Five-quark Components in Baryons and Pentaquark States

Bing-Song Zou

Institute of Theoretical Physics, CAS, Beijing & University of Chinese Academy of Sciences

Outline:

- 5-quark components in the proton
- Nature of 1/2⁻ baryon nonet with strangeness
- Pentaquarks with hidden charm P_c states
- Strange and beauty partners of P_c states
- Prospects

1. Five-quark components in the proton

Classical picture of the proton

Flavor asymmetry of light quarks in the nucleon sea

Deep Inelastic Scattering (DIS) + Drell-Yan (DY) process

→ d̄ - ū ~ 0.12 for a proton
 Garvey&Peng, Prog. Part. Nucl. Phys.47, 203 (2001)

Table 1. Values of the integral $\int_0^1 [\bar{d}(x) - \bar{u}(x)] dx$ determined from the DIS, semi-inclusive DIS, and Drell-Yan experiments.

Experiment	$\langle Q^2\rangle~({\rm GeV^2/c^2})$	$\int_0^1 [\bar{d}(x) - \bar{u}(x)] dx$
NMC/DIS	4.0	0.147 ± 0.039
HERMES/SIDIS	2.3	0.16 ± 0.03
FNAL E866/DY	54.0	0.118 ± 0.012

DIS Gottfried Sum Rule : assuming $\overline{\mathbf{d}} = \mathbf{u}$

$$I_2^p - I_2^n = \int_0^1 [F_2^p(x, Q^2) - F_2^n(x, Q^2)] / x \, dx = \sum_i [(Q_i^p)^2 - (Q_i^n)^2] = 1/3.$$

$$\int_0^1 [F_2^p(x,Q^2) - F_2^n(x,Q^2)]/x \, dx = \frac{1}{3} + \frac{2}{3} \int_0^1 [\bar{u}(x,Q^2) - \bar{d}(x,Q^2)] dx.$$

Deep Inelastic Scattering (DIS)

 $\sigma_{DY}(p+d)/2\sigma_{DY}(p+p) \simeq (1+\bar{d}(x_2)/\bar{u}(x_2))/2.$

FIGURE 1. Left panel: Cross section ratios of p + d over 2(p+p) for Drell-Yan, J/Ψ , and Υ production from FNAL E866. Right panel: Comparison of E866 $d - \overline{u}$ data with calculations from various models [2].

The Drell-Yan Process

Two major theoretical schemes for $\overline{\mathbf{d}} - \overline{\mathbf{u}} \sim 0.12$

Meson cloud picture: Thomas, Speth, Henley, Meissner, Miller, Weise, Oset, Brodsky, Ma, ...

$$|\mathbf{p}\rangle \sim |\mathbf{uud}\rangle + \varepsilon_1 |\mathbf{n}(\mathbf{udd})\pi^+(\mathbf{du})\rangle$$

 $+ \varepsilon_2 | \Delta^{++} (uuu) \pi^{-} (ud) > + \varepsilon' | \Lambda (uds) K^{+} (su) > \dots$

Penta-quark picture : Riska, Zou, Zhu, ... $|\mathbf{p} > \sim |\mathbf{uud} > + \varepsilon_1 | [\mathbf{ud}][\mathbf{ud}] \ \mathbf{d} > + \varepsilon' | [\mathbf{ud}][\mathbf{us}] \ \mathbf{s} > + ...$

Detailed balance model : Zhang, Ma, Zou, Yang, Alberg, Henley

uud
$$\Leftrightarrow$$
 uudg \checkmark uudd \overline{d} 1/2
1 : 1 uudu \overline{u} 1/3

 $p = 0.168 \text{ (uud)}+0.168 \text{ (uudg)}+0.084 \text{ (uudd } \overline{d} \text{)}+0.056 \text{ (uudu } \overline{u} \text{)}$ + 0.084 (uudgg) + ... $\overline{d} - \overline{u} \sim 0.124$ (uud+ng) 50% (uudd \overline{d} +ng) 22.4% (uudu \overline{u} +ng) 15.0%

Predictions for s / s asymmetry from two schemes :

	meson cloud	penta-quark
strange spin ∆s :	< 0	< 0
magnetic moment μ_s :	< 0	> 0
strange radium r _s :	< 0	> 0

Expt: $\Delta s = -0.05 \sim -0.1$ D. de Florian et al., PRD71 (2005) 094018

The strange magnetic moment μ_s and radii r_s from parity violating electron scattering

G0,HAPPEX/CEBAF, SAMPLE/MIT-Bates, A4/MAMI

HAPPEX/CEBAF, Phys.Rev.Lett. 96 (2006) 022003
G0/CEBAF, Phys.Rev.Lett. 95 (2005) 092001
A4/MAMI, Phys.Rev.Lett. 94 (2005) 152001
SAMPLE/MIT-Bates: Phys.Lett.B583 (2004) 79

Theory vs experiment for μ_s and r_s

Zou&Riska, PRL95(2005)072001; Riska&Zou, PLB636 (2006) 265 An-Riska-Zou, PRC73 (2006) 035207

Experiment extraction of \mu_s and r_s wrong?

