAR run6 data rule out several previous models of gluon polarization, and included in the DSSV global analysis together with PHENIX π^0 results.

$$\int_{0.05}^{0.2} \Delta g(x) dx = 0.005 \pm_{0.164}^{0.129} \text{ at } Q^2 = 10 \text{ GeV}^2$$
-arXiv:1304.0079

STAR, PRD86, 32006(2012)

STAR inclusive jet A_{LL} from run9

DSSV global analysis including STAR/PHENIX data -Observation of gluon polarization

DSSV, PRL113, 12001(2014)

xQCD, PRL118,102001(2017)

New results on jet A_{LL} from 2015 data

- New result on A_{LL} of inclusive jet production from 2015 data at 200 GeV.
- Consistent with 2009 data, twice in figure-of-merit (LP4) with improved systematic uncertainty
- Provide more constraints on gluon polarization with global analysis

 A_{LL} results on jet/ π^0 at 510 GeV from RHIC

• Can we further improve our knowledge on $\Delta g(x)$? Yes!

21

Central di-jet A_{LL} at 200 GeV at STAR

 $M = \sqrt{x_1 x_2 s}$ Access to partonic kinematics via di-jet: $\eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$ Sign(η_1) = Sign(η_2) **STAR Barrel** Normalized Yield 19.0 < M < 23.0 GeV/c² 0.9 8.4 < p_ < 11.7 GeV/c Di-Jet A_{LL} 0.08 0.8 DSSV 2014 0.7 NNPDF Pol 1.1 0.06 Scale Uncertainty 0.6 ↓0.0 ^E , , PDF Uncertainty Rel. Lumi. Uncertainty 0.5 0.4 0.3 n=0 η=-1 n= 0.2 0.1 Sign(η_{1}) = Sign(η_{2}) -0.02 Normalized Yield Di-jet x **Sign(η₁)** ≠ **Sign(η₂)** 0.9 0.08 Di-jet x **STAR 2009 Sign(η_)** ≠ **Sign(η_) STAR Barrel** $|\eta_1, \eta_2| < 0.8$ 0.8 Inclusive x (/20) $p+p \rightarrow Jet + Jet + X$ 0.06 0.7 √s = 200 GeV Di-jet A , Di-jet A 0.6 √s = 200 GeV Anti- k_{T} , R = 0.6 |η₁,η₂| < 0.8 0.5 0.4 0.3 0.2 n=0 η=-1 n= ± 6.5% scale uncertainty 0.1 -0.02 from polarization not shown **10**⁻¹ 20 70 60 30 40 50 $\mathbf{X}_{\mathsf{Gluon}}$ • Di-jet A₁₁ for different topologies, Di-jet Invariant Mass [GeV/c²] allowing for constraints on the STAR, PRD95,071103(2017)

shape of $\Delta g(x)$

Central-forward di-jet at 200 GeV at STAR

STAR, PRD98,032011(2018)

Wider rapidity coverage!

Di-jet A_{LL} at 510 GeV at STAR

• New results on di-jet A_{LL} at 510 GeV, further constraints on the shape of $\Delta g(x)$

Probing sea quark polarization via W production

• Unique quark polarimetry with W-bosons at RHIC:

Au(r)

Spin asymmetry measurements:

 $\frac{\Delta \overline{u}(x_1)}{\overline{u}(x_1)}, \quad y_{W^-} << 0$

$$A_{L}^{W^{+}} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{-\Delta u(x_{1})\overline{d}(x_{2}) + \Delta \overline{d}(x_{1})u(x_{2})}{u(x_{1})\overline{d}(x_{2}) + \overline{d}(x_{1})u(x_{2})} \sim \begin{cases} -\frac{\Delta u(x_{1})}{u(x_{1})}, y_{W^{+}} >> 0\\ \frac{\Delta \overline{d}(x_{1})}{\overline{d}(x_{1})}, y_{W^{+}} << 0 \end{cases}$$
$$A_{L}^{W^{-}} \sim \begin{cases} -\frac{\Delta d(x_{1})}{d(x_{1})}, y_{W^{-}} >> 0 \end{cases}$$

W selection via W -> ev at STAR

 $W \rightarrow e + \nu$ Candidate Event:

- Isolated track pointing to isolated EM cluster in calorimeter
- Large "missing energy" opposite the electron candidate

QCD Background Event

- Several tracks pointing to energy deposit in several towers
- p_T sum is balanced by di-jet, no large "missing energy"

W selection at STAR : Jacobian peak

STAR mid-rapidity W A_L –2011+2012

• First multiple-eta-bin A_L results from 2011+2012 data:

- A_L of W⁻ shows indication that data are larger than the DSSV predictions
- A_L of W⁺ is consistent with theoretical predictions with DSSV pdf.
- Indication of symmetry breaking of polarized sea.