R.Young et al., PRL97 (2006) 102002 $\rightarrow \mu_{s} \sim 0$ S.Baunack et al.(A4), PRL102(2009)151803

With ~25% qqqqq components in the proton, the "spin crisis" and single spin asymmetry may also be naturally explained. An-Riska-Zou, PRC73 (2006) 035207; F.X.Wei, B.S.Zou, hep-ph/0807.2324

$$\Delta_{u} = 0.85 \pm 0.17 \qquad \Delta_{u} = \frac{4}{3} |A_{3q}|^{2}$$

$$\Delta_{d} = -(0.33 \sim 0.56) \qquad \Delta_{d} = -\frac{1}{3}(1 - P_{s\bar{s}})$$

$$\Delta L_{q} = \frac{4}{3}(P_{d\bar{d}} + \tilde{P}_{s\bar{s}})$$

We must go beyond the simple 3q models, meson cloud vs penta-quark not settled yet.

Quenched & unquenched quark models Unquenching dynamics: gluons → qq crucial for quark confinement & hadron structure

quenched or unquenched quark models give very different predictions of baryon spectrum

- 2. Nature of 1/2⁻ baryon nonet with strangeness
- Mass pattern : quenched or unquenched ?

uds (L=1) $1/2^{-} \sim \Lambda^{*}(1670) \sim [us][ds] \bar{s} \quad \bar{K}\Xi - \eta\Lambda$ uud (L=1) $1/2^{-} \sim N^{*}(1535) \sim [ud][us] \bar{s} \quad \bar{K}\Sigma - \bar{K}\Lambda - \eta N$ uds (L=1) $1/2^{-} \sim \Lambda^{*}(1405) \sim [ud][su] \bar{u} \quad \bar{K}N - \pi\Sigma$ uus (L=1) $1/2^{-} \sim \Sigma^{*}(1390) \sim [us][ud] \bar{d} \quad \bar{K}N - \pi\Sigma - \pi\Lambda$ Zou et al, NPA835 (2010) 199 ; CLAS, PRC87(2013)035206

• Strange decays of N*(1535): PDG \rightarrow large $g_{N^*N\eta}$

 $J/\psi \rightarrow pN^* \rightarrow p(K\Lambda) / p(p\eta) \rightarrow large g_{N^*K\Lambda}$ Liu&Zou, PRL96 (2006) 042002; Geng,Oset,Zou&Doring, PRC79 (2009) 025203 $\gamma p \rightarrow p\eta' \& pp \rightarrow pp\eta' \rightarrow large g_{N^*N\eta'}$ M.Dugger et al., PRL96 (2006) 062001; Cao&Lee, PRC78(2008) 035207 $\pi^- p \rightarrow n\phi \& pp \rightarrow pp\phi \& pn \rightarrow d\phi \rightarrow large g_{N^*N\phi}$ Xie, Zou & Chiang, PRC77(2008)015206; Cao, Xie, Zou & Xu, PRC80(2009)025203

• Strange decays of $\Lambda^*(1670)$: PDG \rightarrow large $g_{\Lambda^*\Lambda\eta}$ narrower width (35MeV) than $\Lambda^*(1405)$

Problems for quenched q³ picture for baryon resonances: 1) "Missing resonances"; 2) mass ordering for the lowest ones

PRD84(2011)074508

Why N*(1535) 1/2⁻ is heavier than N*(1440) 1/2⁺ ?

- $N*(1535) \sim uud (L=1) + \varepsilon [ud][us] s + ...$ $N*(1440) \sim uud (n=1) + \xi [ud][ud] \overline{d} + ...$
- $\Lambda^{*}(1405) \sim uds (L=1) + \varepsilon [ud][su] u + ...$

N*(1535): [ud][us] \overline{s} → larger coupling to Nη, Nη', Nφ & KΛ, weaker to Nπ & KΣ, and heavier !

B.C. Liu & B.S.Zou, PRL96 (2006) 042002

quench vs un-quench for mesons

 $D^*_{s0}(2317) \sim \overline{sc} (L=1) + [q s][qc] + DK + ...$ $D^*_{s1}(2460) \sim \overline{sc} (L=1) + D^*K + ...$ $X(3872) \sim \overline{cc} (L=1) + [q c][qc] + D^*D + ...$

Alternative pictures :

Hadronic molecules

N*(1440) ~ Nσ N*(1535) ~ KΣ-KΛ Λ *(1405) ~ KN-Σπ **Penta-quark states**

- $N^*(1440) \sim [ud][ud] \overline{q}$
- $N*(1535) \sim [ud][us] \underline{s}$
- $\Lambda^{*}(1405) \sim [ud][sq] q$

Kaiser, Weise, Oset, Ramos, Oller, Meissner, Hyodo, Jido, Hosaka, ...

 $\Sigma^* \sim 1430$ MeV Oller, Meissner, Oh, Khemchandani, ...

 $\Xi^* \sim 1610$ MeV Oh, Ramos, Oset, ...

Important implications:

<u>qqqqq</u> in S-state more favorable than <u>qqq</u> with L=1 !
 & qqqq in S-state more favorable than qq with L=1 !

1/2⁻ baryon nonet ~ $\overline{q}q^2q^2$ state + ... 0⁺ meson octet ~ \overline{q}^2q^2 state + ...

Draging out qq from gluon field – an important excitation mechanism for hadrons ! multiquark components are important for hadrons ! Totally different predictions for the lowest $\Xi^* \& \Omega^*$:

$$qq^4$$
 (L=0) q^3 (L=1)

 $\Xi^* (1/2^-)$ [us][ds] $\overline{d} \sim 1540 \text{ MeV}$ uss ~ 1800 MeV $\Omega^* (1/2^-)$ [us] ss $\overline{u} \sim 1840 \text{ MeV}$ sss ~ 2000 MeV

Yuan-An-Wei-Zou-Xu, PRC87(2013)025205 Capstick-Isgur, PRD34(1986)2809

Ω*(3/2⁻) as sss - uusss mixture : ~ 1780 MeV by instanton/NJL interaction An-Metsch-Zou, PRC87(2013) 065207; An-Zou, PRC89 (2014) 055209
$$\begin{split} \Sigma^* \text{ in PDG: } & **** \ \Sigma \ (1189)1/2^+ \ \Sigma^* (1385)3/2^+ \ \Sigma^* (1670)3/2^- \\ & \Sigma^* (1775)5/2^- \ \Sigma^* (1915)5/2^+ \ \Sigma^* (2030)7/2^+ \end{split}$$

*** $\Sigma^{*}(1660)1/2^{+}$ $\Sigma^{*}(1750)1/2^{-}$ $\Sigma^{*}(1940)3/2^{-}$ $\Sigma^{*}(2250)??$

 $\Sigma^{*}(1480)$?? $\Sigma^{*}(1560)$?? $\Sigma^{*}(1580)3/2^{-}$ $\Sigma^{*}(1770)1/2^{+}$

- * $\Sigma^{*}(1840)3/2^{+} \Sigma^{*}(2000)3/2^{-} \Sigma^{*}(2070)5/2^{+} \Sigma^{*}(2100)7/2^{-} \Sigma^{*}(3000)?? \Sigma^{*}(3170)??$
- Ξ^* in PDG: **** $\Xi(1320) 1/2^+$, $\Xi(1530) 3/2^+$

**

- *** E(1690), E(1820) 3/2⁻, E(1950), E(2030) ** E(2250), E(2370)
 - * $\Xi(1620)$, $\Xi(2120)$, $\Xi(2500)$

Ω* in PDG: Ω(1672) $3/2^+$ ****, Ω (2250)***, Ω (2380) **, Ω (2470) **

Experiment knowledge on hyperon states still very poor !

Difficulties to pin down pentaquarks

Fate of the first pentaquark predicted and observed:

- **1959:** KN molecule predicted by Dalitz-Tuan, PRL2, 425
- **1961:** $\Lambda(1405) \rightarrow \Sigma \pi$ observed by Alston et al., PRL6, 698
- **1964:** Quark model (uds) for $\Lambda(1405)$
- **1995:** KN dynamically generated -- Kaiser et al., NPA954, 325
- 2001: 2 pole structure by $\overline{KN}-\Sigma\pi$ -- Oller et al., PLB500, 263

PDG2010: "The clean Λ_c spectrum has in fact been taken to settle the decades-long discussion about the nature of the $\Lambda(1405)$ —true 3-quark state or mere KN threshold effect? unambiguously in favor of the first interpretation."