STAR, PRL113, 72301(2014)

Global Analysis with STAR W A_L results

 Big impact seen in NNPDFpol1.1 global analysis after including STAR A_L data.

NNPDF1.1, Nucl.Phys. B887,276 (2014) -...

• Polarized sea asymmetry:

W A_L results – STAR 2013

- Most precise W A_L results from 2013 STAR dataset
- Consistent with published RHIC results; with 40-50% smaller uncertainties than STAR 2011+2012 results
- Confirmed positively polarized anti-up quark first seen in the 2011+2012 data.

@Jinlong Zhang's thesis

W A_L results – STAR 2013

STAR, PRD99, 051102R(2019)

- Most precise W A_L results from 2013 STAR dataset
- Consistent with published RHIC results; with 40-50% smaller uncertainties than STAR 2011+2012 results
- Confirmed positively polarized anti-up quark first seen in the 2011+2012 data.
- Combined STAR 2011-2013 results in comparison with theoretical predications

@Jinlong Zhang's thesis

Impact of STAR 2013 W A₁ results

Reweighting based on NNPDF pol1.1 confirmed the polarized $\Delta \overline{u} > \Delta \overline{d}$ sea asymmetry: STAR, PRD99, 051102R(2019)

Impact of STAR 2013 W A_L results

• Reweighting based on NNPDF pol1.1 confirmed the polarized sea asymmetry: $\Delta \overline{u} > \Delta \overline{d}$ STAR, PRD99, 051102R(2019)

- ✓ The polarized flavor asymmetry is opposite to the unpolarized case !
- Compatible with Pauli suppression by the polarized valence quarks, among different models.

D_{LL}-Longitudinal spin transfer & strange quark polarization

• Expectations at LO show sensitivity of D_{LL} for anti-Lambda to $\Delta \overline{s}$:

- Λ D_{LL} is less sensitive to $\Delta s,$ due to large u,d quark fragmentation.
- Λ Promising measurements for anti-strange quark polarization.

D_{LL} results of (anti-)Lambda at STAR

 D_{LL} measurements from STAR 2009 data, which is expected to provide sensitivity to strange quark polarization Δs.

- D.de Florian, M.Stratmann, and W.Vogelsang, PRL81,530(1998)

- Q. Xu, Z.T. Liang, E. Sichtermann, PRD 73, 077503(2006)

 \succ D_{LL} results are still consistent with zero within the uncertainties.

Statistics uncertainties are comparable to the spread of models calculations.

D_{LL} results of (anti-)Lambda at STAR

 Theoretical studies show impact on asymmetry of strange and anti-strange quark polarization:

X.N. Liu, B. Q. Ma, Eur.Phys.J. C79 (2019) 409

Transverse spin transfer D_{TT} results at STAR

 D_{TT} measurements in p+p collision at 200 GeV, which is relevant to transversity and polarized fragmentation functions:

- ✓ 1st transverse spin transfer measurement in p+p collisions at RHIC.
- ✓ Most precise measurement on hyperon polarization in p+p collision at RHIC, which reach p_T ~6.7 GeV/c with statistical uncertainty of 0.04.
- ✓ D_{TT} of $\Lambda / \overline{\Lambda}$ are consistent with a model prediction, also consistent with zero within uncertainty.

@Jincheng Mei's thesis

Transverse spin structure of nucleon

- Transversity involves helicity flip, thus no access in inclusive DIS process.
- Possible experimental measurements on $\delta q(x)$:
 - Via Collins function (SIDIS, p+p), di-hadron production (SIDIS and p+p)
 Several Global fits available: Anselmino et al'13, Kang et al'15, M. Radici et al'18
 - Transversely polarized Drell-Yan process
 - Transverse spin transfer to hyperons (DIS, p+p)

If you are not getting bored with these spinning ones....