Fate of the last famous fading pentaquark $\theta^+(1540)$:

- **1997:** Z⁺(1530) predicted by Diakonov et al., ZPA359, 305
- 2003: $\theta^+(1540) \rightarrow K^+n$ claimed by LEPS, PRL91, 012002
- **2003:** s (ud)(ud) for $\theta(1540)$ by Jaffe&Wilczek, PRL91, 232003
- 2003: s ud)(ud) for $\theta(1540)$ by Karliner&Lipkin, PLB575, 249
- **2004:** supported by 10 expts $\rightarrow \theta(1540)$ well-established by PDG
- 2004: not supported by BESII, PRD70, 012004
- **2005:** not supported by many high stats experiments
- 2006: removed from PDG
- **Note:** θ⁺(1540) is not supported by hadronic molecule model & chiral quark model by Huang, Zhang, Yu, Zou, PLB586(2004)69

3. Pentaquarks with hidden charm – P_c states

New direction for hunting for pentaquarks:

Extension to hidden charm and beauty for baryons

- N*(1535) ssuud
- N*(4260) ccuud J.J.Wu, R.Molina, E.Oset, B.S.Zou. Phys.Rev.Lett. 105 (2010) 232001
- N*(11050) bbuud J.J.Wu, L.Zhao, B.S.Zou. PLB709(2012)70
- $\Lambda^*(1405)$ qquds
- Λ*(4210)
 ccuds
 J.J.Wu, R.Molina, E.Oset, B.S.Zou.

 Phys.Rev.Lett. 105 (2010) 232001

 Λ*(11020)
 bbuds
 J.J.Wu, L.Zhao, B.S.Zou. PLB709(2012)70

From K Σ , $\overline{K}N \rightarrow \overline{D}\Sigma_c$, $\overline{D}_s\Lambda_c \rightarrow B\Sigma_b$, $B_s\Lambda_b$ bound states

"Prediction of narrow N* and Λ* resonances with hidden charm above 4 GeV", Wu, Molina, Oset, Zou, PRL105 (2010) 232001

В. 7 В

$$\mathcal{L}_{VVV} = ig \langle V^{\mu} [V^{\nu}, \partial_{\mu} V_{\nu}] \rangle$$

$$\mathcal{L}_{PPV} = -ig \langle V^{\mu} [P, \partial_{\mu} P] \rangle$$

$$\mathcal{L}_{BBV} = g (\langle \bar{B} \gamma_{\mu} [V^{\mu}, B] \rangle + \langle \bar{B} \gamma_{\mu} B \rangle \langle V^{\mu} \rangle)$$

$$V_{ab(P_{1}B_{1} \rightarrow P_{2}B_{2})} = \frac{C_{ab}}{4f^{2}} (E_{P_{1}} + E_{P_{2}}),$$

$$V_{ab(V_{1}B_{1} \rightarrow V_{2}B_{2})} = \frac{C_{ab}}{4f^{2}} (E_{V_{1}} + E_{V_{2}})\vec{\epsilon}_{1} \cdot \vec{\epsilon}_{2},$$

$$T = [1 - VG]^{-1}V$$

$$T_{ab} = \frac{g_a g_b}{\sqrt{s} - z_R}$$

J.J.Wu, R.Molina, E.Oset, B.S.Zou, PRL 105 (2010) 232001

		(I, S)	M	Г			Ι	ì			JP
NIX	DD	(1/2, 0)			πN	ηN	$\eta' N$	$K\Sigma$		$\eta_c N$	
IN *** =	DZ _c		4261	56.9	3.8	8.1	3.9	17.0		23.4	1/2-
	5-	(0, -1)			$\bar{K}N$	$\pi\Sigma$	$\eta \Lambda$	$\eta' \Lambda$	$K\Xi$	$\eta_c \Lambda$	1/4
Λ*			4209	32.4	15.8	2.9	3.2	1.7	2.4	5.8	
	DE'	,	4394	43.3	0	10.6	7.1	3.3	5.8	16.3	

TABLE V: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $PB \rightarrow PB$, with units in MeV.

	-	(I, S)	M	Г			Г	i			-	
NT*		(1/2, 0)			ρN	ωN	$K^*\Sigma$			$J/\psi N$		
1 N **=		3	4412	47.3	3.2	10.4	13.7			19.2	1/2-	2/2-
		(0, -1)			K^*N	$\rho\Sigma$	$\omega \Lambda$	$\phi \Lambda$	$K^*\Xi$	$J/\psi\Lambda$	1/2-,	312-
Λ*		c	4368	28.0	13.9	3.1	0.3	4.0	1.8	5.4		
	D*E	, с	4544	36.6	0	8.8	9.1	0	5.0	13.8		

TABLE VI: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $VB \rightarrow VB$ with units in MeV.

Further studies support such hidden charm N*

W.L.Wang, F.Huang, Z.Y.Zhang, B.S.Zou, PRC84(2011)015203: Chiral quark model $\rightarrow \overline{D}\Sigma_c$ state ~ 4.31 GeV

Z.C.Yang, Z.F.Sun, J.He, X.Liu, S.L.Zhu, Chin. Phys. C36 (2012) 6 Schoedinger Equation method with π , η , ρ , ω , σ exchanges $\rightarrow \overline{D} \Sigma_c (1/2^-, 3/2^-) N^*$ state ~ 4.36 – 4.46 GeV

J.J.Wu, T.S.H.Lee, B.S.Zou, PRC85(2012)044002: **EBAC-DCC model** $\rightarrow \overline{D}\Sigma_{c} (1/2^{-}) \sim 4.3 \text{ GeV},$ $\overline{D}^{*}\Sigma_{c} (1/2^{-}, 3/2^{-}) \sim 4.4 - 4.5 \text{ GeV}$ -

C.W.Xiao, J.Nieves, E.Oset, PRD 88 (2013) 056012: Heavy quark spin symmetry \rightarrow 7 such N* molecules $\overline{D}\Sigma_{c} (1/2^{-}) \sim 4.26 \text{ GeV}, \ \overline{D}\Sigma_{c}^{*} (3/2^{-}) \sim 4.33 \text{ GeV},$ $\overline{D}^{*}\Sigma_{c} (1/2^{-}, 3/2^{-}) \sim 4.41, 4.42 \text{ GeV},$ $\overline{D}^{*}\Sigma_{c}^{*} (1/2^{-}, 3/2^{-}, 5/2^{-}) \sim 4.48 - 4.49 \text{ GeV}$

M.Karliner, J.L.Rosner, PRL115(2015)122001: **Pion exchange** $\rightarrow \overline{D}^*\Sigma_c (1/2^-, 3/2^-) \sim 4.5 \text{ GeV}$

S.G.Yuan, K.W.Wei, J.He, H.S.Xu, B.S.Zou, "Study of ccqqq five quark system with three kinds of quark-quark hyperfine interaction," Eur. Phys. J. A48 (2012) 61

		v		•	•			-		-			
					1		J^P	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$
	C_{i}	M	F	S	Ins	st.	$\frac{1}{2}^{+}$	4622	4456	4291	4138	4487	4396
J^P	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$	$\frac{1}{2}^{+}$	4636	4480	4297	4140	4501	4426
-	4273	4267	4084	3933	4209	4114	$\frac{1}{2}^{+}$	4645	4557	4363	4238	4520	4426
_	4977	4969	4154	4012	4916	4191	$\frac{1}{2}^{+}$	4658	4581	4439	4320	4540	4470
_	4077	4000	4104	4015	4210	4151	$\frac{1}{2}^{+}$	4690	4593	4439	4367	4557	4482
	4453	4377	4160	4119	4277	4204	$\frac{1}{2}^{+}$	4696	4632	4467	4377	4587	4490
-	4469	4471	4171	4136	4295	4207	$\frac{1}{2}^{+}$	4714	4654	4469	4404	4590	4517
-	4494	4541	4253	4156	4360	4272	$\frac{1}{2}^{+}$	4728	4676	4486	4489	4614	4518
(4576		4963		4262		$\frac{1}{2}^{+}$	4737	4714	4492	4508	4616	4549
_	4010		4200		4502		$\frac{1}{2}^{+}$	4766	4720	4510	4515	4626	4566
	4649		4278		4416		$\frac{3}{2}^{+}$	4623	4457	4291	4138	4487	4396
-	4431	4389	4154	4013	4216	4131	$\frac{3}{2}^{+}$	4638	4515	4297	4140	4501	4426
-	4503	4445	4171	4119	4295	4204	$\frac{3}{2}^{+}$	4680	4561	4363	4238	4520	4426
-	4549	4476	4263	4136	4362	4272	$\frac{3}{2}^{+}$	4692	4582	4439	4320	4540	4470
3 –	4577	4596	4978	4926	4416	4200	$\frac{3}{2}^{+}$	4695	4625	4439	4367	4557	4482
2 _	4011	4520	4210	4230	4410	4322	$\frac{5}{2}^{+}$	4705	4539	4297	4140	4501	4426
2	4629		4362		4461		$\frac{5}{2}$ +	4719	4649	4439	4320	4540	4470
$\frac{5}{2}$	4719	4616	4362	4236	4461	4322	$\frac{5}{2}$ +	4773	4689	4467	4367	4587	4482
							5+	4793	4696	4486	4404	4615	4490
							$\frac{5}{2}^{+}$	4821	4710	4492	4515	4632	4517
							$\frac{7}{2}^+$	4945	4841	4638	4508	4698	4566
12	+) _ 1	VI(3 /	2-) •	130	~300	MeV	$\frac{7}{2}$ +	4955	4862	4671	4551	4712	4634
	1						$\frac{7}{2}$ +	4974	4919	4705	4587	4765	4669

7+

5010

4759

4797

Prediction for PANDA

 $\bar{p}p \rightarrow \bar{p}pJ/\psi > 0.1 \text{ nb}$

> 100 events per day at PANDA/FAIR by L=10³¹ cm⁻²s⁻¹

These Super-heavy narrow N* and Λ* can be found at PANDA !