Let's continue with transverse spin 🙂

Transverse spin physics at RHIC

- Transverse spin asymmetry (Hadron production):
 Access to transversity via Collins & Siverse asymmetry
- Transverse spin asymmetry (W/Z production):
 Sign-change of Sivers function

• Anomalously large A_N observed for nearly 40 years:

Mechanisms for Transverse Single-spin Asymmetries

- Two QCD-based frameworks:
 - Transverse Momentum Dependent (TMD) parton distribution or fragmentation functions. Need two scales (Q and p_T), Q>>p_T
 - Sivers effect (Sivers'90): parton spin and k_⊥ correlation in initial state (related to orbital angular momentum)

 Collins effect (Collins'93): quark spin and k_T correlation in fragmentation process (related to transversity)

Twist-3 mechanism (*Efremov-Teryaev*'82, *Qiu-Sterman*'91):

Collinear/twist-3 quark-gluon correlation + fragmentation functions Need one scale (Q or p_T), Q, p_T >> Λ_{QCD}

Both mechanisms apply when $Q > p_T > \Lambda_{QCD}$

Ji-Qiu-Vogelsang-Yuan,2006

Forward $\pi^0 A_N$ at RHIC-STAR

- Rising A_N with X_F , A_N nearly independent of \sqrt{s} up to 200 GeV
- A_N persist at high p_{T_i} no falling evidence.
- For hadron SSA, both Sivers and Collins effects can contribute.
- Study of jet production can separate Collins & Sivers effects.

Forward $\pi^0 A_N$ at RHIC-STAR

- New results $\pi^0\,A_N\,$ from STAR at both 200 and 510 GeV

- Weak scale dependence of the π⁰ TSSA for a center-of- mass range from 19.4 to 510 GeV
- Comparison to the former results at STAR shows higher TSSA in current measurement, which can be explained by the higher average pT.

Zhanwen Zhu @ BNL seminar March 2020

New observation: isolated $\pi^0 A_N$

Definition: $π^0$ with no other energy around Method: Constructing a jet (anki-kT R=0.7) first, and if a $π^0$ is inside the jet and takes most of its energy, it is defined isolated.

J. Cammarota, et al., arXiv:2002.08384

Zhanwen Zhu @ BNL seminar March 2020

- The isolated π⁰ A_N is significantly larger, which is separated from those from fragmentation process.
- The non-isolated π⁰ A_N is very small, which are mostly from parton fragmentation process.
- Similar results at both energies.
- The physical origin and mechanism accounted for higher TSSA of isolated π⁰ is not known yet.
 - -> diffractive process? need more theory efforts!

Searching A_N origin : EM-jet TSSA

- Jet A_N sensitive to the initial state effect, related to Sivers effect, decoupled from Collins effect
- Anti-k_T algorithm is used for EM-jet reconstruction using FMS (EM calorimeter)

Zhanwen Zhu @ BNL seminar March 2020

- The jet TSSA is a few times smaller than the π⁰ TSSA in the same xF bin.
- The jet with photon multiplicity minimum requirement has significant smaller TSSA.
- The ANDY result shows the TSSA of the full jet, and is consistent with the result of the EM-jet which has at least 3 photons.

Initial state effect is small

Searching A_N origin : Collins asymmetry

• The Collins asymmetry – final state only the π^0 is a part of a jet, which is fragmented from a polarized parton

- For both energies, the Collins asymmetries are tiny, or consistent with zero, in agreement with the small A_N of non-isolated π^0 .
- Indication of j_T dependence, which was seen by mid-rapidity measurement at 200 GeV, underlying physics is understood yet.

Zhanwen Zhu @ BNL seminar March 2020

Collins asymmetries at STAR: mid-rapidity

• Collins asymmetries at 500 GeV & 200 GeV:

• First Collins effect measurements in pp collisions $_{-0.05}$ reasonably described by two recent calculations that combine the transversity distribution from $_{0.05}$ SIDIS with the Collins FF from e^+e^- collisions

 Both 200 and 500 GeV pp results hint that the asymmetry peak shifts to higher j_T as z increases

- Collins asymmetries observed in p+p collisions, providing information for scale dependence, also access to transversity.