Albrecht Gillitzer@Juelich had a plan to find them at PANDA

Prediction for 12GeV@JLab

Y. Huang, J.He, H.F.Zhang and X.R.Chen, JPG41, 115004 (2014)

Proposals for looking for N $_{\overline{cc}}$ & A $_{\overline{cc}}$ with π^- , K beams at JPARC

- a) X.Y.Wang, X.R.Chen, "The production of hidden charm baryon N*(4261) from π⁻p →η_c n reaction", EPL109 (2015) 41001.
- b) E.J.Garzon, J.J.Xie, "Effects of a N $_{cc}$ resonance with hidden charm in the $\pi^-p \rightarrow D^-\Sigma_c^+$ reaction near threshold", PRC 92 (2015) 035201
- c) X.Y.Wang, X.R.Chen, "Production of the superheavy baryon Λ*(4209) in kaon-induced reaction", EPJA51 (2015) 85

LHCb observation of P_c pentaquarks

LHCb, Phys.Rev.Lett. 115 (2015) 072001 : Observation of two N* from $\Lambda_b^0 \to J/\psi K^- p$ $\Lambda_b^0 \begin{cases} b \to J/\psi K^- p \end{cases}$

LHCb, Phys.Rev.Lett. 122 (2019) 222001

State	M [MeV]	Г [MeV]	(95% C.L.)	\mathcal{R} [%]
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+3.7}_{-4.5}$	(<27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	(<49)	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$	(<20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

Moriond QCD, Tomasz Skwarnicki, Mar 26, 2019

Comparison to numerical predictions

- Many theoretical predictions for $\Sigma_c^+ \overline{D}^{(*)0}$ published before 2015, some in quantitative agreement with the LHCb data
 - Wu,Molina,Oset,Zou, PRL105, 232001 (2010),
 - Wang,Huang,Zhang,Zou, PR C84, 015203 (2011),
 - Yang,Sun,He,Liu,Zhu, Chin. Phys. C36, 6 (2012),
 - Wu,Lee,Zou, PR C85 044002 (2012),
 - Karliner, Rosner, PRL 115, 122001 (2015)

ΔE – binding energy

Nucleon resonances with hidden charm in coupled-channels models

Jia-Jun Wu, T.-S. H. Lee, and B. S. Zou Phys. Rev. C **85**, 044002 – Published 17 April 2012

Example:

arXiv:1202.1036

TABLE III: The pole position $(M - i\Gamma/2)$ and "binding energy" $(\Delta E = E_{thr} - M)$ for different cut-off parameter Λ and spin-parity J^P . The threshold E_{thr} is 4320.79 MeV of $\bar{D}\Sigma_c$ in PB system and 4462.18 MeV of $\bar{D}^*\Sigma_c$ in VB system. The unit for the listed numbers is MeV.

			PB System		VB System			
	$J^p = \frac{1}{2}$	Λ	$M - i\Gamma/2$	ΔE	$M - i\Gamma/2$	ΔE		
10		650	0+10 M		$\Delta E(4457)$	7)-=	$2.5^{+4.3}_{-4.1}$	MeV
431	[2] =	= ₈₀₀ -	$8_{-6.8}^{+1.0}$ IVIE	₽V_	4462.178 - 0.002i	0.002	1.12.13	
		1200	4318.964 - 0.362i	1.826	4459.513 - 0.417i	2.667		
		1500	4314.531 - 1.448i	6.259	4454.088 - 1.662i	8.092		
		2000	4301.115 - 5.835i	19.68	4438.277 - 7.115i	23.90		
	$J^p = \frac{3}{2}$	-			h			
		650		-	-	-		
		800	~	-	4462.178 - 0.002i	0.002		
		1200	-	-	4459.507 - 0.420i	2.673		
		1500	-		4454.057 - 1.681i	8.123		
		2000	-	-	4438.039 - 7.268i	23.14		
22				٨	F(1110)	1	0 = +4.9	

 $\Lambda~$ - cut off on exchanged meson mass.

 $\Delta E(4440) = 19.5^{+4.9}_{-4.3}$ MeV

15

Progress on P_c states after LHCb observation

Thresholds $\overline{D}\Sigma_c^*$ (4383MeV), $\overline{D}^*\Sigma_c$ (4460MeV), $p\chi_{c1}$ (4449MeV)

1) $\overline{\mathbf{D}}\Sigma_{c}^{*}$, $\overline{\mathbf{D}}^{*}\Sigma_{c}$, $\overline{\mathbf{D}}^{*}\Sigma_{c}^{*}$ molecular states

R.Chen, X.Liu, X.Q.Li, S.L.Zhu, PRL115 (2015) 132002; L.Roca, J.Nieves, E.Oset, PRD92 (2015) 094003; J.He, PLB 753 (2016)547;

2) diquark cu & triquark c(ud) states

L.Maiani, A.D.Polosa, V. Riquer, PLB749 (2015) 289; R.Lebed, PLB749 (2015) 454; G.N.Li, M.He, X.G.He, JHEP 1512 (2015) 128; R.Zhu, C.F.Qiao, PLB756 (2016) 259;

3) Kinematic triangle-singularity

F.K.Guo, Ulf-G.Meißner, W.Wang, Z.Yang, PRD92 (2015) 071502 J/X.H.Liu, Q.Wang, Q.Zhao, PLB757 (2016) 231 χ_{cJ}

For comprehensive reviews, cf.:

H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Phys.Rept. 639 (2016) 1 F.K.Guo, C.Hanhart, U.Meissner, Q.Wang, Q.Zhao, B.S.Zou, RMP 90 (2018)015004 Y.R.Liu, H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Prog.Part.Nucl.Phys. 107 (2019) 237 $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ by LHCb LHCb-PAPER-2020-039

 $\overline{D}\Xi_{c}$ (4337MeV), $\overline{D}^{*}\Xi_{c}$ (4478MeV), $\overline{D}\Xi_{c}^{'}$ (4444MeV), $\overline{D}^{*}\Xi_{c}^{'}$ (4585MeV), $\overline{D}\Xi_{c}^{*}$ (4513MeV), $\overline{D}^{*}\Xi_{c}^{*}$ (4654MeV)

Multiquark states – crucial for hadron structure !

- $X(3872) \rightarrow \text{top cited paper for Belle (2003)} \qquad 1863 \text{ cites}$
- $Zc(3900) \rightarrow top cited paper for BES (2012) 805 cites$
- Pc states \rightarrow top cited paper for LHCb (2015) 1109 cites

H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Phys.Rept. 639 (2016) 1: "The hidden-charm pentaquark and tetraquark states" 610 cites

F.K.Guo, C.Hanhart, U.Meissner, Q.Wang, Q.Zhao, B.S.Zou, Rev.Mod.Phys. 90 (2018)015004: "Hadronic molecules" 474 cites

Disentangling $D\Sigma_c^* / D^*\Sigma_c$ nature of P_c^+ states from their decays Y.H.Lin, C.W.Shen, F.K.Guo, B.S.Zou, PRD95(2017)114017

One pion exchange is very important !

 $\overline{\mathbf{D}}\Sigma_{c}^{*}$ & $\overline{\mathbf{D}}^{*}\Sigma_{c}^{*}$ are much broader than $\overline{\mathbf{D}}\Sigma_{c}$ & $\overline{\mathbf{D}}^{*}\Sigma_{c}$ states

Partial decay widths of $P_c(4312)$, $P_c(4440)$ & $P_c(4457)$

Y.H.Lin, B.S.Zou, PRD100 (2019) 056005

		Widths (MeV) with (f_1, f_3)										
	$\bar{D}\Sigma_c$	$ar{D}^*\Sigma_c$										
	$P_{c}(4312)$	$P_c(4$	440)	$P_c(44)$	457)							
Mode	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{1}{2}$	$\frac{3}{2}$							
$\bar{D}^*\Lambda_c$	3.8	13.9	6.2	12.5	6.1							
$J/\psi p$	0.001	0.03	0.02	0.02	0.01							
$\bar{D}\Lambda_c$	0.06	5.6	1.7	3.8	1.5							
πN	0.004	0.002	~ 0	0.001	~ 0							
$\chi_{c0}p$		~0	~ 0	~ 0	~ 0							
$\eta_c p$	0.01	~0	~ 0	~ 0	~ 0							
ρN	~ 0	~ 0	~ 0	~ 0	~ 0							
ωp	~ 0	0.001	~ 0	~ 0	~ 0							
$\bar{D}\Sigma_c$		3.4	0.5	2.6	1.0							
$\bar{D}\Sigma_c^*$		0.8	5.4	1.9	6.2							
Total	3.9	23.7	13.9	20.7	14.7							

It is very important to study $P_c \rightarrow \overline{D} * \Lambda_c \& \overline{D} \Lambda_c !$

Pin down P_c⁺ states from their photo-production J.J.Wu, T.S.H.Lee, B.S.Zou, PRC100 (2019)035206