Collins asymmetries at STAR: mid-rapidity

• New results on Collins asymmetries for π and K in p+p collisions at 200 GeV

• K^+ shows positive asymmetries for forward jets, consistent within the currently large statistical uncertainties with the π^+ asymmetries;

Transverse single spin asymmetry (A_N) of W boson

• Sivers sign change in DIS and DY/W/Z process:

-Critical test for our understanding of TMD's and TMD factorization

- Active experimental programs at CERN-COMPASS (DY), Fermi-SpinQuest (E1039,DY), and RHIC (W production).
- Advantages of weak boson production
 - Low background
 - High Q²-scale (~ W/Z boson mass)

First W, Z A_N results at 500 GeV from STAR

Data: STAR 2011 transverse run at 500 GeV, integrated luminosity ~25 pb⁻¹

• First A_N for W[±] and Z results :
$$A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

Sivers sign-change scenario preferred over no-sign change scenario.

Coming measurements of W/Z A_N at STAR

• STAR collected ~350 pb⁻¹ of transverse pp in 2017:

Goal:

- Constrain TMD evolution sea-quark Sivers function
- Test sign-change if TMD-evolution suppression factor ~5 or less

Looking Forward at STAR

Beam Energy Scan II 2019~2021

iTPC, eToF, EPD

Forward Physics (2.5<η<4) 2021+

Forward Tracking System

 -> 4 sTGC+ 3 Silicon disks

 Forward Calorimeter System

Future RHIC Spin in 2021+

					STAR	
Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade	Ly da Ly
2021/22	p [↑] p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high <i>x</i>	$\begin{array}{c} A_{UT} \text{ for Collins observables,} \\ \text{i.e. hadron in jet modulations} \\ \text{at } \eta > 1 \end{array}$	Ecal + Hcal +Tracking (2.5<η<4)	The RHIC Cold QCD Plan
2021/22	<i>₽</i> <i>p</i> @ 510	1.1fb ⁻¹ 10 weeks	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets at $\eta > 1$	Ecal + HCal (2.5<η<4)	for 2017 to 2023 A Portal to the EIC
2024	p [↑] p @ 200	300 pb ⁻¹ 8 weeks	Subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Ecal + Hcal +Tracking	arXiv:1602.03922
2024	p [↑] Au @ 200	1.8 pb ⁻¹ 8 weeks	Nature of the initial state and hadronization in nuclear collisions Clear signatures for Saturation	R_{pAu} direct photons and DY Dihadrons, γ -jet, h-jet, diffraction	Ecal + Hcal +Tracking	Forward detector
	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF, A-dependence for	R_{pAl} : direct photons and DY Dihadrons, γ -jet, h-jet,	Ecal + Hcal +Tracking	required
			Saturation	diffraction		

- ➢ RHIC is the world's only polarized hadron-hadron collider.
- Unique physics opportunities in pp and pA.

EIC

Summary of RHIC Spin

- Origin of proton spin remains a fundamental question in QCD.
- Observation of positive gluon polarization from RHIC:
 - Probes with jets and pion, are providing important constraints on ΔG
 Global analysis indicates sizable gluon polarization (0.05<x<0.2)
- Unique probe of sea quark polarization via W production:
 - Final A_L results for W[±] from RHIC run 13 data concludes RHIC W program, further confirm the SU(2) symmetry breaking: $\Delta \overline{u} > \Delta \overline{d}$
- □ Transverse spin physics at RHIC:
 - Results on Collins asymmetries & hyperon spin transfer provide window for transversity distribution of nucleon.
 - A_N for W,Z at STAR: 1st results obtained, run 17 to study Sivers sign change
- □ Future RHIC spin in 2021⁺ & EIC in 2028+
 - Unique physics opportunities in pp and pA, essential to fully realize the scientific promise of the EIC.
 - A ultimate QCD machine for proton structure: EIC/EicC !

Future on proton spin - eRHIC

Impact of STAR di-jet A_{LL} to Δg global fit

Forward upgrade: FTS+FCS

Correlation measurements with partonic kinematics

Access to partonic kinematics through di-jet production

STAR, Phys. Rev. D95,071103(2017)