4. Strange & beauty partners of P_c states

Strange partners of P_c and P_{cs} states

K $\Sigma^* \sim 1880$ K $^*\Sigma \sim 2086$ K $^*\Sigma^* \sim 2280$ N*(1875)N*(2080)N*(2270)

KE ~1810KE* ~ 2027K*E ~ 2210K*E* ~ 2427 $\Lambda(1/2^{-})$ $\Lambda(3/2^{-})$ $\Lambda(1/2^{-},3/2^{-})$ $\Lambda(1/2^{-},3/2^{-},5/2^{-})$

K*N ~1833 : $\Lambda(1800)1/2^-, \Lambda(3/2^-)$

Strangeness partners of P_c states at BES ?N*(1875)N*(2080)N*(2270)K Σ * ~1880K* Σ ~ 2086K* Σ * ~ 2280

Photo-production of pentaquark states with hidden strangeness

Photo-production of hyperons

Contents lists available at SciVerse ScienceDirect

Physics Letters B

Prediction of super-heavy N^* and Λ^* resonances with hidden beauty Jia-Jun Wu^{a,*}, Lu Zhao^a, B.S. Zou^{a,b}

M (MeV)	Г (MeV)	Γ_i (Me)	/)				
11 052	1.38	πN 0.10	ηN 0.21	η′Ν 0.11	<i>KΣ</i> 0.42	$\eta_b N$ 0.52	1/2-
11 100	1.33	ρN 0.09	ωN 0.30	<i>K</i> * <i>Σ</i> 0.39	ΥΝ 0.51		1/2-, 3/2-

$\bar{D}\Lambda_{c} - \bar{D}\Sigma_{c}$ and $B\Lambda_{b} - B\Sigma_{b}$ dynamical coupled channel study C.W.Shen, Roechen, Meissner, Zou, CPC42(2018) 023106

More pentaquarks with hidden beauty than with hidden charm

Decay behavior of P_s & P_b pentaquark states

Y.H.Lin, C.W.Shen, B.S.Zou, NPA980(2018)21

		Widths (MeV)			Widths (MeV)			
Mode	$\frac{J^P}{N(1875)} = \frac{J^P}{K\Sigma^*}$	$\frac{3/2^{-}}{N(2080) K^{*}\Sigma}$	$\frac{J^P = 1/2^-}{N(2080) \ K^* \Sigma}$	Mode	$J^P =$	= 3/2	$J^{P} = 1/2$	
$N\sigma(500)$	2.6	0.05	0.3		$B\Sigma_{h}^{*}$	$B^*\Sigma_b$	$B^*\Sigma_b$	
πN	3.8	0.2	22.7	$B^*\Lambda_h$	271.1	19.9	167.0	
ho N	2.3	3.8	6.1	Υp	0.3	0.04	0.1	
$egin{array}{c} \omega p \ K \Sigma \end{array}$	0.03	11.3	18.2 9.1	ρN	5.5	0.02	0.1	
$K\Lambda$	0.7	3.7	19.3	ωp	20.9	0.07	0.4	
ηp	0.6	0.4	1.8	$B\Lambda_h$	_	7.3	135.9	
$\pi\Delta_{K^*\Lambda}$	201.4	82.6	46.9	$B\Sigma_{h}$	_	-	-	
$\frac{\pi}{\phi p}$	-	19.2	27.0	n_n	0.02	0.0001	0.0009	
$K\Sigma^*$	-	7.3	1.3	VLOD	14	0.0008	0.2	
$K\Lambda(1520)$	-	0.1	1.3	πN	0.7	0.0000	0.003	
$K \Lambda (1405)$ $K \pi \Lambda$	-	8.0	8.8	$R\Sigma^*$	0.1	0.005	0.005	
$K\pi\Sigma$	-	41.3	46.1	Tetal	-	- 07.4	202.0	
Total	228.2	181.7	216.8	Total	299.9	21.4	303.8	

Guidance for P_s & P_b search

Decay behaviors of possible $\Lambda_{c\bar{c}}$ states in hadronic molecule pictures

C.W.Shen, J.J.Wu, B.S.Zou (2019), ArXiv:1906.03896

Guidance for P_{sc} search

5. Prospects

my favorite strategy for hadron spectroscopy:

ccuud & ccuds → sss - qqsss → cqq - qqcqq → hyperons → light baryons

charm & beauty meson

charm & beauty baryon

- New penta-quark spectroscopy provides a new ideal platform for understanding multiquark dynamics
- Further experimental confirmation and extension for whole penta-quark spectroscopy from γN, πN, KN, e⁺e⁻→ Λ_bΛ_b, etc.
 ep/γp@JLab, π10/K10@JPARC, BelleII, BESIII, Eic/EicC, PANDA@FAIR, STCF etc. may play important role here!

Thank you for your attention!